
Comparative Analysis of HPC and Accelerator
Devices: Computation, Memory, I/O, and Power

Justin Richardson, Steven Fingulin, Diwakar Raghunathan, Chris Massie, Alan George, Herman Lam

NSF Center for High-Performance Reconfigurable Computing (CHREC)
ECE Department, University of Florida

Gainesville, FL 32611
Email: {richardson,fingulin,raghunathan,massie,george,hlam}@chrec.org

Abstract—The computing market constantly experiences the
introduction of new devices, architectures, and enhancements
to existing ones. Due to the number and diversity of processor
and accelerator devices available, it is important to be able to
objectively compare them based upon their capabilities regarding
computation, I/O, power, and memory interfacing. This paper
presents an extension to our existing suite of metrics to quantify
additional characteristics of devices and highlight tradeoffs that
exist between architectures and specific products. These metrics
are applied to a large group of modern devices to evaluate
their computational density, power consumption, I/O bandwidth,
internal memory bandwidth, and external memory bandwidth.

I. INTRODUCTION

RECENT developments in computing device technologies
are pushing devices to multi- and many-core architec-

tures to exploit explicit parallelism rather than instruction-level
parallelism. It has become more important to be able to fairly
compare the disparate devices that enter the market, which
incorporate both fixed and reconfigurable logic, both between
and within respective architectural classifications. Performance
and power metrics are needed to objectively compare devices
in both high-performance computing (HPC) and embedded
computing to understand device tradeoffs. These metrics will
assist application scientists with algorithm-guided device se-
lection early in the development cycle.

A modern computational device, regardless of whether or
not it is an HPC or accelerator device, has several key
components that can be used to characterize the device. Fig. 1
shows how four key metrics are related in the characterization
of a device for performance comparison.

The first common component in this framework is the
computational cores on the device. With the modern multi-
and many-core push, we are seeing an increasing number of
cores on a device. These cores can take many shapes and sizes
but in the end all work to perform the computations that the
device uses to complete its tasks. The computational capacity
of these cores can be used to compare differing devices if
they are computing the same task. Computational density (CD)
and its power-aware version, computational density per watt

978-1-4244-9517-7/10/$26.00 c© 2010 IEEE

Fig. 1. Device Characterization Framework and Metrics

(CD/W) are metrics for comparing devices based on these
computational units.

Another major type of component typically found within a
device is internal memory units. These can be distinguished
because they are very close to the computational cores and are
the lowest in the memory hierarchy. The bandwidth between
these memory units and the computational cores will deter-
mine how many operations can be fed into the computational
units and thus can be a limiting factor in performance. The
internal memory bandwidth (IMB) metric is used to compare
various devices based on how many operations can be sus-
tained by the computational cores for a given application’s
needs.

The third major component found in modern computational
devices starts to move data outside the device. Memory units
inside the device are supplemented with external memory
units. These units are not as close to the computational cores as
the internal memory units, but they are typically much larger
and hold application instructions and data ready to be quickly
passed into the device for use. The bandwidth of these external
memory units is a key metric for application performance.
With an increasing number of cores being placed on a device,
it has become far more important to keep them fed with data

as fast as possible. External memory bandwidth (EMB) is a
metric that is very useful for quantifying this trait.

The final major component that this paper addresses is the
farthest line of communication from the computational cores,
the input-output (I/O) ports. These ports allow information,
usually data, to be passed from sensors, controls, or any other
of a variety of sources into and out of the computational
cores. These connections range from slow serial connections
for debugging to high-speed serial and parallel communication
standards. The ability of a device to keep acquiring and
processing meaningful data is key to its ability to perform well
in today’s environment. The input-output bandwidth (IOB)
metric is a key metric for comparing devices in environments
where large amounts of continuous data processing is required.
IOB and the other metrics work together to help compare a set
of disparate devices and allow device users to consider their
needs in a device before spending significant resources into
development.

This paper extends our previous work [1] by introducing
two new device metrics. In addition to the original set of
metrics defined in [1] for computational density (CD), CD
per watt (CD/W) and internal memory bandwidth (IMB),
new metrics for off-chip bandwidth are introduced in this
paper: external memory bandwidth (EMB) and I/O bandwidth
(IOB). These metrics are used to characterize how well each
device can interact with the rest of the system. In Section III,
the original set of metrics is briefly reviewed and the new
metrics are defined in more detail. This paper also extends
our previous work by evaluating a set of new devices and
new device categories (such as digital signal processors (DSPs)
and NVIDIA’s Ion platform) based on the complete suite of
device metrics (the previous metrics along with EMB and
IOB). Results described in Section IV will show interesting
outcomes in terms of computational density per watt and a
trend of rapidly increasing I/O capabilities of devices. Section
V provides a summary and conclusions.

II. RELATED WORK

This work evaluates the computational performance of the
two major categories of processing devices: Fixed (FMC) and
Reconfigurable (RMC) Multi- or Many-Core devices. Dehon
[2] relates the number of processing elements, their width,
and clock frequency to performance, normalized by die area
and process technology. Dehon’s paper proposed a metric
similar to the bit-level computational density we use in our
work. Our previous work in Williams et al. [1] introduced
CD, a metric which is used to determine the computational
capability of a device and compare it to other devices, both
within and between architectural categories at varying levels
of precision such as floating-point, integer, and bit-level. Our
work is a direct extension of these metrics by introducing
newer bandwidth metrics and adding newer devices to perform
a comprehensive evaluation.

Bandwidth metrics form an important part of the device
metrics which we introduce. Sohi and Franklin [3] illustrate

how low cache bandwidth hampers system performance es-
pecially when instruction issuing or parallel processing ca-
pabilities increase. Saulsbury et al. [4] suggest that integrat-
ing simple single-scalar processors tightly with memory can
outperform high-end superscalar processors with traditional
memory hierarchies and bandwidth limitations. Burger et al.
[5] shows that memory bandwidth is a major performance
bottleneck on many benchmarks due to latency-hiding tech-
niques. The operand transfer rate from external memory and
the effectiveness of on-chip memory in reusing operands are
increasingly having a bigger impact on system performance.

These works have helped to lay the groundwork for this
expansion and extension of device metrics and have given a
glimpse into the vast landscape of fair device characterization
and comparison. In the next section, this paper reviews the
specific methodologies used in the CD, CD/W, and IMB
metrics and introduces new methodologies for our external
extensions of these metrics.

III. METHODOLOGY

A. Review of CD and CD/W

The CD metric [1] is used to determine the computational
capability of a device and compare it to other devices, both
within and between architectural categories at varying levels
of precision. A device’s capability for computation is charac-
terized by its integer CD, floating-point CD, and bit-level CD
at various sizes.

As in [1], we use MC to collectively refer to multi-
core and many-core devices, which have at least two major
computational components in a single package; Fixed MC
(FMC) and Reconfigurable MC (RMC) are the two primary
classes. FMC devices have a fixed hardware structure that
cannot be changed after fabrication. RMC devices can change
their logical hardware structure after fabrication to adapt to
changing problem requirements. The reader should refer to [1]
for a more detailed discussion on the reconfigurability factors
that are used to classify a device as either FMC or RMC.

To determine the integer CD for FMC and coarse-grained
RMC devices, Eq. 1 is used, where Ni is the number of
integer execution units or the number of integer instructions
that can be issued simultaneously of element type i, CPIi
is the average number of clock cycles per integer instruction
for element type i (such as DSP, ALU, or LUT resources),
and f is the operating frequency of the device. The subscript
i represents the type of computational element within the
device that is under analysis. The summation over i, in
this equation, takes into account architectures that support
vector/SIMD integer instructions by including different types
of computational components. We assume that only addition
and multiplication operations are considered, and the number
of parallel operations is maximized while keeping the number
of additions and multiplications equal. When calculating the
number of parallel operations supported by a device, we
consider a hardware-supported, multiply-accumulate operation
as only one operation.

CDint = f ×
∑
i

Ni

CPIi
(1)

For FPGAs, integer CD is determined using achievable
frequency and the number of parallel operations of a fully
utilized logic fabric and DSP resources. A single integer
core for both addition and multiplication is instantiated on
an FPGA using vendor IP cores. For each core, the resource
utilization along with the maximum achievable frequency is
determined from the vendor tools. This information allows
the number of simultaneous cores that can be instantiated on
a device to be determined, utilizing all available DSP and
logic resources and assuming 15% logic overhead for steering
logic and I/O interfacing. Again, only addition and multipli-
cation operations are considered and balanced. The number of
parallel operations is multiplied by the maximum achievable
frequency, limited by the lowest between multiplication and
addition. Based on the amount of available on-chip memory
resources, the number of parallel operations is limited in order
to incorporate memory bandwidth or on-chip RAM resources
for data buffering, which can have a limiting effect on the peak
CD. The on-chip memory needs to allocate two operands per
operation for memory-sustainable CD, which is the CD used
throughout this paper. This provision ensures that the number
of parallel operations a device can support is limited by the
realistic ability of the internal memory structure to provide
data for each parallel operation.

To illustrate the process in which CD is calculated for a
device, a Virtex-6 SX475T FPGA can be analyzed for integer
performance. For example, when calculating the 32-bit integer
(i.e. Int32) CD for the Virtex-6 SX475T, the Int32 IP cores of
adders and multipliers are first generated with tools supplied
by the vendor. One of each design is synthesized and simulated
on the FPGA. Using the utilization report, it can be determined
that the fabric could support 1937 operations in parallel, half
multiplies and half additions. From [6] we see that the block
RAMs of the fabric can only supply 1064 pairs of operands
each clock cycle. Since this amount is less than the maximum
number of parallel operations, 1064 is the maximum amount
of memory-sustainable operations that can be computed in
parallel. Using the timing report generated from the design of
multipliers and adders, the operating frequency is determined
to be 296 MHz. Since each operation takes one cycle, CPI is 1,
and we are computing 1064 operations in parallel. Using Eq. 1,
the memory-sustainable Int32 CD for the device is calculated
as:

CDint = 296 MHz× 1064 ops = 314.944 GOPS (2)

The CD per watt (CD/W) metric is calculated by taking
the CD for each level of parallelism and dividing by the
power consumption at that level of parallelism. For FMC, the
maximum power is used. For RMC, power is assumed to scale
linearly with resource utilization and achievable frequency.
Floating-point CD and CD/W are determined using a similar
procedure as integer CD and CD/W. For a more detailed
methodology of CD and CD/W, please refer to [1] [7] [8].

B. Review of IMB
IMB is used to measure the on-chip memory interface

capabilities. It quantifies the memory performance of a system
by measuring the rate at which data can be transferred from on-
chip memories to the processing elements. IMB is important
because memory often becomes a bottleneck, limiting the
amount of operands supplied to the processing elements of
the system. It is defined separately for cache-based systems
(CBS) and block-based systems (BBS). Eq. 3 from [1] is used
to calculate the IMB for BBS.

IMBblock =
∑
i

Ni × Pi ×Wi × fi
8× CPAi

(3)

In Eq. 3, Ni is the amount of block memories of type i,
Wi is the data width, Pi is the amount of ports for memory of
type i, CPAi is the number of cycles per access to memory,
division by 8 is to convert from bits per second to bytes
per second, and fi is the frequency of the device, or if the
frequency is not constant, as in FPGAs, then it is variable
up to the operating frequency of the design. Once again, the
subscript i denotes memory type to support devices that have
more than one type of internal memory.

In CBS, multiple separate levels of cache may exist, and
IMB is calculated separately for each, so that the hit-rate con-
sideration is only included per level of cache. They also feature
hardware to determine associativity, line size, coherency pro-
tocol, replacement algorithms, etc. These parameters affect the
access times of the cache, and are addressed by the frequency
and cycles per access variables. The equation used to calculate
IMB for CBS is given from [1] as follows:

IMBcache = % hitrate×
∑
i

Ni × Pi ×Wi × fi
8× CPAi

(4)

In Eq. 4, Ni is the number of block memories of type i,
Wi is the data width, Pi is the number of ports for memory of
type i, CPAi is the number of cycles per access to memory,
division by 8 is to convert from bits to bytes per second, and
fi is the frequency of the device.

IMB does not account for register access times; instead it
is assumed that these are internal components separate from
block or cache memory. Registers are usually quickly accessed
and do not hinder performance. IMB only seeks to evaluate
the rate at which processing elements have all the necessary
operands, and it is assumed that registers do not limit this rate.

To aid the understanding of this calculation, an example
using the Virtex-6 SX475T is presented. On the Virtex-6
SX475T, there are 1064 36Kb block RAMs. Each of these has
a 72-bit port width, and simple dual-port functionality. The
maximum operating frequency is used, which is 600 MHz.
Since all of these BRAMs are the same, the summation is
over this single set. Using Eq. 3, the IMB for the device is
calculated as:

IMBblock =
1064× 2× 72× 600 MHz

8× 1
= 7776 GB/s (5)

C. EMB

EMB is proposed and introduced in this paper to describe
the total bandwidth achievable to external memory from a
device or vice-versa. EMB only includes the bandwidth of
usable data, so extra bits used for error-correction coding
(ECC) are not included. EMB and IOB (detailed in Section
III-D), are introduced to characterize the capability of a device
to interface with the rest of the system. EMB does not
include I/O bandwidth or network-controller bandwidth as
these are typically at the cost of a user-defined interfacing
implementation for an application. EMB is defined only for
directly attached memory. Although a device could access
another device’s memory through an I/O port, this is not
considered in the calculation of EMB.

For FMC and coarse-grained RMC devices with built-in
memory controllers, EMB is the sum of the concurrent EMB
provided by all memory controllers. For devices that use a
front-side bus (FSB), the entire bus is allocated for memory
bandwidth. Otherwise, the external datapath width and the
switching frequency are used to determine EMB. To determine
EMB for FPGAs, the methodology employed is similar to
determining CD for FPGAs. A single memory controller is
instantiated on the FPGA using a vendor IP core. The resource
utilization is determined along with the maximum-achievable
memory interface frequency. The number of simultaneous
cores that can be instantiated utilizing all available resources
are determined, assuming 15% logic overhead for steering
logic and I/O interfacing. Limiting factors include the number
of LUTs, ALMs/Slices, and the number of bonded IOBs.

To get a better understanding of how to calculate EMB, a
step by step calculation for Virtex-6 SX475T is as follows.
A single DDR2 memory-controller IP core is instantiated
on the chip and the resource utilization is obtained. The
maximum number of DDR2 controllers that can be instantiated
simultaneously is calculated by dividing the available number
of bonded IOBs (840) by the number of IOBs used (121) by
a single memory controller. The memory-interface frequency
(533 MHz) is multiplied with the memory-interface width (64
bits) using the appropriate units, to get the EMB of one DDR2
controller as 8.528 GB/s. This rate is in-turn multiplied by
6, the maximum number of DDR2 controllers instantiated to
calculate a maximum EMB of 51.168 GB/s.

D. IOB

IOB is proposed here and used to describe the total I/O ca-
pabilities of a device, not just the external memory bandwidth.
Devices with dedicated ports for interfacing with memory
often also have additional ports for data input/output, which
are not considered in the EMB calculation. Devices may also
have higher bandwidth capabilities on a port that shares all or
some pins with ones used for a memory interface, such as is
the case for FPGAs. An I/O bandwidth metric describes the
maximum data throughput of a device that EMB omits or a
higher total bandwidth that is possible on a device.

IOB is calculated as the total aggregate sum of the band-
width provided by all inputs and outputs that can operate

concurrently. The highest bandwidth ports are used when there
is overlap or non-concurrency. Eq. 6 shows the aggregation of
I/O ports based on i, where i represents the different types
of I/O ports that can be used concurrently. Line encoders
can be used to encode data into a different format which
benefits transmission for reasons other than data throughput.
Various schemes such as 8b/10b or 64b/66b, can be employed
that have varying overheads on the line rate. If an encoding
scheme is used, such as 8b/10b, then αi represents the fraction
of IOB that is available for data. For the case of 8b/10b
encoding, we assume that fraction is 0.80. The aggregate sum
is then added to the input/output bandwidth of any dedicated
external memory controllers available on the device (denoted
as IOBmem).

IOB = IOBmem +
∑
i

αi × IOBi (6)

There are numerous ways to characterize the I/O of a device.
In single-ended I/O, one signal is made between two ICs and
compared to a specified voltage range or to a reference voltage.
In differential signaling, two signals are made between two
ICs and the signals are compared to each other to determine
the logic value [9]. These two signaling methods can have
differing bandwidths, even when comparing two single-ended
signals to a single differential signaling pair. When studying
devices’ IOB, it is important to use fair comparisons and keep
all parameters equal when direct comparisons are desired.

For an example, consider the Nvidia Tesla C1060 GPU.
There are two interfaces for IO on this processor, the memory
interface and the PCIe bus. To compute IOB, the aggregate
is taken of both interfaces and the calculations are shown in
Eqs. 7-9. It has 4 GB of dedicated GDDR3 memory clocked
at 800 MHz on a 512-bit interface. The PCIe interface has a
500 MB/s transfer rate for each lane in each direction.

IOBmem = 800 MHz× (512 bits/8)× 2 = 102.4 GB/s (7)

IOBPCIe = 500 MB/s× 16 Lanes× 2 = 16 GB/s (8)

IOB = IOBmem + 1× IOBPCIe = 118.4 GB/s (9)

IV. RESULTS AND ANALYSIS

In this section we focus on reporting trends observed
amongst various devices when the suite of metrics is applied
to them. For our study, a full range of results were collected,
including Bit, Int16, Int32, Single-Precision Floating Point
(SPFP) and Double-Precision Floating Point (DPFP) forms
of CD and CD/W, as well as IMB, EMB, and IOB for the
devices shown in the following figures. Due to the large
number of devices which have been included in our study,
we illustrate the more interesting cases through graphs in this
section and have reported all the other metrics in expansive
tables in the Appendix. Many of these devices are new to this
paper and were not included in [1]. Only selected metrics are
presented in detail: Int16 CD/W for RMC and FMC devices;
SPFP CD/W for RMC and FMC devices; EMB for FMC
and RMC devices; and IOB for FMC and RMC devices.

The FMC devices highlighted in this study, listed in Fig.
3, include a range of CPUs, DSPs, and GPUs. The RMC
devices, listed in Fig. 2, include FPGAs of varying types,
the Tilera TILE64 processor, and the PACT XPP-3c. In this
study the maximum level of exploitable parallelism of devices
was calculated and the performance of devices is compared
by varying the level of parallelism. This means that the clock
frequency is recalculated for each metric (i.e. Int16 vs Int32)
and varies based on which metric is being calculated.

A. CD and CD/W Metrics
Fig. 2 shows Int16 and SPFP forms of CD/W for RMC

devices. The bars are grouped by device, one representing
Int16 precision and the other SPFP. The data labels above
each bar denote the maximum number of parallel operations
that each device is capable of sustaining at the given precision.
Some interesting results can be observed from the figure. The
EP4SE530 has the highest memory-sustainable Int16 CD/W
(54.07 GOPS/Watt) due to the large logic fabric and the high
amount of on-chip memory. The Virtex-6 LX760 has the high-
est memory-sustainable SPFP CD/W (10.27 GOPS/Watt). The
PACT XPP-3c has the largest number of parallel operations
(348) of non-FPGA devices studied and has higher Int16
CD/W (16.24 GOPS/Watt) than all the other coarse-grained
RMC devices such as the TILE64 even though it has no SPFP
support.

Fig. 2. CD/W for RMC devices

Fig. 3 shows Int16 and SPFP forms of CD/W for FMC
devices in the same format as Fig. 2. The TI-OMAP device has
the highest Int16 CD/W ratio (7.72 GOPS/Watt). Even though
this device does not have a large number of computational
resources, it achieves high CD/W due to its low power con-
sumption. Another trend visible from this figure is significantly
lower CD/W numbers for the FMC devices as compared to
RMC which can be directly attributed to the presence of a vast
number of computational resources on a FPGA and the higher
power consumption of FMC devices. The Virtex-6 LX760 has
the greatest unconstrained Int16 CD (3443.2 GOPS), but it is
limited by its IMB, which significantly lowers the memory-
sustainable CD/W to 48.37 GOPS/Watt.

For SPFP CD/W, the results show that most RMC devices
perform better than GPU devices; this is because GPU devices

have high power consumption which offsets the benefits of its
superior SPFP performance. For high levels of parallelism,
the GeForce GTX480 has the highest SPFP CD/W (4.12
GOPS/Watt) of the FMC devices studied. Although high-
end FPGAs in the Stratix IV and Virtex-6 families have a
much larger number of parallel operations than the GeForce
GTX480, the achievable frequency is low compared to the
operating frequency of the GTX480. However, the FPGAs
mentioned have a CD/W that is 3x larger than the GTX480.
Interestingly, the GTX285 does not perform nearly as well as
the GTX480 even though they are of the same family due to
the high power consumption of the device and lower number of
processors. Similarly, the Core i7-980X (1.84 GOPS/Watt) and
Itanium 9350 (1.18 GOPS/Watt) have high CD performance,
but are not power-efficient. The TI OMAP-L137 DSP uses
very low power which allows it to perform well in CD/W,
despite it having the lowest CD of the devices studied.

For a complete list of devices with their respective CD
values, see Table V in the Appendix. Table II in the Appendix,
reports CD for FPGA devices for Int16 and Int32 precisions.
This table is included to point out the difference in frequencies
and power usage over various precisions for FPGAs.

Fig. 3. CD/W for FMC devices

B. EMB Results

Fig. 4 shows EMB for key RMC devices in GB/s. The
Virtex-6 LX760 has the highest EMB (68.2 GB/s) of the
devices studied due to the fact that the LX760 has a higher
number of bonded IOBs than corresponding devices. These
bonded IOBs allow the simultaneous instantiation of a higher
number of DDR2 controllers resulting in a higher EMB. The
numbers above each bar in the graph show the remaining
logic utilization after the instantiation of memory controllers
required to attain maximum EMB. These percentages illustrate
the fact that a very low logic overhead is required to have
multiple memory controllers and hence attain a higher EMB.
Interestingly it is seen that most of the devices require almost
no logic utilization after instantiating their memory controllers

whereas the Virtex-4 SX55 occupies almost 40 % of the chip
for its two memory controllers.

Fig. 4. EMB for FPGA Devices

Fig. 5 shows EMB for FMC devices in GB/s. As expected,
GPU devices perform the best amongst all categories of de-
vices. GPUs are designed to handle highly parallel applications
which require large sets of streaming data. This design makes
it necessary to have fast and wide memory buses that result
in high EMB. The Nvidia GeForce GTX480 has the highest
EMB (177.4 GB/s) amongst all devices. CPU devices typically
handle smaller applications using smaller sets of data, hence
they have a lesser EMB. The Intel Xeon X7560 has the highest
EMB (34.11 GB/s) amongst the non-GPU FMC devices,
which is due to the addition of the high-bandwidth Intel Quick
Path Interconnect (QPI).

Fig. 5. EMB for FMC Devices

C. IOB Results

Fig. 6 shows IOB for both FMC and RMC devices in GB/s.
The package of an FPGA is shown in parenthesis. The FPGAs

assume differential signaling and an 8b/10b encoding scheme,
which has an overhead of 20 percent, in order to compare
the I/O data rates of FMC devices to the I/O line rates of
the FPGAs. The I/O bandwidth shown consists of equal parts
input and output. It should be noted that an unbalanced I/O
can have an effect on the total I/O achievable by a device since
not all channels are bidirectional and there may be an unequal
number of input and output ports.

The GeForce GTX 480 has the highest IOB (193.4 GB/s)
of the devices studied, followed by the GTX 285 (175 GB/s).
GPUs are optimized for 3D rendering, which requires pro-
cessing on large working sets of data. This form of data
processing makes having a wide and fast memory bus a
necessity to achieve high performance. Comparing against
microprocessors, the amount of data that needs to be processed
is too large to fit in the cache of a CPU. The working set of
applications that typically run on CPUs have random memory
access patterns and are smaller than those that run on a GPU,
requiring many frequent fetches from off-chip memory. CPU
memory interfaces are shifting from buses to a very fast
group of serial data lines communicating via packets with
much lower latency, such as HyperTransport or Intel’s QPI. As
CPUs have been increasing in the number of cores and IOB,
streaming applications may be more effectively parallelized on
them.

V. CONCLUSIONS

We have enhanced our existing methodology for device
metrics to assess the off-chip memory bandwidth of devices,
using external memory bandwidth (EMB) and I/O bandwidth
(IOB). Developers can use the device metrics described in
this paper and in [1] to assist in algorithm-guided device
selection early in the development cycle and to understand
device tradeoffs. We have also presented a study of a new
and diverse set of devices to determine their computational
capabilities and off-chip bandwidths. There is a large variation
in the resulting data that arises when these metrics are used
to study disparate accelerator technologies.

A few interesting trends observed by evaluating the data
include FPGA devices showing the highest CD and CD/W
for bit and integer operations. This trend can be attributed
to the large fabrics and amount of LUTs enabling FPGAs
to achieve massive amounts of parallelism. As observed in
Section IV, GPUs tend to perform well in most categories;
however, they stand out in floating-point calculations due to
the high clock rates of their shader units and the sheer number
of them (GTX480 has the highest SPFP CD: 1031.136 GOPS).
CPUs also perform well in floating-point, especially double-
precision. Many of the other devices have to expend extra
resources or clock cycles for DPFP calculations, however
modern CPUs have dedicated functional units for that purpose.
Combined with the highest clock speeds of any of the studied
devices, they perform DPFP operations well.

The EMB and IOB results show that GPUs have the high-
est external bandwidth, with very wide memory controllers
working at very high frequencies. FPGAs also perform well,

Fig. 6. IOB data for selected devices

but their operating frequency keeps them from matching GPU
memory bandwidth. Some of the newer CPUs, particularly the
Intel Core i7-980x, achieve very high IOB scores as compared
to other CPUs. This is due to the shift from the FSB connection
to QPI. Using a point-to-point interconnect allows a much
higher clock rate than a shared bus, providing much higher
data bandwidth.

Future work is planned to allow for more user defined
parameters when calculating certain metrics. These parameters
include the addition of more avalible operations and varying
the ratio of operations when determining CD. This expansion
will allow users to more closely determine which device
would fit their algorithm based upon the required calculations.
Another planned extension of these metrics includes the pa-
rameterization of IOB and EMB metrics. Our goal is to allow
users to define and customize the individual attributes used to
calculate each metric to best suit their application.

VI. ACKNOWLEDGMENTS

This work was supported in part by the I/UCRC Program
of the National Science Foundation under Grant No. EEC-
0642422. The authors gratefully acknowledge vendor equip-
ment and/or tools provided by various vendors that helped
make this work possible.

REFERENCES

[1] J. Williams, A. George, J. Richardson, K. Gosrani, C. Massie, and
H. Lam, “Characterization of fixed and reconfigurable multi-core devices
for application acceleration,” ACM Transactions on Reconfigurable Tech-
nology and Systems (TRETS), vol. 3, no. 4, 2011.

[2] A. DeHon, “Reconfigurable architectures for general-purpose computing,”
Massachusetts Institute of Technology, Cambridge, MA, USA, Tech.
Rep., 1996.

[3] G. S. Sohi and M. Franklin, “High-bandwidth data memory systems for
superscalar processors,” SIGOPS Operating Systems Review, vol. 25, no.
Special Issue, pp. 53–62, 1991.

[4] A. Saulsbury, F. Pong, and A. Nowatzyk, “Missing the memory wall: the
case for processor/memory integration,” in ISCA ’96: Proceedings of the
23rd Annual International Symposium on Computer Architecture. New
York, NY, USA: ACM, 1996, pp. 90–101.

[5] D. Burger, J. R. Goodman, and A. Kägi, “Memory bandwidth limitations
of future microprocessors,” in ISCA ’96: Proceedings of the 23rd Annual
International Symposium on Computer Architecture. New York, NY,
USA: ACM, 1996, pp. 78–89.

[6] Virtex-6 Family Overview, Xilinx, Inc., 2008.
[7] J. Williams, A. George, J. Richardson, K. Gosrani, and S. Suresh,

“Computational density of fixed and reconfigurable multi-core devices
for application acceleration,” Proc. of Reconfigurable Systems Summer
Institute 2008 (RSSI), July 7-10, 2008.

[8] ——, “Fixed and reconfigurable multi-core device characterization for
hpec,” Proc. of High-Performance Embedded Computing Workshop
(HPEC), Sep. 23-25, 2008.

[9] A. Athavale and C. Christensen, High-Speed Serial I/O Made Simple, A
Designers’ Guide, with FPGA Applications, Xilinx Connectivity Solu-
tions, April 2005.

VII. APPENDIX: ADDITIONAL DATA

TABLE I
EMB OF NON-FPGA DEVICES

TABLE II
CD OF FPGA DEVICES SHOWING FREQUENCY AND POWER VARIATIONS

TABLE III
IMB FOR BBS OVER A RANGE OF ACHIEVABLE FREQUENCIES (GB/S)

TABLE IV
IMB FOR CBS FOR VARIOUS HIT RATES (GB/S)

TABLE V
MEMORY-SUSTAINABLE CD ACROSS PRECISIONS

