
SCF: A Device- and Language-Independent Task Coordination

Framework for Reconfigurable, Heterogeneous Systems
V. Aggarwal, R. Garcia, G. Stitt, A. George, H. Lam

NSF Center for High-Performance Reconfigurable Computing (CHREC)

ECE Department, University of Florida, Gainesville, FL 32611-6200

 {aggarwal, garcia, gstitt, george, hlam}@chrec.org

ABSTRACT

Heterogeneous computing systems comprised of accelerators such
as FPGAs, GPUs, and Cell processors coupled with standard
microprocessors are becoming an increasingly popular solution to
building future computing systems. Although programming
languages and tools have evolved to simplify device-level design,
programming such systems is still difficult and time-consuming
due to system-level challenges involving synchronization and
communication between heterogeneous devices, which currently
require ad-hoc solutions. To solve this problem, this paper
presents the System-Level Coordination Framework (SCF), which
enables transparent communication and synchronization between
tasks running on heterogeneous processing devices in the system.
By hiding low-level architectural details from the application
designer, SCF can improve application development productivity,
provide higher levels of application portability, and offer rapid
design-space exploration of different task/device mappings. In
addition, SCF enables custom communication synthesis, which
can provide performance improvements over generic solutions
employed previously.

Categories and Subject Descriptors

D.2.12 [Software Engineering]: Interoperability – interface

definition languages

General Terms

Performance, Design, Languages

Keywords

Reconfigurable computing, heterogeneous computing, commu-
nication, coordination, productivity, portability, accelerators.

1. INTRODUCTION
The power bottleneck created by high clock frequencies has
forced computer architects to consider alternative methods for
increasing system performance, focusing on parallel and often
heterogeneous architectures [1]. Systems from domains ranging
from embedded systems [2][3] to high-performance computing
[4][6] now increasingly combine microprocessors (which may
contain heterogeneous cores [7]) with devices such as field-

programmable gate arrays (FPGAs), graphics processing units
(GPUs), and other devices [7-13]. Numerous studies have shown
that accelerator-based heterogeneous systems can obtain
performance improvements ranging from 10× [14] to more than
1000× [15] compared to microprocessors, while also improving
energy efficiency [16].

Although heterogeneous systems have numerous performance and
energy advantages, one significant problem that has limited their
use is increased application design complexity. As opposed to
standard software design, specialized devices require designer
expertise to specify a custom design, often using multiple
languages and tools. As an example, a designer for a system with
an FPGA accelerator will likely have to: (a) perform HW/SW
partitioning to map program regions to the microprocessor or
FPGA; (b) create a custom circuit; (c) describe the circuit in a
hardware description language; (d) describe the software in a
high-level programming language; (e) establish communication
between the microprocessor and FPGA using vendor-specific
methods; (f) write code to convert between data formats on each
source and destination device; (g) synthesize, place and route the
circuit using CAD tools; and (h) compile the software into a
binary executable. Simplifying this complicated process has been
the focus of a tremendous amount of recent design automation
and CAD research involving languages, high-level synthesis tools,
and hardware/software partitioning tools.

Although language and tool research continues to simplify device-
level design for specialized devices, heterogeneous systems have
system-level design issues that have received limited attention.
Such is the case with communication and synchronization (herein
collectively referred to as coordination) between heterogeneous
processing devices, which is often performed in an ad-hoc
manner, requiring significant coding modifications for porting an
application to a different system, or even migrating parts of the
application onto different devices of the same system.

Ideally, code for a task running on a specialized device in a
heterogeneous system could be written independently of the other
devices, tasks, and of the communication architecture used by the
system. To achieve such functionality, we introduce the System-
Level Coordination Framework (SCF), which simplifies
application design for heterogeneous systems by enabling
transparent communication and synchronization between tasks
running on different devices. SCF consists of a library of
message-passing coordination primitives suitable for potentially
any language or device, a framework that allows an application to
be expressed as a static task-graph and each task of an application
to be defined in potentially any language, and a set of tools that
can create customized communication methods for a given system
architecture based on the mapping of tasks to devices. With SCF,
many low-level architectural details are hidden from the
application designer, allowing them to simply define each task in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
HPRCTA'09, November 15, 2009, Portland, Oregon
Copyright © 2009 ACM 978-1-60558-721-9/09/11... $10.00

a language of their choice, while specifying coordination between
tasks using message-passing primitives. Furthermore, SCF
enables rapid exploration of different task-to-device mappings
without modifications to task definition code, often resulting in
both improved designer productivity and system performance.
Our results demonstrate that approximately 5× productivity
improvement is achievable for the case study featured in this work
with minimal performance overheads.

The remainder of the paper is formatted as follows. Section 2
discusses previous work. Section 3 provides an overview of SCF.
In Section 4, we discuss research challenges involved in enabling
SCF and the set of tools associated with SCF. Section 5 evaluates
the framework through a prototype of SCF for our experimental
system and presents results. Finally, Section 6 provides a
summary of conclusions and directions for future work.

2. PREVIOUS WORK
Conventionally, developers of parallel programs have performed
coordination using message-passing libraries such as PVM [17],
MPI [18], etc. However, these techniques are typically limited to
homogeneous systems of microprocessors connected via
commodity interconnect technology (e.g., Ethernet, InfiniBand).
In recent years, researchers have extended message passing to a
heterogeneous mix of microprocessors connected via different
network technologies [19-21]. Although heterogeneity is
supported by these libraries, it has been limited to only a variety
of microprocessors. SCF extends this concept by supporting
heterogeneity between microprocessors and potentially any type
of specialized accelerator devices.

SCF shares similar concepts with other academic projects that aim
to improve designer productivity for heterogeneous systems.
Ptolemy [22] studies modeling, simulation, and design of
concurrent real-time embedded systems based on different models
of computation. SCF also assists with the design of applications
using different models of computation by enabling designers to

define tasks in any language, and then using message passing to
communicate between tasks.

Auto-Pipe and the X language presented in [23] provide a
framework for designing pipelined applications distributed across
resources of a heterogeneous system. Although SCF adopts a
similar approach, it extends this concept to allow a designer to
specify applications with arbitrary task-graphs. In addition, SCF
enables custom communication synthesis to specialize the
communication infrastructure to the capabilities of each device
and platform in a system.

TMD-MPI [24] extends the MPI library to support message
passing between heterogeneous devices, such as a mix of FPGAs
and microprocessors. Although conceptually similar, SCF has
several novel aspects. For instance, TMD-MPI uses a dynamic,
task-graph representation of an application and a communication-
architecture based on packet-switched, Network-On-Chip (NoC)
design. In contrast, applications are defined as static task graphs
in SCF, which because of a known mapping can yield designs
which provide improved performance.

Numerous high-level synthesis and hardware/software partitioning
approaches automatically generate FPGA circuits from high-level
code [25][29]. By contrast, SCF allows tasks to be defined using
multiple languages and tools which aids in efficient use of the
unique resources of each device in a heterogeneous system.

Recently, much effort has been channeled towards standardizing
the interface between microprocessors and enhanced devices such
as FPGAs [26] and GPUs [27]. Focus of these efforts has been on
low-level interaction between accelerator devices and
microprocessors, not making any assumptions on higher-level
forms of communication and synchronization. The scope of SCF
is much larger and complements such efforts, as it can overlay a
coordination framework on top of such existing APIs/languages.

3. SCF OVERVIEW

Figure 1: Application design philosophy using SCF. (a) Designer defines tasks independently from task graph and device mapping,

(b) creates a task graph by simply interconnecting tasks without changing individual task definitions, and then (c) maps tasks onto

devices, while using (d) automated communication synthesis to create efficient coordination mechanisms based on the mapping.

Figure 1 presents an overview of the application design
methodology with SCF. This description illustrates a bottom-up
approach where an application is built by connecting constituent
tasks. However, it can easily be adapted to a top-down design
flow by switching the order of the first two stages involved in the
process.

The designer begins by defining individual tasks as shown in
Figure 1(a), using potentially any language, compiler, or synthesis
tool per task, thus enabling tool-chain interoperability by allowing
different tasks to be written in different languages. Such behavior
is critical for heterogeneous systems, where each device may
require a different, specialized language [[28]-[30]]. Existing IP
cores could also be easily used as task definitions.

An important part of each task definition is defining the input and
output to other tasks, which can have a large effect on designer
productivity. Without SCF, defining task interactions is dependent
on the source device and the receiver device, often requiring
different device/platform-specific APIs for different mappings. In
many cases, changing a mapping requires time-consuming
modifications to task definition code. With SCF, a designer
specifies all task interactions using a message-passing library
called the System Coordination Library (SCL). When defining
task interactions with SCL, a designer can be completely unaware
of the source or destination device, a key advantage that enables
task portability across multiple devices, task reuse in different
applications, and transparency of low-level, device-specific
communication details. Furthermore, because SCF is aware of the
source and destination device for all inter-task data transfers, SCF
can allow for automatic conversion between data formats, which
further improves designer productivity.

After defining individual tasks, the designer then builds the
complete application by simply connecting inputs and outputs of
the various tasks to form a task graph, as shown in Figure 1(b).
Note that this process does not require any changes to the
definition of the individual tasks. Currently, SCF can map a task
to any device, provided that the code for the task can be
implemented on that device. In the worst case, a designer would
have to provide task code for each device under consideration.
However, improvements in high-level synthesis tools (e.g. C to
VHDL) can provide the capability of converting task-definition
code of one device to another. SCF does not attempt to automate
this conversion of code specified using a particular language or
vendor tools to another.

Once the task graph is defined, the designer maps individual tasks
to specific devices in the system architecture (as shown in Figure
1(c)), again without making any modifications to the task
definition code or the task graph of the application. SCF can be
used with systems from domains ranging from high-performance
computing (HPC) to embedded computing. Figure 1(c) shows
several examples of system architectures where SCF can be
employed such as, a cluster of CPU nodes (HPC system)
optionally equipped with accelerators, a combination of FPGAs
and embedded processor (HPEC system), or a system based on a
stand-alone FPGA (embedded system).

As shown in Figure 1(d), SCF uses the specified mapping to
automatically implement all data transfers in the task graph using
the specific communication capabilities of the system. For
example, in a platform comprised of a host microprocessor and an
accelerator board with multiple FPGAs (such as our experimental

system in Section 5), SCF could implement communication
between any FPGA and the host CPU using on-board memory,
whereas communication between different FPGAs could be
implemented using physical wires on the board, while hiding all
implementation details from the designer. Furthermore,
knowledge of task interaction and their specific mapping onto
system resources prior to compilation allows SCF to perform
optimizations for reconfigurable devices such as FPGAs, that are
not possible in approaches that use dynamic routing to enable
arbitrary communication between tasks, such as packet-switched,
NoC design employed by [24]. Such optimizations can improve
application performance and reduce area requirements.

The transparency provided by SCF enables a designer to rapidly
explore mappings of tasks to different devices, which is often
critical for meeting design constraints. Although much previous
work has focused on automatic design-space exploration [31][32],
such exploration is still largely a manual process for
heterogeneous systems. It should be noted that SCF itself does not
provide any automated design-space exploration. Rather, this
work abstracts away from the designer the details of coordination
between various tasks mapped over heterogeneous resources.
Designers may still perform optimization and design-space
exploration by means of external tools, and SCF provides an easy-
to-use entry point for implementing those designs.

The following subsections explain SCF in more detail and discuss
the programming and communication model adopted by this
framework.

3.1 Programming Model
There are four terms that define the SCF programming model. A
task in SCF is the finest, indivisible unit of computation that can
be mapped onto a device. Each SCF task has inputs and outputs
represented using the SCL message-passing library. Task-

definition code implements the computational portion of a task
using code in potentially any language such as C++, VHDL,
Impulse-C, CUDA, OpenCL, etc. As long as SCL message-
passing constructs can somehow be specified in a language, SCF
can support task definitions using that language. Whereas the task
definition code defines behavior and interactions of individual
tasks, a task graph in SCF defines communication between the
tasks by connecting the inputs and outputs of various tasks
together, where each edge represents a communication stream.
Finally, a mapping in SCF defines how tasks are mapped onto
specific devices and system resources.

3.2 Architectural Model
To enable coordination between heterogeneous devices on as
many systems as possible, SCF uses a hierarchical architecture
model that captures structures common to heterogeneous systems,
while abstracting away details that designers may not require. The

Figure 2: Architectural model of an example system.

SCF architecture model consists of three levels of abstraction:
devices, platforms, and systems. All SCF tasks execute on SCF

devices, which are the finest-grained computational resources of a
given system. Every SCF device is part of an SCF platform, which
is a subsystem containing a set of SCF devices interconnected by
a specific communication topology. Each SCF platform is part of
an SCF system, at the top of the hierarchy, which connects a set of
platforms using a specific communication topology.

Figure 2 illustrates how SCF architecture models can be used to
represent common systems. The figure shows a representation of a
cluster of nodes connected over Ethernet (or any other network
technology), where some nodes consist of a CPU (D1 devices in
Figure 2), or a CPU and an accelerator board, each having
multiple FPGAs (D2 and D3 devices). This architecture is
represented as an SCF model in the following way. The FPGAs
and CPUs are SCF devices, each node collectively acts as an SCF
platform, and the cluster of all nodes forms an SCF system. The
different levels of abstraction are not necessarily mutually
exclusive; a single physical device could be a SCF device,
platform, and system. For example, platform P1, which is
comprised of a single device, is both an SCF device and platform.

3.3 Communication Model
One key advantage to the multiple levels of abstraction in the
architecture model is that communication can be made transparent
to the designer by distributing communication responsibilities
throughout the system. Furthermore, such transparency eases
conversion of existing devices and platforms into SCF systems.
SCF-compliant devices are capable of handling all device-level
communication, which we define to be communication between
tasks mapped onto the same SCF device. For example, a
microprocessor is SCF-compliant if it is capable of supporting
communication between multiple tasks mapped onto it. The
physical implementation does not affect SCF compliance and
could vary for different devices; it could be achieved via a
message-passing library or message queues supported by
operating systems. Similarly, SCF-compliant platforms provide
communication routines that are responsible for all data transfers
when the receiver is not implemented on the same device,
however on another device of the same platform. SCF platforms
are capable of transferring messages to the appropriate SCF
device in target platform. Again, the physical implementation of
such communication could vary for different platforms. For
example, in an SCF platform containing multiple processor cores,
messages could be passed through FIFOs in shared memory
whereas, for an SCF platform comprised of multiple FPGAs,
streaming data transfer could be achieved through physical wires.
Alternatively, SCF resorts to the system-level communication
routines if the receiver task is mapped on a different platform.

Despite the existence of distinct communication levels, SCF hides
these levels from designers, who are instead exposed to a single
communication API. Without SCF, a designer would have to go
through an extensive process of using ad-hoc methods of
establishing communication between any two devices on which
the communicating tasks are mapped. Furthermore, the designer
would have to re-establish the communication mechanism
following any changes in the resource mapping. With SCF, a
designer simply specifies the input and output of each task while
relying on CAD tools (discussed in Section 4) to implement the
communication.

Communication between SCF tasks uses a synchronous message-
passing model, which is widely used in the parallel computing
community [33]) in which all communication in a task-definition
code is specified explicitly, as function calls that send or receive
data and require participating tasks to synchronize before
performing the data transfer. Such a model is generic enough to
be adapted to potentially any programming model associated with
any device. Table 1 presents the coordination primitives currently
supported by SCL. The setup routine, SCL_Init, performs
initialization operations and allocation of resources for all levels
of communication and underlying libraries. SCL_Finalize
performs complementary termination functions such as de-
allocation of the resources which were setup during initialization.
SCL_Send and SCL_Recv are synchronous blocking
communication calls that provide data transfer between tasks. In
Sections 4 and 5 we further describe how this simple set of
communication routines can be adapted to various programming
models associated with different devices.

Note that this API is intentionally much simpler than other
message-passing libraries (e.g., MPI), which typically contain
constructs for scatter, gather, broadcast, etc. With SCF, a designer
defining a task does not need to know if the inputs and outputs of
the task are used for point-to-point communication or collective
communication. The designer simply defines the inputs and
outputs of the task. Then, at the task-graph level, collective
communication operations can be specified via specialized edges
between tasks. By separating specialized communication from
task definitions, SCF increases portability of task-definition codes
to different applications. The SCF tool being developed for
describing task graphs currently supports unicast edges (single
source, single receiver) and multicast edges (single source,
multiple receivers). A broadcast can be considered as a special
case of multicast edges, where all the tasks in the application

Table 1: System Coordination Library (SCL) primitives.

Function API Type

Initialization SCL_Init Setup

Termination SCL_Finalize Setup

Send SCL_Send Point-to-Point

Receive SCL_Recv Point-to-Point

Figure 3: SCF tool flow.

receive from the multicast edge.

4. TOOL FLOW
The SCF tool flow shown in Figure 3 begins with a task definition
step. Designers define the computations of tasks, or use
appropriate cores, using any language, compiler, or synthesis tool,
while defining all task interactions using API functions of SCL.
Figure 4(a) shows the task graph of an example application
consisting of two tasks, which will be mapped to a CPU and
FPGA, respectively. As shown in Figure 4(b), one task, written in
C++, generates random numbers and outputs the random numbers
to an output called “out1” while the other task, described using
Handel-C, receives these numbers through input called “in1” and
accumulates them. Note that these two tasks are defined
independently of each other, using conventional programming
languages. The communication is specified using SCL, which is
adapted to meet the requirements of the programming
environment associated with the target device.

After defining tasks, the designer performs task graph definition,
which consists of instantiating tasks and connecting inputs and
outputs of the tasks using different types of edges. Figure 4(c)
shows an example task graph definition (“.scl” file) specified
using the SCF tools. This file supports two major components,
namely tasks and edges. Each individual task of the application is
instantiated independently in this file, along with a list of its
inputs and outputs. The edges are used to specify the
interconnections between various tasks. Loop constructs are
provided for effortless scaling of parts of a task graph. As shown
in Figure 4(c), the output of task “random” is connected to the
input of task “accumu” through the “edge1” edge.

Mapping is responsible for determining which SCF resource in
the system will execute each task. An example mapping (“.map”
file) is shown in Figure 4(d). It includes various attributes for each
task that collectively indicate the resource mapping, such as target
IDE, communication libraries available at different levels of
hierarchy (device, platform, and system), and most importantly,
the target resource (specified by means of an SCF device address,

which uniquely identifies an SCF device in the system). Although
this mapping process is currently performed manually, existing
design-space exploration techniques could be integrated into the
SCF tool flow to provide optimal mapping suggestions to
designers.

Communication synthesis analyzes the mapping and the
architectural model to automatically create efficient
implementations for all edges of the task graph. At each level of
hierarchy in the SCF architecture model, communication synthesis
determines what mechanisms to use, and based on this
information it generates definitions of the required SCL functions
for different devices and platforms. In the simplest case,
communication synthesis determines if an edge of the task graph
corresponds to device-level, platform-level, or system-level
communication and translates SCL functions to the underlying
library specified in the mapping file. For example, on a platform
consisting of a CPU and PCI-X FPGA board, communication
synthesis would define an SCL send from the FPGA to another
device using the vendor API to transfer data over PCI-X.
Although communication synthesis currently implements all
communication as a mapping onto underlying vendor API calls,
there are numerous possibilities for future work. For example,
communication synthesis could potentially implement a broadcast
between tasks on a single FPGA with just wires and a small
amount of control logic.

The SCF tools extract information from the “.scl” and “.map”
files, and further invoke separate plug-ins (one for each IDE) to
auto-generate the SCL communication routines for different
programming languages. For the example showed in Figure 4,
there will be a separate plug-in for C++ and Handel-C, each of
which will generate the behavior of the SCL_send and
SCL_receive routines for their respective tasks. Such a structure
allows for new computational devices along with their
programming languages and tools to be easily integrated into
SCF, by simply creating a plug-in for the new tool (or
programming language). We hope such a framework will be
amenable to vendors of future technology, and provide an easy
mechanism for using their technology with other devices in the
system. After communication synthesis, the user combines the
definitions for SCL functions with their corresponding task-
definition code and compiles them collectively using the native
compiler of the associated programming language to form an SCF

executable that can run on the corresponding system.

4.1 Execution Model Interfacing
One obvious challenge of SCF is enabling transparent
coordination between different execution models (e.g., C and
VHDL). In Section 3.3, we described the semantics of the
message-passing model, which are simple yet sufficient to meet
requirements of communication with most device architectures.
To allow tasks from different execution models to co-exist, SCF
requires communication between any two tasks to be preceded by
a mutually agreed handshaking protocol. In addition to the
synchronization, the implementation of communication functions
in SCL is also responsible for ensuring the consistency of data as
it moves from the context of one execution model to another.
Consider an example of a data transfer from a task written in C for
a CPU to a task written in VHDL for an FPGA. The semantics of
message transfer are different for both the devices, and hence
communication is established by transferring the data into an

Figure 4: Example application in SCF environment.

intermediate memory location from the source, which is then read
by the destination task.

In this paper, we illustrate an example of adapting such semantics
to the execution model of an FPGA. The send and recv methods,
commonly implemented as function calls for processors, were
emulated as entities described using any HDL for an FPGA. These
entities implement a simple communication protocol that enables
FPGA tasks to communicate with other SCF devices in the
system. The user application connects to these entities through
data and control ports and performs data transfers by simply
supplying the required control and data values.

4.2 Automatic Data Conversion
Passing data and control messages across varied platforms
requires some mechanism of translation of data to a form
understood by the local resources. The need for representing data
in standardized format across a system of diverse resources has
resulted in several standards, such as eXternal Data
Representation (XDR) [34], Structured Data eXchange Format
(SDXF) [35], and many more. However, the target systems for
these standards have been loosely-coupled systems distributed
over a wide-area network. The overhead generally associated with
these schemes renders them less effective for systems of closely
coupled resources and HPC applications. In our work, we use a
modification of an approach employed by OpenMPI [20], which
provides transparent translation of data between source and
destination entities.

Since only send and receive semantics are required in SCF for any
exchange, it is sufficient to employ a data representation which is
compatible with both the sender and receiver of data, instead of a
data format that is compatible with all the devices in the system.
Data conversion operations are performed by the sender into a
representation compatible with the receiver. The SCF tools are
informed about the appropriate conversion routines that need to
be employed, through the information specified in the mapping
file. These operations are automatically inserted during the
process of custom communication synthesis on a per-need basis.
If both communicating entities use the same data representation,
these operations are omitted to avoid the overhead of conversion.

A notable feature of SCF data conversion is the provision for
user-defined bit-width. This feature allows for special devices
which are capable of manipulating the data at the granularity of
bits with the flexibility of passing data of arbitrary bit-widths. As
an example, for two communicating tasks mapped onto the same
FPGA, it may be most meaningful to synthesize connecting wires
of the required bit-width (to conserve resources), as opposed to
restricting to the size of one of the data types defined by any
standard. The current prototype of the tool does not include this
feature to support automatic data conversion, but it will be the
focus of future work.

5. RESULTS AND ANALYSIS
In this section, we present experiments illustrating the
productivity and performance advantages of SCF. First, we
describe our experimental system and the prototype of SCL which
we developed to support this system in SCF. We then demonstrate
the advantages of custom communication in SCF, by comparing it
with previous work based on a packet-switched, NoC
communication architecture. Finally, we demonstrate the benefits

of rapid-design space exploration using SCF through a case study
featuring a target-tracking application.

5.1 Experimental Setup
The system used in our experiments consists of two Windows
server nodes connected via Gigabit Ethernet. The first node is
comprised of a 2GHz Athlon 3200+ processor and equipped with
a PROCStar-II FPGA board from GiDEL. This FPGA board
features four Altera Stratix-II EP2S180 FPGA accelerators, each
with an external DDR memory of 128MB. The board sits in a 64-
bit PCI-X slot. The second node is comprised of a 3 GHz Xeon
processor. To evaluate SCF, a set of prototype tools were created
using the Eclipse environment [36][37], which allow designers to
specify the task graph definition (“.scl” file) and the mapping
information (“.map” file) for the application.

The target system is represented in the SCF architecture as
follows (shown in Figure 5). The combination of the four FPGAs
and the host CPU form an SCF platform (P1 in the figure) and the
second CPU forms another SCF platform (P2 in the figure). These
two platforms collectively form our experimental SCF system.
Each FPGA and CPU is an SCF device.

We developed our coordination library (SCL) for our target
system to support various levels of communication in the system.
System-level communication between CPUs is established using
MPI as the underlying communication mechanism. Platform-level
communication on the CPU (P1 in Figure 5), which allows it to
interact with the FPGAs, employs API calls provided by GiDEL.
Device-level and platform-level communication on the FPGAs is
supported by send and recv entities which were developed in
VHDL and are analogous to send/recv function calls on a CPU.
The entities connect to the user’s VHDL applications through data
and control ports, and execute a simple communication protocol
to communicate with the host CPU and other FPGAs when
signaled by the user application. Note that a designer is not
exposed to MPI or GiDEL APIs. Instead, a designer simply
specifies all task communication using the SCL calls, which SCF
tools automatically map onto underlying APIs (e.g., MPI and the
GiDEL API in our case).

5.2 Custom Communication Synthesis
One of the advantages of SCF is its ability to synthesize custom
communication well suited to the requirements of the application
and the capabilities of the system. We demonstrate the advantages
of such a scheme versus a generic, packet-switched solution using
a simplified application, which involves sending data from two
tasks to a third task. The task graph of the application is shown in
Figure 6 (a), in which tasks T2 and T3 send data to T1. The figure

Figure 5: SCF architectural model for experimental system.

also shows two possible designs for the example application, both
of which were implemented on a single FPGA.

The first design (Figure 6(b)) employs a simple router that has a
connection to each task with a FIFO to buffer outgoing data on its
output ports. While this design is generic and can support a
variety of permutations for data communication between
connected tasks, it fails to capture information specified by data
dependencies in the task graph. The second design (Figure 6(c)),
alternatively, adopts a customized design based on details of data
communication extracted from the task graph. It instantiates T1
with two ports and connects them to T2 and T3 directly. As a
result of this optimization, the latter design offers superior
performance over the generic solution, as indicated by application
execution times for two different data sizes in Figure 6(d).

In a similar manner, custom communication, one of the important
components of SCF, can lead to better application designs in other
situations. Although communication synthesis is currently defined
by implementing all communication as a mapping onto underlying
vendor-API calls, there are numerous automatic synthesis
possibilities for future work.

5.3 Case Study: Target Tracking
Target tracking using Kalman filtering [38] is a method for
predicting the trajectory of environmental targets such as vehicles,
missiles, animals, hostiles, or even unidentified objects. We
selected this algorithm due to its numerous constraints that are
often met using heterogeneous devices. There are a variety of
factors such as error tolerance, sampling rate of input, target
proximity to sensors, etc. that determine the exact operational

characteristics required for a particular target-object. Different
targets have varying requirements which mandate an appropriate
computational platform such as an FPGA, an embedded processor
or a desktop processor (CPU).

In this study, we analyze the overall performance of the system by
using SCF to rapidly evaluate different resource mappings of our
target-tracking application which tracks three objects using three
Kalman filters (one each). Figure 7 shows the task graph of the
application. Task T1, the sensor process, creates the inputs for all
three filters and is implemented in C++. The three Kalman filters
(tasks T2, T3, T4) can be mapped on a CPU (with its design
implemented in C++) or on an FPGA (as a VHDL design).

Table 2 presents execution times of the application under various
mapping scenarios for three different systems. System I is our
experimental system (described in Section 5.1). Systems II and III
represent notional systems, emulating the characteristics of a
system that has lower bandwidth and higher latency of
communication between the CPU and FPGAs. When power
consumption is a major consideration, systems often employ
FPGAs running at a lower frequency, perhaps attached to the
system over a lower-speed bus. We implemented these emulations
by adding extra delays on the FPGA in our experimental system to
reduce bandwidth. The rows of the table represent the number of
tasks (amongst T2 to T4) mapped to CPUs and FPGAs. T1 is
always mapped on the CPU device of platform P1 (in Figure 5).
Each of the other three tasks either time-shares the CPU device on
platform P2 with other tasks mapped onto it or executes on an
FPGA on platform P1.

Table 2 shows that the three systems, although similar, yield
different optimal mappings (where optimal mapping is defined as
the mapping which achieves best performance and, in case of tie,
with least number of FPGAs). With SCF, exploring these different

Data
Transferred

Execution Time (ms)

Speedup NoC-based
Design (a)

SCF Custom
Communication (b)

4MB 16.8 8.4 2

8MB 33.6 16.8 2

(d)

Figure 6: (a) Task graph of an application implemented using

(b) a NoC-based design and (c) SCF custom communication,

which (d) results in a speedup of 2×.

Figure 7: Task graph for target-tracking application.

Table 2: Execution time of target-tracking application under

different mapping scenarios for three systems. Speedup shows

performance gain of optimal mapping (highlighted in bold)

compared to all-CPU baseline (i.e. 3-CPU, 0-FPGA mapping).

Mappings
Execution Time (ms)

System I System II System III

3-CPU, 0-FPGA 243 243 243

2-CPU, 1-FPGA 152 152 167

1-CPU, 2-FPGA 67 86 167

0-CPU, 3-FPGA 8 86 167

Speedup 28.3 2.8 1.4

mappings only required simple modifications to the resource
mapping file, and none to source code. The SCF communication
synthesis tool adapted the communication infrastructure based on
information in the mapping file. In contrast, any such changes
traditionally would require modifications to the application source
code and designer intervention to create communication
infrastructure to match the new resource mapping. Moreover, that
process would have to be repeated multiple times until a suitable
level of performance is obtained. With SCF, we were able to
perform design-space exploration rapidly, which led to speedups
ranging from 1.4 times faster to more than 28.

In order to understand productivity gains obtained by employing
SCF, we recorded development hours that we spent during our
experiments, in addition to source lines of code (SLOC) involved
in certain parts of the application code. Table 3(a) shows the
increase in source lines of code involved for establishing
communication from the CPU to each FPGA without SCF. A
large part of this improvement comes from hiding details of
communication from the designer while presenting an easily used
interface through SCL. Although these numbers are specific to
our experimental system and team personnel, we believe them to
be a fair estimate of improvements we expect to obtain with SCF.

The development hours reported in the table include time spent in
modifying the application design to match the resource mapping,
in addition to time required for learning the vendor-specific APIs,
both of which can be reduced significantly when using SCF.
Based on these results, we estimate SCF framework can reduce
development time and improve productivity by a factor of
approximately five. The optimistic case in Table 3(a) represents a
case where designer is unfamiliar with the system, and thus has to
undergo a steep learning process for the APIs for each device. The
conservative case represents an experienced designer who is
familiar with the tools and vendor-APIs for that particular system.

Table 3(b) lists the overhead incurred by our VHDL design where
the communication infrastructure was created using the SCF, in
comparison to optimized, hand-written design developed for the
same application. It is clear from these results that the
communication routines employed by the tools result in modest
overheads in terms of both resources and performance.

6. CONCLUSIONS
To address challenges involving task coordination in future
reconfigurable, heterogeneous systems, we have introduced a
system-level coordination framework that enables communication
and synchronization between tasks running on heterogeneous
processing devices in a system. SCF hides the low-level
architectural details from the application designer, resulting in
improved productivity. By allowing designers to define
communication independently of the devices in a system, SCF
improves application portability. In addition, SCF allows
designers to define tasks using potentially any language, which
enhances the inter-operability between different vendor tools.

We analyzed a prototype of the framework and its associated tools
and libraries through various experiments. Our experiments
indicate that custom communication, one of the important
components of SCF, creates designs that offer superior
performance over a generic solution. The performance advantages
of SCF were illustrated with a target-tracking application study
that achieved a speedup of 28× by using the rapid design-space
exploration enabled by SCF. Higher level of abstraction offered
by this framework leads to substantially improved designer
productivity, with current estimates ranging up to 5×.

In future, we intend to add support for automatic data-conversion
mechanisms as outlined in this paper. We also plan to extend the
communication infrastructure to incorporate non-blocking
communication and thus allow applications to exploit more
concurrency. In addition, we would like to standardize the
mechanism of supporting new platforms in this framework to
allow vendors to comply with requirements in an easy manner.

7. ACKNOWLEDGMENTS
This work was supported in part by the I/UCRC Program of the
National Science Foundation under Grant No. EEC-0642422. The
authors gratefully acknowledge vendor equipment and/or tools
provided by GiDEL that helped make this work possible. We also
thank Abraham Sanchez, M.S. student, in our lab for his
contributions to this work.

8. REFERENCES
[1] Olukotun, K. and Hammond, L. 2005. The Future of

Microprocessors. Queue. Vol. 3, Issue 7 (Sep 2005), pp. 26-
29.

[2] Bhat, P.B., Lim, Y.W., and Prasanna, V.K. 1995. Issues in
using heterogeneous HPC systems for embedded real time
signal processing applications. Proc. of Second International
Workshop on Real-Time Computing Systems and
Applications (25-27 Oct 1995), pp. 134-141.

[3] Erbas, C. and Pimentel, A.D. 2003. Utilizing synthesis
methods in accurate system-level exploration of
heterogeneous embedded systems. IEEE Workshop on
Signal Processing Systems (27-29 Aug 2003), SIPS 2003.
pp. 310-315.

[4] SRC Computers, Inc. 2009. MAPstation workstations.
www.srccomp.com/products/mapstation.asp, (website
accessed on July 12, 2009).

[5] XtremeData, Inc. 2009. In-Socket Accelerators.
http://www.xtremedatainc.com/index.php?option=com_conte

Table 3: (a) Productivity and (b) Overhead measurements.

(a)

Productivity improvement (for FPGA comm.)

 Baseline With SCF Improvement

SLOC 357 112 3.18×

Development
hours

Conservative
40 hrs

(1 week)
16 hrs

(2 days)
2.5×

Optimistic
80 hrs

 (2 weeks)
16 hrs

(2 days)
5×

(b)

Overheads (on FPGA)

 Baseline With SCF

Performance 76MHz 75MHz

ALUTs used 2095/143520 2152/143520

Interconnect resources used 11% 12%

nt&view=article&id=109&Itemid=170, (website accessed on
July 12, 2009).

[6] El-Ghazawi, T., El-Araby, E., Huang, M., Gaj, K.,
Kindratenko, V., and Buell, D. 2008. The Promise of High-
Performance Reconfigurable Computing. IEEE Computer,
vol.41, no.2 (Feb 2008), pp.69-76.

[7] F- Chen, T., Raghavan, R., Dale, J. N., and Iwata, E. 2007.
Cell broadband engine architecture and its first
implementation: a performance view. IBM Journal of
Research and Development 51, 5, 559-572.

[8] Altera Corp. 2008. Stratix IV Device Handbook. Altera
Corp.

[9] Xilinx, Inc. 2008. Virtex-5 Family Overview. Xilinx, Inc.

[10] Nvidia Corp. 2006. Nvidia GeForce 8800 GPU Architecture
Overview. Nvidia Corp

[11] Nvidia Corp. 2009. Nvidia tesla Tesla S1070 specifications.
Nvidia Corp.

[12] Ambric, Inc. 2008. Ambric technology backgrounder.
http://www.ambric.com/technology/technology-
overview.php

[13] ClearSpeed Technology PLC. 2007. CSX600 Architecture.
Whitepaper. ClearSpeed Technology PLC.

[14] Shih, K., Balachandran, A., Nagarajan, K., Holland, B.,
Slatton, C., and George, A. 2008. Fast Real-time LIDAR
Processing on FPGAs. Proc. of International Conference on
Engineering of Reconfigurable Systems and Algorithms (July
14-17 2008), ERSA 2008. Las Vegas, NV.

[15] Storaasli, O. 2008. Accelerating Genome Sequencing 100-
1000X with FPGAs. Many-core and Reconfigurable
Supercomputing Conference (April 2008), MRSC 2008.

[16] Williams, J., George, A., Richardson, J., Gosrani, K., Massie,
C., and Lam, H. 2009. Characterization of Fixed and
Reconfigurable Multi-Core Devices for Application
Acceleration. ACM Transactions on Reconfigurable
Technology and Systems. Accepted to appear.

[17] Sunderam, V. S. 1990. PVM: A Framework for Parallel
Distributed Computing. Concurrency: Practice and
Experience 2, 4, (Dec 1990), pp 315—339.

[18] MPI website. http://www.mcs.anl.gov/research/projects/mpi/,
(website accessed on July 12, 2009).

[19] Lastovetsky, A. and Reddy, R. 2006. HeteroMPI: towards a
message-passing library for heterogeneous networks of
computers. J. Parallel Distrib. Comput. 66, 2 (Feb. 2006),
197-220.

[20] Graham, R.L., Shipman, G.M., Barrett, B.W., Castain, R.H.,
Bosilca, G., and Lumsdaine, A. 2006. Open MPI: A High-
Performance, Heterogeneous MPI. Proc. of IEEE
International Conference on Cluster Computing (Sept 2006),
pp.1-9.

[21] Massetto, F.I., Gomes A. M., and Sato L. M. 2006. HyMPI –
A MPI Implementation for Heterogeneous High Performance
Systems. International Conference on Advances in Grid and
Pervasive Computing (May 2006), Taichung, Taiwan.

[22] Lee, E. A. 2003. Overview of the Ptolemy Project. Technical
Memorandum No. UCB/ERL M03/25 (July 2, 2003).
University of California, Berkeley, CA, USA.

[23] Franklin, M., Tyson, E., Buckley, J., Crowley, P., and
Maschmeyer, J. 2006. Auto-Pipe and the X Language: A
Pipeline Design Tool and Description Language. In Proc. of
the 20th International Parallel and Distributed Processing
Symposium (April 2006). Rhodes Island, Greece.

[24] Saldana, M., Patel, A., Madill, C., Nunes, D., Danyao Wang,
Styles, H., Putnam, A., Wittig, R., and Chow, P. 2008. MPI
as an abstraction for software-hardware interaction for
HPRCs. Second International Workshop on High-
Performance Reconfigurable Computing Technology and
Applications (Nov 2008), HPRCTA 2008. pp.1-10.

[25] Luk, W., Coutinho, J., Todman, T. J., Lam, Y. M., Osborne,
W. G., Susanto, K.W., and Wong, W.S. 2009. A High-Level
Compilation Toolchain for Heterogeneous Systems. IEEE
International SOC conference (Sept. 9-11, 2009). Belfast,
Northern Ireland, U.K.

[26] OpenFPGA GenAPI version 0.4 Draft For Comment. 2009
http://www.openfpga.org/pages/Standards.aspx, (website
accessed July 12, 2009).

[27] OpenCL 1.0 Specification. 2009
http://www.khronos.org/registry/cl/specs/opencl-1.0.43.pd,
(website accessed July 12, 2009).

[28] Nvidia corp. 2009. CUDA 2.3 QuickStart Guide.
http://www.nvidia.com/object/cuda_develop.html (website
accessed August 28, 2009).

[29] Impulse accelerated technologies. 2009. Impulse C language.
Impulse accelerated technologies.

[30] VHDL standard (IEEE 1076). 2008. http://www.vhdl.org/
vasg/ (website accessed July 12, 2009).

[31] Chatha, K. S. and Vemuri, R. 2001. MAGELLAN: multiway
hardware-software partitioning and scheduling for latency
minimization of hierarchical control-dataflow task graphs. In
Proceedings of the Ninth international Symposium on
Hardware/Software Codesign (Copenhagen, Denmark).
CODES '01. 42-47

[32] Dave, B.P. 1999. CRUSADE: hardware/software co-
synthesis of dynamically reconfigurable heterogeneous real-
time distributed embedded systems. Proc. of Design,
Automation and Test in Europe Conference and Exhibition
(1999), pp.97-104.

[33] Hoare, C. A. 1978. Communicating sequential processes.
Communication ACM 21, 8 (Aug. 1978), pp. 666-677.

[34] RFC 4506 - XDR: External Data Representation Standard.
May 2006. http://www.rfc-editor.org/rfc/rfc4506.txt,
(website accessed July 27, 2009).

[35] RFC 3072 - Structured Data Exchange Format (SDXF). Mar
2001. http://tools.ietf.org/html/rfc3072, (website accessed
July 27, 2009).

[36] Xtext Reference Documentation. 2009.
http://www.openarchitectureware.org/pub/documentation/4.1
/r80_xtextReference.pdf (website accessed July 27, 2009).

[37] Eclipse. Eclipse SDK, Version: 3.4.1., www.eclipse.org
(website accessed July 27, 2009).

[38] Lee, C. R., and Z. Salcic. 1997. A Fully-hardware-type
Maximum-parallel Architecture for Kalman Tracking Filter

in FPGAs. International Conference on Communications and
Signal Processing (1997), 1243-1247.

