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Abstract— Convolutional neural networks (CNNs) are becom-
ing attractive alternatives to traditional image-processing algo-
rithms in self-driving vehicles for automotive, military, and
aerospace applications. The high computational demand of
state-of-the-art CNN architectures requires the use of hard-
ware acceleration on parallel devices. Field-programmable gate
arrays (FPGAs) offer a great level of design flexibility, low power
consumption, and are relatively low cost, which make them
very good candidates for efficiently accelerating neural networks.
Unfortunately, the configuration memories of SRAM-based
FPGAs are sensitive to radiation-induced errors, which can
compromise the circuit implemented on the programmable fabric
and the overall reliability of the system. Through neutron beam
experiments, we evaluate how lossless quantization processes and
subsequent data precision reduction impact the area, perfor-
mance, radiation sensitivity, and failure rate of neural networks
on FPGAs. Our results show that an 8-bit integer design
can deliver over six times more fault-free executions than a
32-bit floating-point implementation. Moreover, we discuss the
tradeoffs associated with varying degrees of parallelism in a
neural network accelerator. We show that, although increased
parallelism increases radiation sensitivity, the performance gains
generally outweigh it in terms of global failure rate.

Index Terms— Field-programmable gate array (FPGA), neural
networks, parallelism, reduced precision, reliability.

I. INTRODUCTION

IN RECENT years, the trillion dollar automotive indus-
try has been very much focused on progressively adding

technology to vehicles and on enabling self-driving capabili-
ties [1]. Through the pairing of sensorial data collection with
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high-performance image processing, embedded computing
systems used by companies like Mercedes-Benz [2], Volvo [3],
and Tesla [4], are currently able to deliver semi-autonomous
driving experiences. In fact, the push for autonomous vehicles
is also very much true in military organizations (with the
increased adoption of unmanned aerial vehicles (UAVs) [5])
and in the space exploration sector (with the use of rovers and
helicopters on Mars [6], [7]). At the same time, convolutional
neural networks (CNNs) have significantly evolved in terms
of accuracy and became very attractive solutions for image
processing and pattern recognition workloads [8]. Given that
all of the aforementioned safety-critical applications depend
on reliable computer vision [9]–[11], CNNs emerge as great
alternatives to more old-fashioned algorithms.

Neural networks have a parallel structure, both in terms of
neurons, and convolutional filters. Such inherent parallelism
makes CNNs perfect candidates for efficient acceleration on
parallel computing devices, such as application-specific inte-
grated circuits (ASICs), graphics-processing units (GPUs), and
field-programmable gate arrays (FPGAs). In a perfect world,
we would be able to define an optimal hardware architecture,
fabricate an ASIC, and never look back. However, the field
of machine learning is ever evolving, which means that the
requirements for accelerating the neural network topologies
of today might not be the same a few years in the future.
Therefore, design flexibility and reprogrammability must be
considered. GPUs currently offer parallel general-purpose
arithmetic hardware and design flexibility at the software
level. However, most state-of-the-art GPU architectures are
throughput-oriented [12] (rather than latency-oriented) and not
power-efficient [13]. FPGAs, on the other hand, offer full hard-
ware reprogrammability and lower power consumption [14],
which enables system patches (for architectural improvements,
weight tuning, bug fixing, and more), along with the ability
for deployment on power constrained missions (which is often
the case in space applications) [15].

Unfortunately, FPGAs are very sensitive to
radiation-induced faults [16]. More specifically, SRAM-based
FPGAs can experience single-event upsets (SEUs) in their
configuration memory, which affects routing connections
as well as modifies the settings and content of LUTs,
DSPs, BRAMs, and FFs. With a corrupted configuration
memory, the design on the FPGA can start malfunctioning
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and providing erroneous answers. Furthermore, each type
of logic resource available on the FPGA corresponds to a
different percentage of the total configuration bits [17] and
produces a different type of error/failure in the presence
of SEUs. Therefore, the specific mapping of the circuit
(i.e., the neural network accelerator) is an important
component of overall resilience. More broadly speaking,
it follows that reliability must always be taken into account
when developing FPGA-based computational solutions for
safety-critical applications.

Previous works have discussed the general reliability of
CNNs executing in ASICs [18], GPUs [19], [20], and
FPGAs [21], [22]. Other studies have considered the tradeoffs
in performance and radiation sensitivity of using reduced and
mixed precision in different computer architectures, while
executing well-known benchmarks (including state-of-the-art
neural networks for object detection) [23], [24]. Further-
more, the combined impact of accuracy (or lack thereof)
and radiation on the overall failure rate of neural networks
was discussed and modeled [25]. This article focuses on the
reliability benefits of reduced precision in CNNs, whenever
paired with proper quantization techniques (that allow for zero
loss of accuracy), which is, to the best of our knowledge,
a novel evaluation for FPGAs. We also evaluate architectural
variations with majorly different degrees of parallelism and
discuss the tradeoffs between area, speed, and reliability.

In order to deliver high accuracy, CNNs require high
computational complexity. As an example, the number of
arithmetic operations required for processing each input image
in Google’s state-of-the-art InceptionV3 architecture is over
5 billion [26]. On FPGAs, the need for higher computing
power often translates to higher resource utilization, which in
turn increases device cost, energy consumption, and sensitive
area (i.e., radiation susceptibility). In order to speed-up neural
networks, designers have explored reducing the precision of
data representation throughout the network. As a standard,
state-of-the-art frameworks such as Google’s TensorFlow use
32-bit floating point at training time, but recently developed
quantization techniques have allowed the deployment of 16-bit
floating-point and even 8-bit integer versions of same network,
with little to no accuracy loss [27]. The first contribution of this
article is an evaluation on how such data precision reduction
impacts the overall reliability of CNNs. Our experimental
data show that it is possible to decrease the failure rate of a
neural network by over 70%, simply using proper quantization
methods and a corresponding 8-bit integer representation.

Another important design decision for neural network hard-
ware accelerators is the degree of parallelism, as the architect
must define how many processing elements (PEs) are going
to be instantiated in the programmable logic of the FPGA.
Strictly from the performance standpoint, it seems that the
answer would be “as many as possible.” However, paral-
lelism increases resource utilization, which in turn leads to
increased radiation sensitivity, and, possibly, lower reliability.
In addition, given the sizes of the current state-of-the-art
neural network topologies, it is most often infeasible to imple-
ment ALL of the necessary PEs (providing maximum paral-
lelism), as the logic resources on FPGA devices are limited.

Therefore, as the second contribution of this article, we ana-
lyze and discuss the area, performance, and reliability tradeoffs
associated with varying degrees of parallelism for neural
network accelerators. We show that radiation sensitivity can
vary as much as two orders of magnitude, when comparing the
two ends of the parallelism spectrum (i.e., minimum number
of PEs versus maximum number of PEs), while the estimated
failure rate is over 7× lower in the faster, more parallel design.

The remainder of this article is organized as follows.
Section II gives a more comprehensive background on neural
networks, the available quantization tools, and the specifics of
our case study CNN. Section III discusses the details of our
FPGA designs, methodology, and radiation beam experiment.
Section IV presents our results regarding data precision reduc-
tion and degree of parallelism. Section V goes over our main
conclusions as well as intentions for future work.

II. BACKGROUND

A. Convolutional Neural Networks

Artificial neural networks (ANNs) are biologically inspired
computational structures that are able to calculate their outputs
by propagating data through sets of interconnected neurons,
distributed across different layers. From a mathematical per-
spective, the output of a neural network is generated by a
series of matrix multiplications, which, in turn, are calculated
through a series of multiply accumulated operations. A CNN is
a special kind of ANN, mostly dedicated to image-processing
tasks. The first few layers in a CNN are responsible for
extracting features from the input image (such as edges and
shadows) before feeding the layers of fully connected neurons
(responsible for classification and decision-making). By using
convolution and pooling operations, it is possible to reduce
the amount of data to be processed by the neurons, ultimately
making the computation more efficient. All filters and neurons
have weights associated with them, which are learned during
an extensive training process. Input data is iteratively presented
to the model, and minor adjustments are made after each
step. Once the training is complete, the network is able to
compute solutions for novel inputs, based on its learned set of
weights.

B. Quantization of Neural Networks

In order to achieve high levels of accuracy, CNNs end up
being very much computationally expensive. As safety-critical
applications usually require low latency systems and algo-
rithms, a number of simplification techniques have been
developed for neural networks, such as weight trimming and
quantization [28]. In this article, we focus on the latter. The
main idea behind quantization is to reduce the precision in
which the weights of a given model are represented, in order
to speed-up computation and reduce resource utilization.
At training time, all industry-leading frameworks use 32-bit
floating point as a default. For the specific case of TensorFlow,
they provide a subset of tools called TensorFlow Lite [29],
which allows developers to quantize their models to lower
precisions, such as 16-bit floating point (IEEE’s half-precision)
and 8-bit integer. Previous works have shown that careless
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Fig. 1. Topology of the MNIST CNN. Striped layers have weights associated with them (which go through the quantization process).

quantization procedures can often compromise accuracy (point
at which the efforts in reducing radiation-induced errors cease
to pay off) [25]. The clever thing about TensorFlow’s tools
is that their quantization process uses a small subset of the
training data for calibration purposes. The end result is that
the quantized models show little to no accuracy loss when
compared to their 32-bit float counterpart.

C. Related Work

As stated before, this article is not the first to evaluate the
reliability of CNNs. Prior work has studied neural network
resilience on ASICs, proposing and validating a framework
for pre-silicon fault tolerance estimation, mostly based on
topological characteristics [18]. Furthermore, GPU-focused
papers have experimentally evaluated the reliability of state-of-
the-art neural networks for object detection (with an emphasis
on automotive applications), executing on different NVIDIA
architectures. The authors have also tested an algorithm-based
fault-tolerance (ABFT) technique for matrix multiplication,
achieving significant error detection/correction rates [19], [20].
Specifically on FPGAs, prior work has discussed the concept
of error criticality and used extensive fault injection campaigns
to identify differences in vulnerability across the layers in
ANNs and CNNs. Additionally, a low-overhead selective hard-
ening strategy was proposed, for scenarios in which traditional
triple modular redundancy (TMR) is not possible due to
limited resource availability [30]. Moreover, the correlation
between faults in different logic resources of the FPGA and
corresponding output errors was studied [31].

Finally, we must acknowledge that the reliability impact
of reduced data precision on neural networks has also been
explored before [24]. In such study, the authors have evaluated
the different failure in time (FIT) rates of a CNN on a
GPU, using double, single, and half-precision floating point.
They have found that lower precision computation in GPUs
reduces radiation sensitivity, while improving performance.
Such finding further motivates our work, which intends to
guide the design of reliable hardware accelerators for neural
networks on FPGAs (by looking at precision and parallelism).

D. MNIST

We have chosen the well-known Modified National Institute
of Standards and Technology (MNIST) as our case study
data set, since its simplicity translates to tractability for

implementing and testing several design variations. We should,
however, acknowledge that this aspect of our work limits the
extent to which our experimental data can be fully generalized,
as more complex CNNs could have different behaviors. The
data set itself is composed by 60 000 28 × 28 pixel images of
handwritten decimal digits (from 0 to 9) [32]. As such, our
neural network models receive 28 × 28 matrices as inputs and
produce ten outputs (one for each decimal digit), where the
index of the highest value corresponds to the classification.

III. EXPERIMENTAL METHODOLOGY

A. Designs Under Test

In order to evaluate the tradeoffs associated with data
precision reduction, we have implemented three versions of the
MNIST CNN (FP32, FP16, INT8) using the 28-nm Zynq-7000
(XC7Z020) [33]. Table I and Fig. 2 detail resource utilization
and execution times. In addition to that, we should point out
that the accuracy on all of the design variations has stayed the
same (95%), regardless of the quantization process performed
with TensorFlow Lite. Although a higher accuracy level could
have been achieved, we opted for a very minimalist CNN
topology (and implementation), as detailed in Fig. 1.

In order to evaluate the tradeoffs associated with degree
of parallelism, we have implemented two versions of the
MNIST CNN (Min PEs, Max PEs) using the 16-nm Zynq
UltraScale+ (XCZU9EG) [34]. The first design (Min PEs)
has only one PE per layer of the network and represents the
lower end of the parallelism spectrum. Likewise, the second
design (Max PEs) has all of the necessary PEs in each layer
of the network and represents the top end of the parallelism
spectrum. In other words, if there is a total of N operations
involved in a layer’s computation, the single PE version is
going to take N iterations to finish, while the fully parallel
implementation (in this case. with N PEs), will take only one
clock cycle. The aforementioned simplicity/tractability of the
MNIST CNN, along with the use of a high-end FPGA (as the
one found on the UltraScale+), allow it to be implemented
in a fully parallel fashion. Table II and Fig. 3 provide details
on resource utilization and execution times. Note that neither
of the designs utilize DSPs. This is because both use 8-bit
precision, which is too small for DSP inference at synthesis
time. Also note that the axes in Fig. 3 are in logarithmic
scale.
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TABLE I

ZYNQ-7000 RESOURCE UTILIZATION TO IMPLEMENT THE MNIST
CNN USING 32-bit FLOATING POINT, 16-bit FLOATING

POINT, AND 8-bit INTEGER

Fig. 2. Total resource utilization and execution times for three levels of data
precision on the MNIST CNN, implemented on the Zynq-7000.

We should point out, before moving forward, that the
training phases and quantization processes for all of our neural
networks were fully completed ahead of the experiments (in a
fault-free environment). This means that the neural networks’
set of weights was not affected by radiation-induced upsets
in any capacity. Furthermore, we must also mention that the
input stimuli for our designs under tests (DUTs) is a subset
of 100 images from the MNIST data set (all of which are
correctly classified in undisturbed executions).

B. Radiation Experimental Setup

Our radiation beam experiments were performed at the Los
Alamos Neutron Science Center (LANSCE) facility of the
Los Alamos National Laboratory (LANL). While LANSCE’s
neutron spectrum mimics the atmospheric one, the particle
flux is about 8 orders of magnitude higher than the average
terrestrial flux [(13 n/(cm2 ×h)] at sea level [35]). We ran our
experiments for around 64 h, accumulating a total fluence in
our DUTs of 344 × 109 n/cm2, roughly equivalent to 3 million
years of natural exposure. The experimental setup, with the
Zynq-7000 and the Zynq UltraScale+ is shown in Fig. 4,
mounted at the beam line. We specifically chose Zynq devices
because their heterogeneous nature considerably simplifies the
setup. Using the ARM processors, we are able to provide
stimuli to the FPGA and implement result checking. Since
the DDR is protected with ECC, input/output corruption
becomes extremely unlikely. Furthermore, given the trivial
nature of the C program, we very rarely observe hangs during
execution (in which case, it suffices to power cycle the device).
A server PC controls/logs the experiment from outside the
beam room. We are also able to distinguish between transient
and permanent upsets: Whenever an output error is observed,

TABLE II

ZYNQ ULTRASCALE+ RESOURCE UTILIZATION TO IMPLEMENT THE
MNIST CNN WITH VASTLY DIFFERENT DEGREES OF PARALLELISM

Fig. 3. Total resource utilization and execution times for two degrees of
parallelism on the MNIST CNN, implemented on the Zynq UltraScale+.

Fig. 4. Neutron beam experiment at the LANSCE facility of LANL, USA.

we run the same image again. If the second execution also
presents corruptions, the upset is permanent, otherwise it is a
single-event transient (SET). However, we have not registered
any of such transients in our neutron beam experiments.

C. Error Criticality

In most cases, CNNs are used for classification tasks, which
means that not all errors need to be considered critical. In other
words, even if the outputs computed by the network are
different than the golden/expected ones, the classification of a
given input image might still be correct. Hence, we identify
two error classes in our neural networks:

1) Tolerable error: The network’s outputs differ from the
expected ones, but the image classification still comes
out correct (i.e., the image classification is correct
despite the output corruptions).

2) Critical error: The network’s outputs differ from the
expected ones, being severe enough to compromise the
image classification (i.e., an input image of the digit “7”
is classified as the digit “1”).
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IV. EXPERIMENTAL RESULTS

A. Reduced Data Precision

Using the experimental setup and methodology described in
Section III, we have tested three versions of the MNIST CNN
with varying levels of data precision (FP32, FP16, INT8).
Fig. 5 plots the neutrons cross section of the three designs.
We classify output errors as tolerable or critical, depending
on whether or not the image classification was affected (as
explained in Section III-C).

As we have shown in Table I and Fig 2, lower preci-
sion hardware means lower resource utilization, which con-
sequently means that the sensitive area of the FPGA for each
design also gets reduced. Specifically, the 16-bit floating-point
implementation uses about 40% less resources than the
32-bit version, while the 8-bit integer design decreases
resource utilization by 64%. By analyzing Fig. 5, we can
clearly see that, as we reduce precision, the probability of
observing radiation-induced data corruptions diminishes. To be
exact, the 16-bit floating-point version of the network has a
22% lower chance of producing errors at the output, when
compared to the original 32-bit design. Similarly, when using
8-bit integers, we see a massive 72% cross section reduction
from FP32.

A more nuanced result that can be drawn from our exper-
imental data is that the rate of critical errors (as defined
in Section III-C) is very different across the three designs.
If we think about the way floating-point numbers are rep-
resented in computers (sign, exponent, and mantissa), it is
easy to conclude that radiation-induced corruptions in the
sign and in the exponent of a number can cause a much
greater discrepancy. As the IEEE 754 standard establishes, the
32-bit floating-point representation uses 1 bit for the sign,
8 bits for the exponent, and 23 for the mantissa, while
the 16-bit floating-point representation uses 1, 5, and 10,
respectively. We can say that 28.13% (9/32) of the bits in
an FP32 word have a high potential of causing significant
discrepancies between expected and computed outputs, while
37.50% (6/16) of the bits in an FP16 word could lead to
considerable differences. In our CNN, this ultimately means
that, as we reduce precision from FP32 to FP16, the likelihood
of an output error affecting the final classification of the input
image increases. This result can even be intuitively generalized
for a hypothetical FP8 representation, which would very likely
have a critical error rate higher than FP16. However, this
pattern does not continue when we further reduce precision
to 8-bit integers. This is because there are no exponent bits in
an integer representation, so when a given bit n gets corrupted,
the difference between expected and computed value can only
be ±2n, as opposed to a x2n discrepancy in an exponent
corruption of a floating-point number. In our experiments,
we have found that only 7% of the errors were critical in the
FP32 design, while the error criticality rose to nearly 18% on
the FP16 design and then fell back down to about 15% on the
INT8 version of the MNIST CNN. Regardless, 8-bit integer
representation had the lowest absolute critical error rate out of
all three implementations.

Fig. 5. Neutron cross section for the FP32, FP16, and INT8 versions of the
MNIST CNN.

Additionally, we have also observed instances where the
CNN implemented on the FPGA did not provide any outputs
after its expected execution time. This happens whenever the
finite state machine (FSM) responsible for the control logic
of the hardware gets stuck, failing to reach its “done” state.
Such instances are shown in Fig. 5 as Crashes. As this type
of event is much rarer than silent data corruptions (SDCs)
(only accounts for 10%–20% of the total cross section),
the error bars do not allow us to draw any conclusions from
the experimental data. But, from an architectural perspective,
we intuitively know that reducing the data precision only
reduces the area occupied by the arithmetic pipeline and not
the area occupied by the FSM, which means that the likelihood
of observing crashes should be roughly the same across all
three versions of the MNIST CNN.

The impact of reducing data precision can further be
explored as we make use the notion of tolerated relative error
(TRE) [24]. Fig. 6 basically shows how the neutron cross
sections would be reduced if we were to allow a certain
percentage of tolerance for discrepancies between expected
and computed outputs. With a TRE of 0%, any bitflip in
the output is considered an error, but as we increase the
TRE, we start to establish intervals of tolerance, instead of
Boolean decisions. For example, with a TRE of 1%, any
output corruption from 99% to 101% of the expected/golden
value would still be considered correct. Interestingly, with a
TRE level of only 1%, the cross section of tolerable errors
on the 32-bit floating-point version of the CNN would be
reduced by 43%. This is because, as we previously discussed,
23 out of 32 bits are reserved for the mantissa, which means
that most of the radiation-induced corruptions will not have
a very significant impact on an FP32 word. Extending the
comparison, if we were to use the same 1% tolerance interval,
the error rate on the FP16 implementation would only improve
by 8%, while the 8-bit integer version would not change
at all. It can then be said that, by treating neural networks
as the inherently approximate computing units that they are,
the perceived/effective radiation sensitivity can be significantly
reduced. The caveat is that TRE only helps reducing the tol-
erable portion of the cross section, as the image classification
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Fig. 6. Reduction in the cross sections of the FP32, FP16, and INT8 versions
of the MNIST CNN, when establishing incremental tolerance intervals.

TABLE III

MEBRFs FOR THE FP32, FP16, AND INT8 VERSIONS

OF THE MNIST CNN

depends on the comparison between all ten outputs, as opposed
to their relationship with gold.

In order to get a realistic estimate of the failure rate of an
algorithm in a radioactive environment, the mean executions
between failures (MEBF) metric is commonly utilized [36],
given that it takes into account both radiation sensitivity as
well as performance. However, neural networks fall into a
special category of applications, since they have an associated
level of accuracy to them. Previous works have modeled
the overall failure rate of neural networks (considering both
inaccuracy and radiation as sources of faults) [25], as they
analyzed binary quantization, which is rarely lossless. Since
our CNN topology is simple, and our precision reduction was
not so extreme, accuracy was maintained across all DUTs
at 95%. Thus, we focus our analysis strictly on the effects
of radiation, using the mean executions between radiation
failures (MEBRF) metric. We show the MEBRF of our designs
in Table III, considering the neutron flux at sea level [35] and
the entire SDC cross section measurements (tolerable+critical
errors), as legislation typically does not distinguish between
error categories [37]. Evidently, the INT8 version of the
MNIST CNN is able to complete a much higher number of
failure-free executions than the floating-point implementations.
To be exact, FP32 experiences over six times the failure
rate of INT8, while FP16 fails over three times as much as
the integer-based design. This is because reduced precision
hardware not only occupies less area, but is also faster. The end
result is lower radiation sensitivity and higher reliability, a true
win–win situation (provided that accuracy remains stable).

B. Degree of Parallelism

Using the experimental setup and methodology described
in Section III, we have tested two versions of the MNIST
CNN with varying degrees of parallelism (Min PEs, Max PEs).
As previously mentioned, the two designs in this analysis
represent the two ends of the parallelism spectrum. On the
one hand, we have a very small, iterative design, which uses
few resources (therefore, occupies less area), and takes longer

Fig. 7. Neutron cross section for the Min PE and Max PE versions of the
MNIST CNN. Note that the y-axis is in logarithmic scale.

to complete the processing of input images (i.e., has lower
performance). On the other side, we have a very large, fully
parallel implementation, which occupies almost 100% of a
state-of-the-art FPGA, but delivers extremely low latency.
Such scenario was made evident in Section III-A (Table II
and Fig. 3), but we believe that it is worth reiterating.

Fig. 7 plots the neutron cross section of the two designs.
We classify output errors as tolerable or critical, depending on
whether or not the image classification was affected. Noting
that the y-axis is in logarithmic scale, and the difference
in radiation sensitivity between the two implementations is
striking: the fully parallel design is 133 times more likely
to experience radiation-induced errors. Interestingly, it uses
130 times more resources than the version with far less PEs,
confirming the direct relationship between resource utilization
and cross section in SRAM-based FPGAs.

Furthermore, we should point out that the percentage of
critical errors observed in our experiments was roughly the
same in the two design variations (16% and 17%, for Min
PEs and Max PEs, respectively). As there is no variation
in data precision here, the impact of data corruption during
computation is about the same in both cases, so this was
an expected outcome. Finally, we can see that the more
parallel version of the MNIST CNN did not experience any
crashes. This is because, by being a fully pipelined, streaming
architecture, it does not have/need any sort of FSM for control
logic and therefore it never gets stuck.

Again, we should emphasize that the cross section only
measures the level of radiation sensitivity of an algo-
rithm/circuit/device. In order to get an estimation of failure
rate, one must also consider a performance metric (execution
time) as a variable. Thus, we show the MEBRF of our DUTs
in Table IV, considering the neutron flux at sea level [35].
Surprisingly, despite having a much higher cross section,
the fully parallel implementation of the network is able to
complete over seven times more error-free executions than the
smaller design. This is because, as reported in Section III-A
(Fig. 3), the more parallel design is over 1000× faster.

Different than the analysis in Section IV-A, where the
precision reduction led to smaller and faster hardware, we are
seeing that the degree of parallelism in an architecture is
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TABLE IV

MEBRFs FOR THE MIN PE AND MAX PE VERSIONS OF THE MNIST CNN

always a tradeoff between area and performance, which both
directly impact the overall reliability of the system. From
our experimental data, it seems that a faster (more parallel)
design is the one that will deliver the lower failure rate,
since the performance gains are outweighing the increased
area and radiation sensitivity. However, as we said before,
our case study CNN was specifically chosen to enable this
analysis, and for most state-of-the-art neural network archi-
tectures, instantiating all of the necessary PEs in the FPGA
would be unfeasible. Therefore, it follows that the optimal
neural network hardware accelerator architecture (from the
reliability standpoint) should really just be as parallel as
possible.

C. Technology Node

Even though showcasing the difference between FPGAs in
different technology nodes was not one of the main goals of
this article, the INT8 circuit that was tested on the Zynq-
7000 happens to be exactly the same as the Min PE design
that was tested on the Zynq UltraScale+. Therefore, we have
decided to plot and report their dynamic neutron cross sec-
tions in the same graph (Fig. 8). We can see that the older
28-nm CMOS technology is around one order of magnitude
more sensitive to the radiation of the newer 16-nm FinFET
technology, which, considering statistical errors, is in line with
the static cross section numbers reported by Xilinx [38].

A number of previous works have dived into the
exploration of differences in radiation sensitivity across tech-
nology nodes, through a mixture of charge collection simula-
tions, and real-world beam experiments with neutrons/heavy
ions [39], [40]. As such, our experimental data merely
corroborates.

V. CONCLUSION

We have seen that reducing the data precision repre-
sentation in CNNs, through state-of-the-art machine-learning
frameworks that allow for little to no accuracy loss on
their quantization processes, can significantly improve the
overall reliability of safety-critical applications that rely on
image processing. In summary, using a lower precision sim-
plifies the hardware implemented on the FPGA, lowering
its resource utilization, which means that it becomes less
likely to get hit by impinging particles. At the same time,
reduced precision hardware is usually faster, which further
contributes to lowering the failure rate of neural networks.
In addition to that, we have explored how the concept of
error criticality affects the reliability analysis of a CNN
intended for a classification task and how the adoption of

Fig. 8. Neutron cross section for the MNIST CNN on the 28-nm
Zynq-7000 and the 16-nm Zynq UltraScale+.

tolerance intervals can significantly impact the overall relia-
bility of an application. In general, we have concluded that,
as long as the accuracy level remains the same after the
quantization, the designer of an efficient hardware accelerator
should opt for using 8-bit integer as opposed to floating-point
representations.

Furthermore, we have analyzed how different degrees of
parallelism (and the associated tradeoff between area and per-
formance) affect the reliability of neural network accelerators
on FPGAs. We have shown that, in general, the performance
gains obtained through higher parallelism overshadow the cost
paid in increased circuit area. Although the studied maximum
degree of parallelism is often out of reach for most state-
of-the-art CNN topologies, our results point to the fact that
hardware accelerators for neural networks should be as parallel
as possible, for improved reliability.

We believe that our findings regarding data precision and
parallelism can offer some guidance for designing efficient
and reliable hardware accelerators for neural networks in the
future. As we have stated before, the machine learning field
is in constant evolution, which means that the computing
requirements for accelerating today’s CNNs might not be the
same in a few years’ time. Our work can help novel accelerator
architectures to be built with reliability in mind, ultimately
enabling the deployment of neural networks in safety-critical
applications. Finally, it is worth mentioning that we did not
see any differences in error likelihood across classes in our
100-image input set. As a by-product of our experiments,
we were also able to compare the radiation sensitivities of
FPGAs in different technology nodes. Our experimental data
corroborate with prior studies.

As future work, we intend to evaluate the reliability of
Xilinx’s proprietary deep-processing unit (DPU) [41], along
with their recently released set of tools Vitis AI, which
enable for quantization and compilation of neural network
models straight out of industry standard frameworks such as
TensorFlow. We also intend to analyze and improve (through
adoption of efficient hardening techniques) the reliability of
systolic array structures for matrix multiplication, which seems
to be the current choice of architectural core for both Xilinx’s
DPU and Google’s tensor-processing unit (TPU) [42].
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