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Power limitations in semiconductors have made explicitly parallel device architectures such as Field-
Programmable Gate Arrays (FPGAs) increasingly attractive for use in scalable systems. However, mitigating
the significant cost of FPGA development requires efficient design-space exploration to plan and evaluate
a range of potential algorithm and platform choices prior to implementation. The authors propose the RC
Amenability Test for Scalable Systems (RATSS), an analytical model which enables straightforward, fast,
and reasonably accurate performance prediction prior to implementation by extending current modeling
concepts to multi-FPGA designs. RATSS provides a comprehensive strategic model to evaluate applica-
tions based on the computation and communication requirements of the algorithm and capabilities of the
FPGA platform. The RATSS model targets data-parallel applications on current scalable FPGA systems.
Three case studies with RATSS demonstrate nearly 90% prediction accuracy as compared to corresponding
implementations.
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1. INTRODUCTION

Power limitations have changed computing trends towards explicitly parallel architec-
tures such as Field-Programmable Gate Arrays (FPGAs). This reformation is accom-
panied by increased emphasis on multidevice systems for achieving additional perfor-
mance benefits. However, exploiting explicit parallelism for scalable FPGA systems
requires expensive development cycles, which limits widespread adoption. Current
design approaches focus on faster coding paths to the hardware implementation (e.g.,
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high-level synthesis), which address only one symptom of the greater productivity
challenge.

In contrast to low-level, iterative development practices, strategic Design-Space Ex-
ploration (DSE) is needed to improve productivity with scalable FPGA systems. Appli-
cations should be planned and performance issues analyzed prior to implementation,
narrowing the range of possible algorithm and platform mappings based on applica-
tion performance requirements. The authors’ prior work with the RC Amenability Test
(RAT) has introduced strategic DSE for single-FPGA systems. Traditional computing
models such as BSP [Valiant 1990] and LogP [Culler et al. 1993] can also be lever-
aged to help facilitate strategic DSE for multi-FPGA, scalable systems. The authors
propose the RC Amenability Test for Scalable Systems (RATSS), which extends RAT
to multi-FPGA systems by incorporating key concepts from traditional analytical mod-
eling. Specifically, this article introduces comprehensive performance prediction for
multi-FPGA systems by agglomerating and analyzing the results of the underlying
models based on the system hierarchy. RAT provides a significant basis for the compu-
tation and communication models with additional scoping for the modeling of scalable
systems in RATSS. Multi-FPGA versions of two of the original case studies for RAT,
2D PDF estimation and molecular dynamics, assist in validation of RATSS. RATSS
prediction is fast, usually requiring only minutes to perform, and reasonably accurate
thereby supporting the overall strategic DSE goal.

RAT, LogP, and many other analytical models seek to express the behavior of the
computation and communication within a target component, device, subsystem, etc.
“Nodes” and “networks” are used for simple, abstract representation of computation
and communication, respectively. RATSS systematically characterizes an algorithm
mapped to an FPGA platform using comparable node- and network-level analysis,
which combine to form a complete model for the system. This model emphasizes mul-
tilevel analysis: performance prediction for parallel computation connected with mul-
tiple levels of communication infrastructure. RATSS is tractable for scalable systems
because the scope and constraints of the underlying models are adapted for strategic,
multi-FPGA performance characterization. This article discusses RATSS modeling for
data-parallel algorithms structured as SIMD-style pipelines targeting modern high-
performance FPGA systems [El-Ghazawi et al. 2008]. While the authors believe that
RATSS has usage beyond this scope, these algorithm and platform assumptions al-
low for concise and consistent identification of requirements and capabilities, analysis
of individual computation and communication components, and agglomeration of the
node and network models for complete performance prediction.

The remainder of this article is structured as follows. Section 2 discusses back-
ground and related research. The assumptions, attributes, analytical model, and scope
of RATSS are discussed in Section 3. In Section 4, a detailed walkthrough of a rea-
sonably complex application, 2D PDF estimation, is presented. Two additional case
studies, image filtering and molecular dynamics, are discussed in Section 5. Conclu-
sions are given in Section 6.

2. BACKGROUND AND RELATED RESEARCH

One challenge to application productivity for FPGA-based systems is faster generation
of more abstract FPGA design codes. Raising the design focus from traditional
hardware description languages, high-level languages such as Impulse C [Pellerin
and Thibault 2005], Carte C [SRC Computers 2007], Mitrion C [Mitrionics 2008], and
Handel C [Agility Design Solutions 2007] provide a software-like infrastructure for
a more efficient and familiar programming model for FPGA applications. Similarly,
research in hardware/software codesign enables a faster bridge between application
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specification and hardware implementation and a brief history of this research trend
can be found in Wolf [2003]. Design environments such Ptolemy [Buck et al. 1994],
Metropolis [Balarin et al. 2003], and Artemis [Pimentel et al. 2001] provide rich
frameworks for evaluating heterogeneous systems with some extensions for FPGA
systems. Though these languages and environments attempt to bridge more abstract
design entry to the low-level implementation challenges, the entry point can require
significant effort prior to analysis of a target application design.

As part of the ongoing trend towards increasing productivity with explicitly parallel
computing devices, significant emphasis is given to application design, optimization,
and documentation. Herbordt et al. [2007] propose concepts and general guildlines
for achieving high performance in FPGA application designs, effectively boosting
productivity by summarizing best practices for developers. Design patterns [DeHon
et al. 2004] and loop analysis [Bednara and Teich 2001; Kaul et al. 1999] are two ad-
ditional research areas benefiting both application performance and development cost.
Such methodologies are important considerations even during high-level formulation,
as they help ensure design-space exploration accurately reflects the resulting imple-
mentation capabilities. However, this body of research only describes a portion of the
application design and must be used within a larger performance prediction model to
fully quantify the entire system behavior.

Simulation is a common technique for measuring the performance of RC applications,
particularly at system level. In Reardon et al. [2009], a framework for simulation of
FPGA systems and applications is built on top of the Fast and Accurate Simulation En-
vironment (FASE) [Grobelny et al. 2007], which uses scripts of algorithm and platform
behavior to rapidly explore large-scale FPGA systems. Similarly, Bondalapati [2001]
combines the Hybrid System Architecture Model (HySAM) with the Dynamically Re-
configurable system Interpretive simulation and Visualization Environment (DRIVE)
to parameterize algorithms and platforms, simulate interactions, and visualize re-
sults. In Enzler et al. [2005], SimpleScalar and ModelSIM combine for simultaneous
software emulation and VHDL simulation. Another tool [Fu and Compton 2006] cap-
tures precise memory-access patterns and functionally verifies hardware kernels using
a Simics-based simulator. While these simulation environments can provide accurate
performance modeling for multi-FPGA systems, they require either actual codes or
custom inputs distilled from algorithm and platform behavior. These inputs can be
prohibitively expensive to obtain for strategic design-space exploration.

Some analytical models have been proposed to help address development produc-
tivity through rapid distillation of quantitative attributes. In Enzler et al. [2000], a
model for area and timing is described and while the general concept of design-space
exploration is proposed, the focus is on low-level hardware “building blocks.” In Steffen
[2007], a performance prediction technique seeks to parameterize the computational
algorithm and FPGA system, albeit with emphasis primarily on bottleneck detection.
Dynamo [Quinn et al. 2007] defines performance analysis for image processing appli-
cations constructed at runtime from existing pipelined kernels. Smith and Peterson
[2005] propose an analytical model for synchronous, iterative applications on clusters
of shared heterogeneous workstations containing reconfigurable computing devices.
While these models address some of the challenges for productive application develop-
ment, they do not directly address the need for analytical, system-level modeling prior
to any detailed and potentially costly implementation of FPGA kernels or applications.
The authors’ RC Amenability Test (RAT) [Holland et al. 2009] defines an analytical
model for performance estimation of a specific algorithm on a specific platform prior
to implementation, albeit for single-FPGA designs. Independent of the primary RAT
development, Jacobs et al. [2008] and Nagarajan et al. [2009] further demonstrated
the capabilities of RAT for strategic application planning for single-FPGA systems. For
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RATSS, the RAT methodology must be paired with system-level modeling concepts to
provide a complete model for scalable, multi-FPGA systems.

Existing research with microprocessor-based algorithms and parallel platforms can
help bridge the gap between analytical modeling for FPGA devices and the design chal-
lenges of FPGA-based scalable systems. The Parallel Random Access Machine (PRAM)
[Fortune and Wyllie 1978] is one of the first widely studied models that attempts to re-
duce complex system behavior into a few key attributes, but the model neglects issues
such as synchronization and communication, which can greatly affect the accuracy
of the performance estimations. The Bulk Synchronous Parallel (BSP) Model [Valiant
1990] extends the modeling concepts of PRAM by defining an application in terms
of a series of global supersteps each consisting of local computation, communication,
and synchronization. The LogP [Culler et al. 1993] model attempts to define networks
of complete computing nodes (i.e., microprocessors and local memory) by latency, L;
overhead, o; gap between (short) messages, g; and number of processing units, P. The
LogGP model [Alexandrov et al. 1997] extends the LogP concept with support for a long-
message gap, G. Other extensions to LogP and LogGP include support for contention,
LoPC [Frank et al. 1997], and parameterization of the L, o, g, G, and P attributes
(PlogP) to support dynamically changing values in wide-area networks [Kielmann
et al. 1999]. Additionally, benchmarks have been created to assist in the measurement
of these attributes [Kielmann et al. 2000].

Prior work has leveraged system-level modeling concepts beyond homogeneous mi-
croprocessors. Heterogeneous LogGP (HLogGP) [Bosque and Perez 2004; Bosque and
Pastor 2006] considers extensions for multiple processor speeds and communication
networks within a cluster. In Lastovetsky et al. [2006], system-level modeling concepts
form the basis for a proposed model for heterogeneous clusters. Collective commu-
nication modeling and scheduling for node-heterogeneous Networks Of Workstations
(NOWs) [Kesavan et al. 1997; Bhat et al. 1999] and clusters of clusters with hierarchical
networks [Cappello et al. 2001] are further extensions to traditional system-level mod-
eling. These modifications for heterogeneous computing provide useful insight towards
the proposed RATSS model.

3. RATSS MODEL

This section provides a detailed discussion of the structure and contributions of the
RATSS model for fast and reasonably accurate performance prediction. This prediction
(and consequently, design-space exploration) begins with the designer’s specifications
of the FPGA platform and algorithm pairing for RATSS analysis. The FPGA platform
specification defines the performance capabilities of each component in the system,
specifically the computation and communication metrics such as latency, bandwidth,
and clock frequency. The algorithm specification defines the computation requirements
of every specific task and the resulting communication between devices, which de-
pends on the algorithm/platform mapping. Quantitative attributes are provided for
every unique computation and communication task in the FPGA system and these
values feed the component-level analytical equations. The RATSS model agglomerates
the individual computation and communication predictions based on the system-level
schedule defined by the application specification and subsequently provides a quan-
titative performance estimate for the platform/algorithm pairing. This prediction is
used by the designer for further design-space exploration, revising (and reanalyzing)
as necessary until the application meets their performance requirements.

Again, RATSS adapts existing computation and communication models to provide
a complete performance prediction for an FPGA application (i.e., a specific algorithm
mapped to a specific FPGA platform). RATSS performance prediction is based on ef-
ficient quantitative characterization of the key attributes of this algorithm/platform
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Fig. 1. Adapted from El-Ghazawi et al. [2008], modern high-performance FPGA systems comprise two
classes: Uniform Node Nonuniform Systems (UNNSs) and Nonuniform Node Uniform Systems (NNUSs).

pairing. These attributes are explicitly defined by RATSS from adaptations of the un-
derlying models for use in the computation, communication, and ultimately the full
application-level models. Section 3.1 discusses how the scope of the platform, algo-
rithm, and their mapping reveal the computation and communication attributes of an
application. Section 3.2 discusses the usage of the attributes to form equations that
model the performance of the target application.

3.1. RATSS Scope

Analytical models such as LogP are effective because a few key characteristics can
describe the performance of a diverse set of application structures. Similarly, FPGA
platform and application descriptions, specified by the designer within the model’s
intended scope, can exploit inherent commonalities for efficient performance prediction.
(Conversely, platforms and applications outside the intended scope will not be precisely
characterizable by the model attributes.) The following sections discuss how the scope
of platform and application features affects the amenability of RATSS performance
characterization and ultimately the accuracy of the RATSS performance model.

3.1.1. FPGA Platform Scope. Defining the range of the FPGA platforms applicable to
RATSS is necessary for clear and consistent characterization of the performance at-
tributes that form the comprehensive prediction. Even with a reduced scope for FPGA
platforms, a key challenge for RATSS is concise modeling of the architectural diversi-
ties. Efficient characterization of FPGA platforms provides the necessary insight into
the computation and communication capabilities for executing a specified application.
As an extension to traditional HPC modeling, RATSS abstracts FPGA platform archi-
tectures as compute “nodes” connected by the communication “networks.”

Node. One or more devices, tightly coupled, for computation (e.g., microprocessors
or FPGAs).
Network. Communication medium connecting two or more nodes.

Figure 1, adapted from El-Ghazawi et al. [2008], illustrates the two major classes
of modern high-performance FPGA systems. RATSS supports comprehensive perfor-
mance prediction for these two classes of systems through node and network models
addressing the computation and communication abstractions, respectively. In contrast
to traditional homogeneous HPC systems, the presence of FPGAs as application ac-
celerators, orchestrated by microprocessors, can create heterogeneity not only among
adjacent devices but also at the system level. For RATSS, nodes are not defined as fixed
arrangements of FPGAs and microprocessors, but as an abstraction for one or more
devices that can be accurately modeled as a single computational unit (e.g., two FPGAs
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with a dedicated interconnect). Conversely, collections of devices are separate nodes if
their interconnect requires an explicit communication model.

More simply, RATSS agglomerates computation devices into a single node model if
the interaction between the devices does not require a full network model. This sim-
plification is potentially application dependent, but the general assumption is that
directly connected FPGAs can be modeled as a single compute node. Similarly, multi-
core microprocessors or other locally connected SMPs are modeled as single compute
nodes. RATSS focuses on explicit network models for system-wide multimicroprocessor
interconnects (e.g., Ethernet) and microprocessor/FPGA interconnects (e.g., PCI-based
FPGA accelerator cards). From Figure 1, the UNNS architecture requires one system-
wide network model and two node models: the microprocessor and FPGA. However,
the NNUS architecture will involve two networks: a local interconnect between the
FPGA and microprocessor and a system-wide network between the microprocessors.
Defining nodes based on their adjoining networks creates a consistent abstraction of
computation and communication for both prevailing system classes. This distinction
becomes increasingly important as the hierarchy of the FPGA platform increases in
depth.

Ultimately, the collection of node and network models provides small, separable
descriptions of the complete computation capabilities and communication performance
of the FPGA platform. For each piece of computation in the application, the clock
frequency attribute for the FPGA defines the overall rate of execution. For each network
communication, quantitative attributes include the delay through the interconnect
medium (i.e., latency) and bandwidth for message transmission.

3.1.2. Application Scope. Strategic performance prediction requires application charac-
teristics amenable to quantification. An application encompasses an algorithm and its
mapping to an FPGA platform.

Algorithm. Finite number of hardware-independent tasks with explicitly defined
parallelism and ordering used to solve a problem.

Mapping. Algorithm’s computation tasks assigned to nodes and data movement be-
tween nodes assigned to one or more communication networks.

A complete description of an algorithm and its mapping must be provided by the
designer for effective performance modeling. The composition and parallelization of
algorithm tasks defines the computational load for each node and the required commu-
nication for each network to support the application. Algorithm and mapping features
must be scoped to ensure quantitative characterization of computation and communi-
cation interaction that is tractable for analytical modeling. Specifically, the computa-
tion and communication of the FPGA application should conform to the synchronous,
iterative model.

Synchronous. Computation occurs simultaneously on all nodes and is preceded and
proceeded by communication, which collectively define a “stage” of the application.

Iterative. Individual or multiple stages collectively may be repeated as part of the
execution.

The synchronous, iterative model requires general application behavior where each
computational resource (e.g., microprocessor or FPGA) performs a portion of the re-
quired computation during each iteration with synchronizing communication between
iterations [Peterson and Chamberlain 1994]. Figure 2, extended from Smith and
Peterson [2005], summarizes analytical modeling for synchronous, iterative applica-
tions for multi-FPGA systems as scoped by RATSS. The characteristics of the syn-
chronous, iterative model reduce the complexity of computation and communication
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Fig. 2. Adapted from Smith and Peterson [2005], the synchronous, iterative model is expanded for multistage
applications. Synchronous communication can occur over one or more networks. Iterative behavior can occur
within a stage, over one stage, or over many stages.

overlap and allow straightforward agglomeration of node and network performance by
RATSS. Regardless of the platform architecture, problem requirements, and the local-
ity of data, the synchronous behavior of computation and communication defines the
total application performance as either the collective summation of the stage times or
the single slowest component (assuming steady state). FPGA resources are assumed
devoted either all to each stage sequentially (i.e., execution time is related to the
summation of stage times) or divided among all stages for pipelined execution (i.e.,
execution time is related to the slowest stage time). Arbitrary overlap of application
stages is outside the scope of this article. Iterative behavior can occur over one stage
of execution or the full application. Implicitly, the analytical model for synchronous,
iterative behavior also requires deterministic behavior.

Deterministic. Algorithm tasks and data movement between tasks are predictable
prior to implementation, either as a constant or an average performance of typical
datasets.

Precise characterization of application task scheduling is insufficient for design-
space exploration if the underlying computation and communication times cannot be
precisely quantified. Randomness in computation and communication behavior re-
quires quantification of application characteristics as averages of expected behavior.
The RATSS assumption for deterministic behavior is reasonable as many applications
targeting the FPGA paradigm are SIMD-style algorithms implemented as pipelines.

Ultimately, synchronous, iterative, and deterministic behavior allows efficient char-
acterization of computation needs and communication requirements of the FPGA ap-
plication. Pipelined, SIMD-style algorithms involve data transformations and both the
communication and computation are characterized by the quantity of data associated
with the particular platform/algorithm mapping. The computational demands of the
application are quantified by the number of operations per input data element and the
rate of execution (i.e., amount of deep and wide parallelism). Similarly, the attributes
for the communication requirements define the amount of data for each network trans-
action in terms of bytes.
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3.1.3. Model Usage and Design-Space Exploration. Again, RATSS involves quantifying the
key attributes of the FPGA platform and application for use in the underlying analyti-
cal models for performance prediction. These quantitative characteristics are provided
largely by the designer. Platform-intrinsic attributes such as network latency and
throughput are gathered from microbenchmarks that specifically mirror algorithm op-
erations, such as a DMA read and write. Ideally, a database of microbenchmark results
is referenced by the designer for the platform attributes, else the benchmarks must be
performed prior to any performance prediction. Note that accurate microbenchmarking
can be a nontrivial process, albeit with nonrecurring cost due to potential reuse for
analysis of future applications with similar platform mapping. Application-specific
attributes such as the quantity of data and amount of computational parallelism are
explicitly specified by the user based on the algorithm and platform mapping. These
attributes feed the equations described in Section 3.2 that compute the performance es-
timate. The accuracy of the RATSS predictions is dependent on the correspondence
between the quantitative attributes and true implementation behavior. Possible
discrepancies due to unforeseen issues, such as complex synthesis and translation,
can impact application predictability and may require explicit consideration in future
predictions. However, these challenges are not unique to strategic DSE with RATSS.

Strategic DSE is a methodology for application design and implementation that
involves analysis of one or more platform/algorithm mappings for suitable performance
based on provided criteria. RATSS provides suitable analysis capabilities for efficient
DSE of multi-FPGA systems. Based on the results of RATSS analysis of an initial
application specification, the designer may further refine the target algorithm and/or
platform characteristics, proceeding to low-level implementation only when satisfied
with the predicted performance. The authors expect that strategic DSE will involve
multiple variations on algorithm structure and platform mapping, which would require
several repetitions of RATSS analysis with comparison of the predicted performance
values against the designer’s requirements. However, the accompanying case studies
presented in Sections 4 and 5 validate performance prediction accuracy for only the
final configuration of an application prior to implementation. While detailed strategies
for exploration of application designs are outside the scope of this article, these case
studies involved revisions to the algorithm structure for maximizing performance of the
available hardware resources. The key performance criterion explored in this article
is execution time, but issues of application scalability, resource utilization (e.g., load
balancing), power-delay product, etc., can also be inferred from the RATSS analysis.
Analyses of these issues are not limited to physically realizable systems and can project
capabilities of future system configurations.

3.2. Model Attributes and Equations

This section discusses the attributes, equations, and general approach of the node
and network models along with their arrangement into stage- and application-level
models for RATSS multilevel performance prediction. The attributes and equations
for the node and network models leverage existing research from RAT [Holland et al.
2009] and LogGP [Alexandrov et al. 1997] to construct computation and communi-
cations models. The platform and algorithm scope provide efficient quantification of
performance features of the computation and communication, which serves as input to
the analytical models. Essentially, both computation and communication represent the
time cost of data movement through a component (e.g., FPGA or interconnect). Eq. (1)
defines the general structure for node and network time as the delay overhead through
medium/architecture, delay; quantity of data, quantity; and rate of service, throughput
(i.e., gap−1). Sections 3.2.1 and 3.2.2 expound on this general equation for the node
and network models, respectively. From Eq. (2), this article considers time inversely
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proportional to performance (i.e., maximizing performance is minimizing execution
time).

time = delay + quantity
throughput

= delay + quantity × gap (1)

time ∝ 1
performance

(2)

Sections 3.2.3 and 3.2.4 discuss the multilevel agglomeration of the individual node
and network components to model the performance of the individual algorithm stages
and subsequently the total application. The synchronous, iterative behavior described
in the node and network defines the computation and communication scheduling for
each algorithm stage and the overlap of these stages defines the total application perfor-
mance. The RATSS model uses this multilevel approach to agglomerate the individual
performance estimates for the components into a single, quantitative prediction for the
application.

3.2.1. Compute Node Model. The goal of the node model is to estimate the performance
of each computational task based on the user-provided platform and application at-
tributes. Depending on the application requirements, each of the devices performing
a given algorithm task may have different computational demands, each requiring a
separate node-level analysis. Similarly, the application will likely have different com-
putational loads for each task (i.e., stage) of the algorithm. Again, the node model is
used to describe each unique portion of computation and the individual performance
estimates are combined in the RATSS stage-level model.

As summarized in Eq. (3), each node at each stage of execution can have a unique set
of attribute values, S f pga, which includes the pipeline latency, PL fpga; number of data
elements, Nfpga element; number of computational operations per element, Nops element;
FPGA clock frequency, Fclock; and computation throughput, Rfpga, for the specific algo-
rithm task. Adapted from RAT, the computation time (Eq. (4)) is analogous to Eq. (1)
where the pipeline latency is the delay term, the number of data elements and number
of operations per element are the quantity, and the computation throughput and clock
frequency define the effective throughput.

S f pga = {
PL f pga, Nfpga elements, Nops/element, Fclock, Rfpga

}
(3)

S f pga: set of attribute values for a specific computation unit
PL f pga: pipeline latency of the computation (cycles)
Nfpga element: number of computation elements (elements)
Nops/element: number of operations per element (ops/element)
Fclock: FPGA clock frequency (MHz)
Rfpga: computation throughput (ops/cycle)

tf pga(S f pga) = PL f pga

Fclock
+ Nfpga elements × Nops/element

Fclock × Rfpga
(4)

tf pga: execution time for the fpga compute node (s)

Microprocessor nodes can also impact FPGA application performance with compu-
tation coinciding with FPGA execution (from Figure 2). The execution for a micropro-
cessor, tμP , is defined by the software time, which must be measured from legacy code
or estimated using a traditional model. Note that this microprocessor performance at-
tribute is only intended for application-related computation occurring in parallel with
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FPGA execution. FPGA setup, configuration, and other software-involved overheads
are considered in the stage-level model.

3.2.2. Network Model. The goal of the network model is to estimate the performance of a
communication transaction based on the provided platform and application attributes.
Analogous to the node model, each unique communication transaction will require a
separate network-level analysis, which then combine in the RATSS stage-level model.
Based on LogP and its derivatives (e.g., LogGP and the RAT communication model,
to an extent), the network model consists of parameters for the latency (i.e., physical
interconnect delay), L; overhead, o; message gap, g; number of “processors”, P; and
message size, k. These attributes are analogous to the general terms from Eq. (1) in
that L and o determine delay; P and k determine data quantity; and g is the gap. The
key distinction between LogP, LogGP, PLogP, and the RAT communication models is
the gap parameter, which is defined by the expected behavior of the particular network.
Approximations of the short-message gap, g, and long-message gap, G, of LogGP are
often sufficient for microprocessor networks such as Ethernet. However, PLogP and
RAT define the gap as a function of the message size, g(k).

Determining message size is a key issue for accurate performance prediction. The
general assumption is that each node, P, will contribute k bytes of data for the network
transaction. However, the message gap, g(k), is highly dependent not only on the volume
of data per node but also any subdivision of that data into multiple smaller transfers.
Typically, a large message will have less performance overhead than several smaller
messages. Ensuring the gap attribute accurately reflects the performance of the actual
message segmentation size will reduce modeling errors.

Although specific communication transactions (e.g., MPICH2 implementation of an
MPI scatter over Ethernet) have detailed, potentially application-specific performance,
the network model introduces general equations for the two types of network commu-
nication used in the case studies. Eq. (5) illustrates the individual set of attributes,
Stransaction, for multinode network transactions such as InfiniBand or Ethernet, which
includes the L, o, g, G, P, and k attributes along with a γ cost value for any additional
required computations (e.g., reduce operations). Eq. (6) defines the performance of the
communication transaction, ttransaction, by the delay as a function, fdelay, of the latency
and overhead attributes; the volume of data as a function, fquatity, of the message size
and number of nodes; the short- or long-message gap; and the additional computation,
if any, as a function, fcost, of the amount of data and γ cost value.

Stransaction = {L, o, g, G, P, k, γ } (5)
Stransaction: set of attribute values for the specific transaction
L, o: LogGP latency and overhead attributes, respectively
g, G: LogGP short and long-message gap, respectively
P, k: LogGP number of nodes and message size, respectively
γ : additional computation for operations such as reduce

ttransaction(Stransaction)
= fdelay(L, o) + fquantity(P, k) × [g or G] + fcost(P, k, γ ) (6)

ttransaction: total time for the network transaction
fdelay(): function defining delay w.r.t. L and o
fquantity(): function defining total data quantity w.r.t P and k
fcost(): function defining additional computation cost (e.g., reduce)
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In contrast to the multinode network model, I/O interconnects between microproces-
sors and FPGA accelerator cards often exhibit a highly variable gap over a range of
message sizes. However, the different gap values for a range of data sizes and transfer
types (i.e., DMA to BRAM or read from registers) can be collected prior to application
analysis using microbenchmarks and reused on future applications with similar I/O
communication. These attribute values are either collected into a table for reference
or used to construct an explicit g(k) function. From Eq. (7), the original RAT model
separated individual gap values into the theoretical interconnect throughput, RIO, and
the efficiency of the interconnect for the message size, EffIO. Similarly, the message
size was decomposed into the number of data elements, Nelements, and number of bytes
per element, Nbytes/element (Eq. (8)). Expressing data in terms of elements allowed more
direct correlation between the volume of computation and the amount of communica-
tion. However, the RAT I/O model is adjusted to coincide with the LogGP formulation
for consistency within the network model.

g(k) = (RIO × EffIO)−1 (7)
RIO: theoretical throughput rate of I/O channel (from RAT)
EffIO: efficiency of I/O channel (from RAT)

k = NIO elements × Nbytes/element (8)
NIO elements: number of I/O elements (from RAT)
Nbytes/element: number of bytes per element (from RAT)

Eq. (9) defines the set of attributes, SIO, for the revised I/O transaction model, which
consists of the latency and overhead delays, L and o; size-dependent message gap, g(k);
number of nodes, P; message size, k; and the additional computation cost, γ , for the
communication, if any. Though the I/O model represents a point-to-point interconnect,
the P value remains to represent unidirectional (i.e., P = 1) or bidirectional (i.e.,
P = 2) behavior. Eq. (10) defines the communication for the I/O transaction, tIO, by the
delay function, fdelay, for latency and overhead; number of nodes; message size; gap;
and additional computation as a function, fcost, of the message size and γ cost value.

SIO = {
L, o, g(k), P, k, γ

}
(9)

SIO: set of attribute values for the I/O transaction
L, o: latency and overhead attributes, respectively
g(k): gap as a function of message size, k
k: message size
γ : additional computation cost

tIO(SIO) = fdelay(L, o) + P × k × g(k) + fcost(k, γ ) (10)
tIO: total time for the I/O transaction
fdelay(): function defining delay w.r.t. L and o
fcost(): function defining additional computation cost

3.2.3. Stage Model. As discussed in Section 3.1.2, the RATSS stage model represents
the collective scheduling of the one or more repetitions of computation and communica-
tion for an algorithm task. The set of computation times, Scomp, contains the individual
FPGA execution times, tfpga, for each of the n nodes involved in the application stage
(Eq. (11)). Often, all available nodes are performing the specific task, but some stages
may require less computation time and use only n nodes where n < P. Thus, the total
computation time, tcomp, for a stage of an application is the sum of the software pre-
processing overhead, tpreprocessing, the maximum (longest) individual execution times
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from the FPGA nodes and microprocessor, and the software postprocessing overhead,
tpostprocessing (Eq. (12)). As illustrated in Figure 2, the software processing overheads can
share resources with the actual computation and occur in serial with the node-level
computation. Software processing includes overheads such as file reading and writing,
but can be considered negligible depending on the application implementation charac-
teristics. The software processing overheads for the case studies in Sections 4 and 5
are considered insignificant relative to the computation and communication times, and
are not explicitly modeled.

Scomp = {
tfpga1 · · · tf pgan

}
(11)

Scomp: set of FPGA execution times for the stage
n: total number of FPGA nodes

tcomp = tpreprocessing + Max(Max(Scomp), tμP) + tpostprocessing (12)
tcomp total computation time for the stage
tpreprocessing any software overhead prior to computation
tpostprocessing any software overhead after computation

Similarly, the set of communication times, Scomm, contains the performance estimates
for each of the τ network transaction times, ttransaction (Eq. (13)). Typically, this set will
contain one or more input and output transactions for each level of network commu-
nication in the platform, though some applications will instead accumulate partial
results within the FPGAs over multiple stages with cumulative output after the last
computation iteration. From Eq. (14), the communication time for the stage, tcomm, is
composed of the sum of the τ transaction times, ttransaction. Multiple levels of communica-
tion within an application stage are assumed nonoverlapping due to blocking. However,
nonblocking transactions can be modeled by the total network delay and longest (i.e.,
maximum) throughput time.

Scomm = {
ttransaction1 · · · ttransactionτ

}
(13)

Scomm: set of transaction times for the stage
τ : total number of communication transactions

tcomm(Scomm) =
∑

Scomm (14)

tcomm: total communication time for the stage

Depending on the FPGA platform architecture and mapping, computation and com-
munication within a stage is either serialized or overlapping with the total execution
time of the stage, tstage, defined as the configuration overhead, tconfiguration, plus the
number of iterations, Nstage iterations, of either the sum or maximum of the tcomp and tcomm
terms (Eq. (15)). Note that performance estimates should be modeled for each unique
stage of the application execution with attention to any special cases, such as initial
and final stages possessing more or less communication.

tstage = tconfiguration + Nstage iterations ×
{

tcomp + tcomm

Max(tcomp, tcomm)
(15)

tstage: total execution time of the application stage
tconfiguration: any FPGA configuration overhead for the stage
Nstage iterations: number of stage-level iterations

3.2.4. Application Model. The RATSS application-level model describes the scheduling
of the individual stages of task execution to estimate the full system performance.
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Fig. 3. Example timing diagram illustrating stage- and application-level scheduling of computation and
communication.

Applications consist of one or more distinct stages of execution, which may be collec-
tively repeated for one or more of iterations. Analogous to the computation and commu-
nication scheduling, application stages can either be serialized or overlapping. Figure 3
provides an example timing diagram for potential iterative behavior at application
level. The example consists of three stages collectively repeated twice, reinforcing the
multilevel iterative behavior of the stage and application models as first described in
Figure 2. This sample application does not illustrate all potential platform and algo-
rithm features such as a complex network hierarchy, but instead reinforces the ability
of RATSS to organize execution paths into multilevel models.

Eq. (16) defines the set, Sstage, of s stage times, tstage, for the application. The total
execution time for the application, tapplication, is the number of iterations, Napp iterations,
of either the sum or maximum (longest) of the stage times. From Section 3.1.2, FPGA
resources are either collectively used on stages serially (i.e., execution time is the
summation of stage times) or divided among stages for pipelined application execution
at stage level (i.e., execution time is the slowest stage time). Arbitrary assignment of
FPGA resources and overlap of stage execution is possible, but outside the scope of this
article. Again, this model generalizes high-level iterative behavior. Applications can
contain repetitive but irregular behavior (e.g., 3 iterations of stage one, 7 iterations of
stage two, 5 iterations of stage three, etc.), which is simple to calculate but not explicitly
considered by the model.

Sstage = {
tstage1 · · · tstages

}
(16)

Sstage: set of stage times for the application
s: total number of stages for the application

tapplication = Napp iterations ×
{∑

Sstage

Max(Sstage)
(17)

tapplication: total execution time of the application
Napp iterations: number of application-level iterations

4. DETAILED WALKTHROUGH: 2D PDF ESTIMATION

This section presents a detailed walkthrough of RATSS performance prediction with a
reasonably complex case study, 2D PDF estimation. The intended algorithm and plat-
form structure along with the feature characterization and performance calculations
for the node, network, stage, and application models are discussed. The results of the
performance estimation are compared against a subsequent hardware implementation
to evaluate the accuracy of the RATSS model.
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Fig. 4. Application structure for 2D PDF estimation case study.

4.1. Algorithm and Platform Structure

The 2D PDF estimation algorithm for this case study uses the Parzen window tech-
nique [Parzen 1962], a generalized nonparametric approach to estimating PDFs in
a d-dimensional space. Despite the increased computational complexity versus tra-
ditional histograms, the Parzen window technique is mathematically advantageous
because of the rapid convergence to a continuous function. This algorithm is amenable
for FPGA acceleration because of the high degree of computational parallelism and
large computation effort relative to the amount of data consumed (i.e., input) and pro-
duced (i.e., output). The computational complexity of a d-dimensional PDF algorithm
is O(Nnd), where N is the total number of samples of the random variable, n is the
number of levels where the PDF is estimated, and d is the number of dimensions. This
2D PDF estimation algorithm accumulates the statistical likelihood of every sample
occurring within every probability level. Each sample/level combination is indepen-
dent, thereby making the algorithm embarrassingly parallel. The data input consists
of O(N) samples whereas the output is the resulting O(n2) probability levels.

A general overview of the algorithm structure for this case study is presented in Fig-
ure 4. A total of 67,108,684 (i.e., 64M) data samples, originating on one microprocessor,
are scattered equally among the P microprocessors. The number of samples is large to
fully stress the communication and memory capabilities of the target FPGA platform.
The microprocessors transfer the data to their respective FPGA node in chunks of
8,192 data samples, limited by the available on-chip block RAM. A total of 80 pipelined
kernels per node perform the necessary computations (comparison, scaling, and accu-
mulation) to analyze each data sample against the 256 × 256 probability levels. The 80
parallel kernels maximize the available multiple accumulators (MACs) on the target
FPGA with some leeway. The numerical precision for the computation is 18-bit fixed
point. The results are accumulated in 256×256 registers and periodically read back by
the host microprocessor. The resulting 256 × 256 partial sums on each of the P nodes
are collected with a reduce operation. More discussion on this 2D PDF estimation ar-
chitecture along with general issues related to FPGA implementation can be found in
Nagarajan et al. [2009].

The intended platform for this case study is illustrated in Figure 5. The full plat-
form consists of eight 3.2GHz Xeon microprocessor nodes each connected to one Xilinx
XC4VLX100 (Nallatech H101 card) via a PCI-X bus. The processing nodes are orga-
nized as a cluster of traditional computers each augmented with FPGA hardware (i.e.,
an NNUS system). Each XC4VLX100 FPGA contains 96 MACs providing sufficient
hardware resources for the 80 parallel kernels (i.e., one MAC per kernel). The on-chip
Block RAMs (BRAMs) are explicitly illustrated since they are used to store the input
and output data for the 2D PDF case study. The microprocessor nodes are connected via
Gigabit Ethernet. Network-level communication uses the MPICH2 implementation of
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Fig. 5. Platform structure for 2D PDF estimation case study.

Table I. Node Attributes for 2D PDF Estimation

Attribute Units 2 Nodes 4 Nodes 8 Nodes
PLcomp (cycles) 11
Rcomp (ops/cycle) 240
Fclock (MHz) 195
Ncomp elements (elements) 33554432 16777216 8388608
Nops/element (ops/element) 196,608
t fpga (s) 1.41E+2 7.05E+1 3.52E+1

the Message Passing Interface (MPI). The case study is modeled and the implementa-
tion is tested using 2, 4, and 8 FPGA nodes.

The Nallatech H101 card allows user-specified clock frequencies for applications,
which can necessitate further DSE. Typically, clock frequency is difficult to estimate at
a strategic level and RATSS should be performed for a range of potential clock frequen-
cies to help ensure satisfactory performance for even more pessimistic timing. RATSS
predictions based on revisions to a single attribute value, such as clock frequency,
should require trivial additional efforts. This case study describes only the RATSS pre-
diction matching the actual clock frequency of the subsequent FPGA implementation.
However, many frequencies were explored as part of the strategic DSE.

4.2. Compute Node Modeling

The node-level model consists of estimating the computation for the 2, 4, and 8
Nallatech-augmented compute nodes. The values in Table I consist of the computation
attributes, which are distilled from the structure of the 2D PDF estimation algorithm
as mapped to the architecture of the FPGA node. For computation, accurate param-
eterization of the pipeline latency, PLcomp, requires detailed knowledge of the final
algorithm structure. The pipeline for the 2D PDF estimation has a straightforward
computational structure of three operations (subtraction, multiplication, and addition
from Figure 4) requiring 11 total cycles. The relatively deep pipeline helps ensure a
higher clock frequency. The computational throughput, Rcomp, of 240 operations per
cycle comes from the 80 pipelined kernels, each with 3 simultaneous operations per
pipeline. Predictions are generated for a large range of possible frequencies. The predic-
tion for the clock frequency, Fclock, of 195MHz is shown since it ultimately matched the
maximum frequency for later implementation. The number of computation elements,
Ncomp elements, is 33,554,432 (64M ÷ 2); 16,777,216 (64M ÷ 4); and 8,388,608 (64M ÷ 8)
for the 2- 4- and 8-node configurations, respectively, due to the balanced data decom-
position. The number of operations per element, Nops/element, is based on the 256 × 256

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 3, Article 27, Publication date: August 2011.



27:16 B. Holland et al.

Fig. 6. Results of efficiency microbenchmarks for Nallatech BRAM I/O.

comparisons per data element times 3 operations per element for a total of 196,608
operations.

The last attribute in Table I, tfpga, summarizes the computation time for the 2-, 4-,
and 8-node cases. Each node for a particular system size (i.e., number of nodes, P)
will have an identical execution time because of the equal data decomposition. Due
to the increasing number of node resources, FPGA computation time, tf pga, decreases
approximately linearly. Two FPGAs require twice the time as four FPGAs which need
twice the time of eight FPGAs. This behavior is consistent with the embarrassingly
parallel nature of the 2D PDF estimation algorithm.

4.3. Network Modeling

For the FPGA platform used in this case study, two communication network models
are necessary: PCI-X I/O Bus and Ethernet. The PCI-X bus model describes the point-
to-point interconnect between a host microprocessor and its Nallatech FPGA node.
The Ethernet model describes the MPICH2 communication over the Gigabit Ethernet
network. Assembling the attribute values for these models involves not only analysis
of the algorithm structure and mapping but also microbenchmarking of the underlying
platform behavior for typical communication transactions.

4.3.1. PCI-X Bus Modeling. The I/O operations for 2D PDF estimation involve transfers
between the host CPU and the onboard FPGA block RAM. Microbenchmarks were
performed on common transfer sizes (i.e., powers of two from 4B to 64MB). Figure 6
summarizes the results of these transfers, which can be referenced for all future I/O
performance estimations. Smaller transfers, Figure 6(a), have erratic but steadily in-
creasing efficiency whereas larger transfers, Figure 4.3.1, could be approximated by
a single value. For the transfer sizes used in this case study (writing 8,192 elements
and reading 65,536 elements, discussed later), the I/O efficiencies are 0.31 and 0.10,
respectively.

Table II summarizes the delay and throughput attributes, gathered from microbench-
marks of the PCI-X I/O bus, along with the quantity of data transmitted for the 2D PDF
estimation case study. The microbenchmarks measure the total time of a data transfer,
which defines the effective throughput for a given transfer size. The I/O latency and
overhead, LIO + oIO, is assumed to be the total transfer time for a very small transfer
(i.e., 4B of data), which is dominated by the channel delay of the PCI-X bus. For writes
and reads with the FPGA block RAM, the measured performance is 1.60E-5(s) and
3.20E-5(s), respectively. The gap, g(k), for the write and read I/O transactions is the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 3, Article 27, Publication date: August 2011.



An Analytical Model for Multilevel Performance Prediction of Multi-FPGA Systems 27:17

Table II. PCI-X Bus Attributes for 2D PDF Estimation

Attribute Units 2 Nodes 4 Nodes 8 Nodes

LIO + oIO
write (s) 1.60E–5
read 3.20E–5

g(k)IO
(RIO × EffIO)

write
(s)−1

3.03E–3
(1,064 ×0.31)−1

read 9.40E–3
(1,064 ×0.10)−1

k
(NIO elements ×
Nbytes/element)

write X

(elements)

128M 64M 32M
(32M×4) (16M×4) (8M×4)

write Y 128M 64M 32M
(32M×4) (16M×4) (8M×4)

read 1024M 512M 256M
(256M×4) (128M×4) (64M×4)

ttransaction

write X (s) 4.07E–1 2.03E–1 1.02E–1
write Y 4.07E–1 2.03E–1 1.02E–1
read 1.01E+1 5.05E+0 2.52E+0

Table III. Ethernet Network Attributes for 2D PDF Estimation

Attribute Units 2 Nodes 4 Nodes 8 Nodes
L (s) 1.08E–4
o (s) 6.75E–6
g (s) 1.64E–5
G (s/Byte) 9.56E–9
γ (s/Byte) 1.90E–8
P (nodes) 2 4 8

k
scatter X

(Bytes)
128M 64M 32M

scatter Y 128M 64M 32M
reduce 256K 256K 256K

ttransaction

scatter X
(s)

1.28E+0
1.28E+0
3.89E–3

1.92E+0
1.92E+0
7.78E–3

2.25E+0
2.25E+0
1.17E–2

scatter Y
reduce

multiplicative inverse of the 1,064MB/s (i.e., 33MHz, 64-bit PCI-X) theoretical through-
put, RIO, times the I/O efficiency, EffIO. These particular g(k) values are determined
by the message size, k, which is defined by the number of I/O elements, NIO elements,
and number of bytes per element, Nbytes/element. For the write I/O, the 64M input data
elements for each of the X and Y dimension are divided among the 2, 4, and 8 nodes
for the NIO elements term. Again, these write transfers are divided into blocks of 8,192
elements meaning 64M ÷ 8,192 ÷ P distinct transfers. The output (i.e., read I/O) in-
volves collecting the 65,536 (256 × 256) elements storing the partial PDF estimates for
each of the 64M ÷ 8,192 ÷ P iterations. Though the computation is 18-bit fixed point,
the data format for the I/O transfers is 32-bit integer and consequently the number of
bytes per element, Nbytes/element, is 4.

Eq. (18) defines the performance for PCI-X write and read transaction, ttransactionwrite,read ,
by the I/O latency and overhead, LIO + oIO, gap value for the message size, g(k), and
message size, k. The I/O results of the two writes and one read for this case study are
summarized in the second block of Table II.

ttransactionwrite,read = LIO + oIO + g(k) × k (18)

4.3.2. Ethernet Network Modeling. The attributes in the first block of Table III were
gathered using the LogGP benchmarking tool described in Kielmann et al. [2000].
This tool computes the parameterized LogP functions, which are converted to the fixed
latency, L, overhead, o, short-message gap g, and long-message gap, G, values. Much of
the tool’s methodology is outside the scope of the article, but essentially a progressively
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increasing sequence of messages is used to calculate the gap. The latency and overhead
are deduced from the delays between these messages. The computational overhead, γ ,
consists of the addition operations for the reduce transaction used in the 2D PDF
estimation and is benchmarked on the Xeon microprocessor. Using these parameters,
precise analytical models can be constructed for the binomial tree scatter and reduce
used in this case study.

The analytical model for the binomial tree scatter used in the MPICH2 implementa-
tion of MPI is defined in Eq. (19). As opposed to a naive scatter, which requires P − 1
messages to complete a P-node scatter, a binomial tree scatter only requires log2(P)
messages as each node that has received data subsequently scatters to other remaining
nodes. However, these messages for the binomial tree scatter begin as half the total
data to be scattered and decrease by half with each transmission because nodes must
be supplied with not only their data but also the data they must pass on. In actuality,
the binomial tree scatter uses more network bandwidth (i.e., many transmissions in
parallel) and the throughput component is the same as a naive scatter. The advantage
of the binomial tree scatter is the reduction in latency.

ttransactionscatter = log2(P) × L + 2o + G
log2 P∑
X=1

P
2X

k

= log2(P) × L + 2o + G
(

P
2

+ P
4

+ · · · + P
P

)
k

= log2(P) × L + 2o + G(P − 1)k (19)

For the shorter message sizes necessary for data collection in the 2D PDF estimation
algorithm, the MPICH2 implementation of the MPI Reduce function uses a binomial
tree similar to the scatter. However, unlike scatter (or gather) the amount of data
during each transmission does not increase because the data is reduced at every node.
Consequently, the reduce has log2(P) latency, L, and transmission time, Gk, as defined
in Eq. (20). Additionally, each transmission requires an addition operation, γ , for each of
the k data values in the message. Note that Eqs. (19) and (20) assume P is a power of 2.

ttransactionreduce = log2(P) × (L + 2o + Gk + γ k) (20)

The second block of Table III lists the two application-dependent attributes defined
by the user based on the 2D PDF estimation case study. Again, system configurations
of 2, 4, and 8 nodes, P, are used for this case study. The 2D PDF application requires
two distinct transactions: distribution of the input data for the X and Y dimensions
(i.e., MPI Scatter) and reduction of the partial PDFs (i.e., MPI Reduce). The 2, 4, and
8 FPGA platform configurations will involve message sizes, k, of 128MB, 64MB, and
32MB of data, respectively for the scatter. For the reduce, every node will contribute
the 256KB (256 × 256×4B) partial results (regardless of the number of nodes) that are
ultimately accumulated on the head node.

The third block of Table III summarizes the results of the network model. The
individual times for the scatter and reduce transactions, ttransaction, are listed. These
times increase logarithmically for the 2-, 4-, and 8-node platforms due to the increasing
number of messages (i.e., log2(P)) required for the transaction.

4.4. Stage/Application Modeling

For this analysis, the stage and application models are combined due to the single stage
of execution in the application. Eq. (21) summarizes the set, Scomp, of the execution
times, tfpga, for the 2, 4 and 8 (i.e., P) FPGA nodes used in this case study. From
Eq. (22), the computation time, tcomp, is determined by the maximum (longest) node
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Table IV. System Model Attributes for 2D PDF Estimation

Attribute Units 2 Nodes 4 Nodes 8 Nodes
Nstage iterations (iterations) 1
Scomp (s) 1.41E+2 7.05E+1 3.52E+1

Scomm

scatter X

(s)

1.28E+0 1.92E+0 2.25E+0
scatter Y 1.28E+0 1.92E+0 2.25E+0
write X 4.07E–1 2.03E–1 1.02E–1
write Y 4.07E–1 2.03E–1 1.02E–1
read 1.01E+1 5.05E+0 2.52E+0
gather 3.89E–3 7.78E–3 1.17E–2

tcomp (s) 1.41E+2 7.05E+1 3.52E+1
tcomm (s) 1.35E+1 9.31E+0 7.25E+0
tstage (s) 1.54E+2 7.98E+1 4.24E+1

time. Because of the equal load balancing among the nodes, the total computation time
is equivalent to the performance of any i-th node in the system.

Scomp = {tf pga1 · · · tf pgaP } (21)
tcomp(Scomp) = Max(Scomp) = tf pgai (22)

The set of communication times, Scomm, summarizes network transactions involved
in the single stage of the case study. The scatter and write times, tscatter and twrite,
represent the X and Y dimensions of the input data and the read and reduce times,
tread and treduce, define the data collected after computation. From Eq. (24), the total
communication performance, tcomm, is the summation of the individual, nonoverlapping
network transactions.

Scomm = {tscatterX, tscatterY , twriteX, twriteY , tread, treduce} (23)
tcomm(Scomm) = tscatterX + tscatterY + twriteX + twriteY + tread + treduce (24)

The inputs to the RATSS system-level model are summarized in the first block of
Table IV. The only user-provided attribute is the number of stage-level iterations,
Niterations. The 2D PDF application only requires one iteration of node and network
interaction (i.e., internode data distribution, node-level computation, internode data
collection). The individual node and network transaction times comprise the major-
ity of the input to the system model. The Scomp and Scomm attribute sets contain the
compute node and network transaction times from the respective models. The second
block of Table IV summarizes the estimated performance of the total computation and
communication times, tcomp and tcomm from Eqs. (22) and (24). As expected, the compu-
tation time decreases as the number of FPGAs increases. The communication time also
decreases as the number of FPGAs increases due to the shorter I/O transactions (i.e.,
NIO elements

P ) that dominate the total communication time.
The 2D PDF estimation does not use an elaborate buffering scheme so the total

performance of the application, tapplication, as defined by the stage time, tstage, is the
summation of the number of iterations, Nstage iterations, of I/O communication and FPGA
computation for the node, tcomm and tcomp (Eq. (25)). Single buffering maximizes the
available memory bandwidth to the computation units. The computation time, as shown
in Table IV, dominates the total application execution time and would not greatly
benefit from double buffering.

tapplication = tstage = Nstage iterations × (tcomm + tcomp) (25)

The model output is summarized in the third block of Table IV. As the number of
nodes doubles, the node time reduces by half but the network time increases slightly.
Consequently, the total execution time, ttotal, decreases by slightly less than half as the
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Table V. Modeling Error for 2D PDF Estimation (Nallatech, XC4VLX100,
195MHz)

Predicted (s) Experimental (s) Error

2 FPGAs

tcomp 1.41E+2 1.56E+2 –9.6%
tcomm 1.35E+1 1.51E+1 –10.7%
ttotal 1.54E+2 1.71E+2 –9.7%

Speedup 146 132 10.6%

4 FPGAs

tcomp 7.05E+1 7.84E+1 –10.1%
tcomm 9.31E+0 9.93E+0 –6.2%
ttotal 7.98E+1 8.84E+1 –9.7%

Speedup 283 255 11.0%

8 FPGAs

tcomp 3.52E+1 3.95E+1 –10.9%
tcomm 7.25E+0 7.70E+0 –5.9%
ttotal 4.24E+1 4.72E+1 –10.1%

Speedup 532 478 11.3%

number of nodes doubles. This trend of nearly linear performance improvement with
increasing platform size is reasonable given the embarrassingly parallel nature of the
computation and relatively low impact of the PCI-X and Ethernet communication.

4.5. Results and Verification

As previously discussed, the performance prediction is calculated prior to low-level
design and was not adjusted based on implementation details. Predictions were gen-
erated for a range of clock frequency values, though only the results of the 195MHz
estimation are shown. Major revisions to the target algorithm or platform architecture
during implementation can significantly alter the application performance affecting
the validity of the prediction. Thus, RATSS can be used iteratively throughout the
design process, recomputing predictions whenever significant revisions are considered
or become necessary to ensure the subsequent implementation will still meet perfor-
mance requirements and thereby prevent further reductions in productivity. However,
such modifications to the application structure were not necessary for the 2D PDF
estimation case study.

In Table V, the results of the performance prediction for the 2D PDF estimation case
study are compared against a subsequent implementation of the target algorithm.
The node and network models underestimated the actual implementation times and
subsequently overestimated the total application speedup over the software baseline.
The node times represented the majority of the execution time (over 90% of the phys-
ical implementation) thereby having the greatest impact on prediction accuracy. The
prediction errors for the 2, 4, and 8 FPGA configurations are under 11%, which is
considered reasonably accurate given the focus on high-level design-space exploration
prior to implementation. Most of the discrepancy is due to additional cycles of over-
head related to data movement during the FPGA computation. In contrast to the node
modeling error, which remained relatively constant for 2, 4, and 8 nodes, the network
modeling error had significantly more variability. The error for the 2-node platform
was just under 12%. Though not ideal, the error had minimal impact on the overall
prediction accuracy and was due to extra overhead associated with a 2-node scatter
and reduce versus the single message predicted by the model. The network error was
6.2% and 5.9% for the 4- and 8-node platforms, respectively. This network error, lower
than the respective node error, reduced the overall execution error. Consequently, the
predicted speedup over a sequential software baseline executed on one 3.2GHz Xeon
microprocessor in the platform was approximately 90% accurate (i.e., under 12% error)
for all three system sizes. The speedup values are substantial due to the large problem
size and high computation-to-communication ratio.
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Fig. 7. Platform structure for image filtering case study.

Table VI. SNAP Network Attributes for SRC-6
System

Attributes Units Value
L (s) 1.01E–5
o (s) o(P,k) [negligible]
g (s) 6.40E–7
G (s/Byte) 1.25E–9

A key lesson learned from this case study relates to modeling effort versus accuracy.
The node characterization and performance estimation required significantly less effort
as compared to microbenchmarking and modeling the two communication networks.
However, precise node modeling is important as the case study consists of over 90%
computation and more effort related to modeling unforeseen computational overheads
could benefit future applications targeting this platform. The need for greater accuracy
in communication modeling is situational, as illustrated in the next two case studies,
image filtering and MD, which have significant and trivial communication, respectively.

5. ADDITIONAL CASE STUDIES

This section discusses two additional case studies for further validation of the RATSS
model: image filtering and molecular dynamics. Both case studies use an SRC-6 system
(i.e., an UNNS system), which incorporates up to four MAP-B nodes each consisting
of two Xilinx XC2V6000 FPGAs (Figure 7). In contrast to the Nallatech-based plat-
form, the application clock frequency for the SRC-6 system is fixed at 100MHz. All four
MAP-B nodes are connected to a dual-Xeon microprocessor workstation via a single,
proprietary interconnect called SNAP. In contrast to the Nallatech-augmented cluster
from the 2D PDF estimation case study, initiation of communication is performed lo-
cally by each node as a DMA transfer and arbitrated by the interconnect controller.
Network transactions are still described using collective communication terminology
but the physical operations are independently initiated point-to-point messages. Con-
figuration and other overheads are considered negligible. Additionally, case study im-
plementations are written in Carte C.

Common to both case studies, Table VI defines the network attributes for the SNAP
interconnect, which are measured from microbenchmarks. Similar to the Nallatech sys-
tem, latency, L, is the transmission time of a single-word transfer, which is dominated
by the network delay. However, overhead, o, the time between successive messages, is
a function of the number of nodes, P, and message size, k, not a constant parameter
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due to the decentralized communication requests. More extensive microbenchmarking
can determine approximate network overhead values although variability in message
ordering inhibits detailed analysis. For these case studies, the effect of overhead is
considered negligible and not part of the network model. The short-message gap, g, is
measured as the transmission time for short messages minus latency. No short mes-
sages are used in these case studies but the value is included for completeness. The
long-message gap, G, is one 8-byte word every 10ns clock cycle based on the fixed
100MHz clock.

The equations for the SNAP communication, broadcast, scatter, and gather, are de-
fined in Eqs. (26) and (27). In general, SRC-6 transactions will be a series of serialized
messages, albeit of different sizes. However, the independently initiated DMA trans-
fers are designed to allow node computation to proceed before all communication has
completed. For an accurate yet simple model of this partial overlap, the output trans-
action (i.e., gather or another collection-type operation) can be represented by just the
final message of the communication, which cannot be hidden because computation has
completed, instead of the total P messages.

ttransactionbroadcast,scatter = L + G × P × k (26)

ttransactiongather =
{

L + G × k, overlapping communication
L + G × P × k, nonoverlapping communication

(27)

For brevity, the performance model for the image filtering and MD case studies (and
many other SRC-6 applications) is summarized in Eqs. (28)–(30). Again, application
execution is defined by FPGA computation with synchronizing DMA communication to
a central microprocessor node. Distributed data movement incorporating global com-
mon memories can help overlap communication and computation but is not considered
for the following case studies. The longest node time defines the computation time
(Eq. (28)) and the communication consists of broadcast or scatter, and gather
(Eq. (29)). The total application performance is the summation of the computation
and communication times (Eq. (30)).

tcomp = Max({tf pga1 · · · tfpgaP }) (28)
tcomm = tbroadcast,scatter + tgather (29)

tapplication = tstage = Nstage iterations × (tcomp + tcomm) (30)

Although these two additional case studies involve a different FPGA platform from
the 2D PDF application, the sequential software baselines are measured from the same
3.2GHz Xeon microprocessor for consistency. While speedup is often an advantageous
performance metric, the specific speedup value must be compared with the problem size
and computation-to-communication ratio for the application. The image filtering and
molecular dynamics case studies illustrate communication- and computation-bound
problems, respectively, with correspondingly lower and higher speedups. The accu-
rate modeling of both computation and communication demonstrated in these case
studies is important for RATSS as high or low data parallelism in an algorithm does
not guarantee or exclude suitability for FPGA implementation, respectively. Strategic
DSE encompasses not only significant design revisions but also maximizing available
parallelism for the platform capabilities and application requirements.

5.1. Image Filtering

The particular image filter used in this case study is a discrete 2D convolution of a
3×3 image segment (i.e., a pixel and its 8 neighbors) with a user-specified filter. Exam-
ple usages of this application include Sobel or Canny edge detection and high, low, or
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Fig. 8. Algorithm structure for image filtering case study.

Table VII. Node Attributes for Image Filtering

Attribute Units Value
PLcomp (cycles) 0
Rcomp (operations/cycle) 34
Fclock (MHz) 100
Ncomp elements (elements) 349,448
Nops/element (operations/element) 17

band-pass filtering for noise reduction. Figure 8 provides an illustration of this algo-
rithm. The same 418 × 418 image is streamed (i.e., written) to the primary FPGA of
two nodes of the SRC-6 system. As part of the computation, the primary FPGAs stream
the image data to their respective secondary FPGAs. Each FPGA performs the convo-
lution of the image data with respect to different filter values. The resulting images
on the secondary FPGAs are streamed back to their respective primary FPGA which
DMAs the two new images from the node back to the network-attached microprocessor.
A more general overview of convolution for image filtering can be found in Gonzalez
and Woods [2002].

Table VII summarizes the compute node attributes for the RATSS model. Because
of the double-precision operations, the overall pipeline will be fairly deep and too
complex to quickly and accurately determine a priori. However, the pipeline latency,
RLcomp, should be negligible with respect to the volume of data. Both FPGAs contain
a fully pipelined kernel for filtering that calculates the nine multiplications and eight
additions for the convolution (i.e., the 9 + 8 = 17 operations per pixel element) for
a total computational throughput, Rcomp, of 34 (2 FPGAs × 17 operations). The clock
frequency, Fclock, for the MAP-B node is fixed at 100MHz. An image size of 418 × 418
pixels, limited by the size of the MAP-B SRAM, is used for this case study though larger
sizes can be simulated by repeatedly looping through the memory. In contrast to the
previous case study, each FPGA of each node needs the complete dataset (i.e., image)
because each kernel convolves a different filter. Consequently, the effective number of
data elements, Nelements, per node is 349,448 (418 pixels × 418 pixels × 2 FPGAs). Again,
each element requires nine multiplications with the 3×3 filter and eight subsequent
summations for a total of 17 operations per element, Nops/element.

Table VIII defines the application-specific network attributes for the SNAP network
model. Two nodes, P, with four total FPGAs are used for this case study. The pipelined
(streaming) computation is structured using shift-registers and requires three new
inputs each cycle (i.e., a pixel and its upper and lower neighbors). Consequently, the
streaming communication of the 418×418 images requires a total of 4,193,376 bytes
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Table VIII. Additional Network Attributes for
Image Filtering

Attribute Units Value
P (nodes) 2

k broadcast (Bytes) 4,193,376
gather 2,795,584

Table IX. Modeling Error for Image Filtering (SRC-6, XC2V6000)

Predicted (s) Experimental (s) Error

2 Nodes (4 FPGAs)

tcomp 5.24E–3 5.24E–3 –0.04%
tcomm 1.40E–2 1.41E–2 –1.08%

tapplication 1.92E–2 1.98E–2 –3.13%
Speedup 1.39 1.35 2.96%

(418×418×3×8B) for the broadcast message, k. Similarly, the output communication
will involve two filtered images (one per FPGA) of 418×418 pixels each, for a total
gather message size, k, of 2,795,584 bytes (418×418×2×8B).

Table IX highlights the sources of error for the image filtering case study. The com-
putation time is comparable to the O(N) write time. The deterministic structure of the
computational pipelines allowed for highly accurate modeling of the total execution
time for the nodes, tcomp, which is off by only 204 cycles, nearly the 127-cycle pipeline
latency reported by the Carte tool during implementation. The network communica-
tion time, tcomm, comprised the majority of the total execution time, tapplication, and the
error remained just over 1%. Consequently, the total error remained just over 3%. The
accuracy of the RATSS communication model for the SNAP interconnect ensured only
a small error (under 3%) in the speedup prediction. The speedup value is relatively
modest due to the lower computation-to-communication ratio as compared to the other
case studies.

5.2. Molecular Dynamics

Molecular Dynamics (MD) is the numerical simulation of the physical interactions
of atoms and molecules over a given time interval. Based on Newton’s second law
of motion, the acceleration (and subsequent velocity and position) of the atoms and
molecules are calculated at each time step based on the particles’ masses and the
relevant subatomic forces. For this case study, the MD simulation is focused on the
interaction of certain inert liquids such as neon or argon. These atoms do not form
covalent bonds and consequently the subatomic interaction is limited to the Lennard-
Jones potential (i.e., the attraction of distant particles by van der Waals force and the
repulsion of close particles based on the Pauli exclusion principle) [Allen and Tildesley
1987]. Large-scale MD simulators such as AMBER [Pearlman et al. 1995] and NAMD
[Nelson et al. 1996] use these same classical physics principles but can calculate not
only Lennard-Jones potential but also the nonbonded electrostatic energies and the
forces of covalent bonds, their angles, and torsions, making them applicable to not only
inert atoms but also complex molecules such as proteins. The parallel algorithm used
for this case study was adapted from code provided by Oak Ridge National Lab (ORNL).

Figure 9 provides an overview of the MD case study. In slight contrast to the image-
filtering case study, four MAP-B nodes, one FPGA each, are used for MD. In order to
compare two molecules every clock cycle, two copies of the molecular data are sent by the
network-attached microprocessor to the primary FPGA of each node. (The secondary
FPGA is not used for this case study). Each copy contains the X, Y, and Z dimensions of
the molecular position data, requiring 2 SRAMs per copy for a total of 4 banks per node.
Each MD kernel checks the distance of N/4 molecules against the other N−1 molecules,
where N/4 is the number of molecules for each of the four nodes. If the molecules

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 3, Article 27, Publication date: August 2011.



An Analytical Model for Multilevel Performance Prediction of Multi-FPGA Systems 27:25

Fig. 9. Algorithm structure for molecular dynamics case study.

Table X. Node Attributes for Molecular Dynamics

Attribute Units Value
PLcomp (cycles) 0
Rcomp (operations/cycle) 1
Fclock (MHz) 100
Ncomp elements (elements) 8,192
Nops/element (operations/element) 32,767

Table XI. Additional Network Attributes for
Molecular Dynamics

Attribute Units Value
P (nodes) 4

k scatter (Bytes) 1,048,576
gather 524,228

are sufficiently close, the MD kernel calculates the molecular forces (and subsequent
acceleration) imparted on each other. The acceleration effects are accumulated in the
last two SRAM banks and transferred back to the network-attached microprocessor.

The node-level attributes for the MD case study are defined in Table X. The pipeline
latency, PLcomp, is considered negligible for this case study due to the O(N2) computa-
tional complexity. One pipeline per node allows for molecular iteration (i.e., operation)
per cycle, Nops/cycle. Again, the clock frequency, Fclock, for the MAP-B nodes is fixed at
100MHz. For this case study, the number of data elements (i.e., molecules) per node,
Nelements, is 8,192 (32,768/4). Each molecule’s interaction is computed against every
other molecule for a total of 32,767 operations, Nops/element.

Table XI defines the application-specific attributes for the SNAP network model. A
total of four nodes, P, are used for the case study. The scatter message size is twice the
gather message size due to two copies of input data required to compute a molecular
interaction in a single cycle (i.e., two memory access per cycle). Also, the 4-byte, single-
precision x, y, and z, dimensions of the molecule data are packed into two 8-byte
words. Thus, the scatter and gather message sizes, k, are 1,048,576B (32,768×4×8B)
and 524,228B (32,768×2×8B) respectively. Because of the single time step, only one
system-level iteration, Nsystem iterations, is required for this case study.

Table XII compares the results of the RATSS model with the subsequent imple-
mentation of MD. Over 99% of the execution time is dominated by the FPGA com-
putation, which is highly deterministic. The model error for the node-level time,
tnodes, is –0.0001%, an underestimation of 304 cycles, roughly the pipeline latency of
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Table XII. Modeling Error for Molecular Dynamics (SRC-6, XC2V6000)

Predicted (s) Experimental (s) Error

4 Nodes (4 FPGAs)

tcomp 2.68E+0 2.68E+0 –0.0001%
tcomm 5.90E–3 4.84E-3 21.8%

tapplication 2.69E+0 2.69E+0 0.03%
Speedup 5.12 5.12 –0.03%

271 cycles reported by the Carte tool during implementation. However, the total net-
work time, tnetwork, is difficult to measure accurately due to the independently initiated
communication for the four nodes, which resulted in a 22% error. However, the overall
impact on prediction accuracy is negligible as the model discrepancy for the total ap-
plication execution time, ttotal, was overestimated by 0.03%. Consequently, the speedup
versus the sequential software baseline was underestimated by 0.03%. This problem
size was an advantageous case study due to the nontrivial hardware execution time
(i.e., greater than 1s) yet highly tractable software baseline (i.e., less than 14s). Larger
problem sizes would have slightly higher speedup due to higher FPGA computation-to-
communication ratios and marginally slower software baselines due to cache misses.

6. CONCLUSIONS

Based on current parallel computing trends, scalable systems with FPGAs are in-
creasingly desirable for their performance and power benefits. However, the associated
cost of application development has inhibited greater adoption of FPGAs. Insufficient
attention has been given to strategic planning for applications, particularly as appli-
cations scale. Simply providing faster implementation paths for FPGA devices only
addresses one symptom of the productivity challenge. Effective DSE involves not only
rapid design but also efficient performance evaluation. Analytical models can esti-
mate the performance of application designers by distilling and evaluating key perfor-
mance characteristics from the designer’s specification. Such models prevent wasted
implementation effort by identifying unrealizable designs and reducing the revisions
necessary to achieve performance requirements.

RATSS provides an efficient and reasonably accurate analytical model for evaluating
a scalable FPGA application prior to implementation. RATSS boosts designer produc-
tivity by extending concepts from component-level models to allow efficient abstraction
and estimation of the computation and communication features of FPGA applications.
The RATSS model contributes a multilevel approach for agglomerating component de-
scriptions into a full performance estimate. RATSS performance prediction remains
tractable by focusing on synchronous, iterative computation models for the two major
classes of modern high-performance FPGA platforms.

The 2D PDF, image filter, and MD case studies illustrate performance modeling for a
range of problem sizes and ratios of computation-to-communication. These case studies
demonstrated nearly 90% prediction accuracy, which is considered sufficient given the
focus of RATSS on strategic application planning. The accuracy of both the computation
and communication models allows not only individual performance estimates but also
accurate predictions across a range of potential application configurations including
wide variations in problems sizes and computation-to-communication ratios. Specifi-
cally, important performance tradeoffs such as increasing parallelism or decreasing the
communication rate can be efficiently evaluated with reasonable accuracy. These case
studies serve as motivation for broad design-space exploration with RATSS as predic-
tions are efficiently generated and reasonably accurate, which help ensure the even-
tual implementation is the most desirable design configuration. Future work includes
pairing RATSS with a graphical design environment to provide an integrated, end-
to-end framework for further efficiency improvements in application specification and
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performance estimation with the overall goal of wider usage of the RATSS methodology
by the reconfigurable computing community.
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ENZLER, R., JEGER, T., COTTET, D., AND TRÖSTER, G. 2000. High-Level area and performance estimation of hard-
ware building blocks on fpgas. In Proceedings of the 10th International Workshop on Field-Programmable
Logic and Applications. Springer, 525–534.

ENZLER, R., PLESSL, C., AND PLATZNER, M. 2005. System-Level performance evaluation of reconfigurable pro-
cessors. Microprocess. Microsyst. 29, 2-3, 63–75.

FORTUNE, S. AND WYLLIE, J. 1978. Parallelism in random access machines. In Proceedings of the 10th ACM
Symposium on Theory of Computing. 114–118.

FRANK, M. I., AGARWAL, A., AND VERNON, M. K. 1997. LoPC: Modeling contention in parallel algorithms. In
Proceedings of the 6th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPOPP). ACM, 276–287.

FU, W. AND COMPTON, K. 2006. A simulation platform for reconfigurable computing research. In Proceedings
of the International Conference on Field Programmable Logic and Applications (FPL). 1–7.

GONZALEZ, R. C. AND WOODS, R. E. 2002. Digital Image Processing, 2nd ed. Prentice-Hall, Upper Saddle River,
NJ.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 3, Article 27, Publication date: August 2011.



27:28 B. Holland et al.

GROBELNY, E., BUENO, D., TROXEL, I., GEORGE, A., AND VETTER, J. 2007. FASE: A framework for scalable per-
formance prediction of hpc systems and applications. Simul. Trans. Soc. Model. Simul. Int. 83, 10,
721–745.

HERBORDT, M. C., VANCOURT, T., GU, Y., SUKHWANI, B., CONTI, A., MODEL, J., AND DISABELLO, D. 2007. Achieving
high performance with FPGA-based computing. IEEE Comput. 40, 3, 50–57.

HOLLAND, B., NAGARAJAN, K., AND GEORGE, A. D. 2009. RAT: RC amenability test for rapid performance predic-
tion. ACM Trans. Reconfig. Tech. Syst. 1, 4, 22:1–22:31.

JACOBS, A., CONGER, C., AND GEORGE, A. D. 2008. Multiparadigm space processing for hyperspectral imaging.
In Proceedings of the IEEE Aerospace Conference.

KAUL, M., VEMURI, R., GOVINDARAJAN, S., AND OUAISS, I. 1999. An automated temporal partitioning and loop
fission approach for FPGA based reconfigurable synthesis of DSP applications. In Proceedings of the
36th ACM/IEEE Design Automation Conference (DAC). ACM, New York, 616–622.

KESAVAN, R., BONDALAPATI, K., PANDA, D., AND P, D. K. 1997. Multicast on irregular switch-based networks
with wormhole routing. In Proceedings of the International Symposium on High Performance Computer
Architecture (HPCA). 48–57.

KIELMANN, T., BAL, H. E., AND GORLATCH, S. 1999. Bandwidth-Efficient collective communication for clustered
wide area systems. In Proceedings of the International Parallel and Distributed Processing Symposium
(IPDPS). 492–499.

KIELMANN, T., BAL, H. E., AND VERSTOEP, K. 2000. Fast measurement of LogP parameters for message passing
platforms. In Proceedings of the 15th IPDPS Workshop on Parallel and Distributed Processing. 1176–
1183.

LASTOVETSKY, A., MKWAWA, I.-H., AND O’FLYNN, M. 2006. An accurate communication model of a heterogenous
cluster based on a switch-enabled ethernet network. In Proceedings of the 12th IEEE International
Conference on Parallel and Distributed Systems (ICPADS).

MITRIONICS. 2008. Low power hybrid computing for efficient software acceleration.
http://www.mitrion.com/?document=Hybrid-Computing-Whitepaper.pdf.

NAGARAJAN, K., HOLLAND, B., GEORGE, A., SLATTON, K. C., AND LAM, H. 2009. Accelerating machine-learning
algorithms on FPGAs using pattern-based decomposition. J. Sig. Process. Syst.

NELSON, M., HUMPHREY, W., GURSOY, A., DALKE, A., KALÉ, L., SKEEL, R. D., AND SCHULTEN, K. 1996. NAMD - A
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