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ABSTRACT 

Heterogeneous computing systems comprised of accelerators such 
as FPGAs, GPUs, and Cell processors coupled with standard 
microprocessors are becoming an increasingly popular solution to 
building future computing systems. Although programming 
languages and tools have evolved to simplify device-level design, 
programming such systems is still difficult and time-consuming 
due to system-level challenges involving synchronization and 
communication between heterogeneous devices, which currently 
require ad-hoc solutions. To solve this problem, this paper 
presents the System-Level Coordination Framework (SCF), which 
enables transparent communication and synchronization between 
tasks running on heterogeneous processing devices in the system. 
By hiding low-level architectural details from the application 
designer, SCF can improve application development productivity, 
provide higher levels of application portability, and offer rapid 
design-space exploration of different task/device mappings. In 
addition, SCF enables custom communication synthesis, which 
can provide performance improvements over generic solutions 
employed previously. 

Categories and Subject Descriptors 

D.2.12 [Software Engineering]: Interoperability – interface 

definition languages 

General Terms 

Performance, Design, Languages 

Keywords 

Reconfigurable computing, heterogeneous computing, commu-
nication, coordination, productivity, portability, accelerators. 

1. INTRODUCTION 
The power bottleneck created by high clock frequencies has 
forced computer architects to consider alternative methods for 
increasing system performance, focusing on parallel and often 
heterogeneous architectures [1]. Systems from domains ranging 
from embedded systems [2][3] to high-performance computing 
[4][6] now increasingly combine microprocessors (which may 
contain heterogeneous cores [7]) with devices such as field-

programmable gate arrays (FPGAs), graphics processing units 
(GPUs), and other devices [7-13]. Numerous studies have shown 
that accelerator-based heterogeneous systems can obtain 
performance improvements ranging from 10× [14] to more than 
1000× [15] compared to microprocessors, while also improving 
energy efficiency [16].  

Although heterogeneous systems have numerous performance and 
energy advantages, one significant problem that has limited their 
use is increased application design complexity. As opposed to 
standard software design, specialized devices require designer 
expertise to specify a custom design, often using multiple 
languages and tools. As an example, a designer for a system with 
an FPGA accelerator will likely have to: (a) perform HW/SW 
partitioning to map program regions to the microprocessor or 
FPGA; (b) create a custom circuit; (c) describe the circuit in a 
hardware description language; (d) describe the software in a 
high-level programming language; (e) establish communication 
between the microprocessor and FPGA using vendor-specific 
methods; (f) write code to convert between data formats on each 
source and destination device; (g) synthesize, place and route the 
circuit using CAD tools; and (h) compile the software into a 
binary executable.  Simplifying this complicated process has been 
the focus of a tremendous amount of recent design automation 
and CAD research involving languages, high-level synthesis tools, 
and hardware/software partitioning tools. 

Although language and tool research continues to simplify device-
level design for specialized devices, heterogeneous systems have 
system-level design issues that have received limited attention. 
Such is the case with communication and synchronization (herein 
collectively referred to as coordination) between heterogeneous 
processing devices, which is often performed in an ad-hoc 
manner, requiring significant coding modifications for porting an 
application to a different system, or even migrating parts of the 
application onto different devices of the same system.  

Ideally, code for a task running on a specialized device in a 
heterogeneous system could be written independently of the other 
devices, tasks, and of the communication architecture used by the 
system. To achieve such functionality, we introduce the System-
Level Coordination Framework (SCF), which simplifies 
application design for heterogeneous systems by enabling 
transparent communication and synchronization between tasks 
running on different devices. SCF consists of a library of 
message-passing coordination primitives suitable for potentially 
any language or device, a framework that allows an application to 
be expressed as a static task-graph and each task of an application 
to be defined in potentially any language, and a set of tools that 
can create customized communication methods for a given system 
architecture based on the mapping of tasks to devices. With SCF, 
many low-level architectural details are hidden from the 
application designer, allowing them to simply define each task in 
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a language of their choice, while specifying coordination between 
tasks using message-passing primitives. Furthermore, SCF 
enables rapid exploration of different task-to-device mappings 
without modifications to task definition code, often resulting in 
both improved designer productivity and system performance. 
Our results demonstrate that approximately 5× productivity 
improvement is achievable for the case study featured in this work 
with minimal performance overheads.  

The remainder of the paper is formatted as follows. Section 2 
discusses previous work. Section 3 provides an overview of SCF. 
In Section 4, we discuss research challenges involved in enabling 
SCF and the set of tools associated with SCF. Section 5 evaluates 
the framework through a prototype of SCF for our experimental 
system and presents results. Finally, Section 6 provides a 
summary of conclusions and directions for future work. 

2. PREVIOUS WORK 
Conventionally, developers of parallel programs have performed 
coordination using message-passing libraries such as PVM [17], 
MPI [18], etc. However, these techniques are typically limited to 
homogeneous systems of microprocessors connected via 
commodity interconnect technology (e.g., Ethernet, InfiniBand). 
In recent years, researchers have extended message passing to a 
heterogeneous mix of microprocessors connected via different 
network technologies [19-21]. Although heterogeneity is 
supported by these libraries, it has been limited to only a variety 
of microprocessors. SCF extends this concept by supporting 
heterogeneity between microprocessors and potentially any type 
of specialized accelerator devices. 

SCF shares similar concepts with other academic projects that aim 
to improve designer productivity for heterogeneous systems. 
Ptolemy [22] studies modeling, simulation, and design of 
concurrent real-time embedded systems based on different models 
of computation. SCF also assists with the design of applications 
using different models of computation by enabling designers to 

define tasks in any language, and then using message passing to 
communicate between tasks. 

Auto-Pipe and the X language presented in [23] provide a 
framework for designing pipelined applications distributed across 
resources of a heterogeneous system. Although SCF adopts a 
similar approach, it extends this concept to allow a designer to 
specify applications with arbitrary task-graphs. In addition, SCF 
enables custom communication synthesis to specialize the 
communication infrastructure to the capabilities of each device 
and platform in a system.  

TMD-MPI [24] extends the MPI library to support message 
passing between heterogeneous devices, such as a mix of FPGAs 
and microprocessors. Although conceptually similar, SCF has 
several novel aspects. For instance, TMD-MPI uses a dynamic, 
task-graph representation of an application and a communication-
architecture based on packet-switched, Network-On-Chip (NoC) 
design. In contrast, applications are defined as static task graphs 
in SCF, which because of a known mapping can yield designs 
which provide improved performance.  

Numerous high-level synthesis and hardware/software partitioning 
approaches automatically generate FPGA circuits from high-level 
code [25][29]. By contrast, SCF allows tasks to be defined using 
multiple languages and tools which aids in efficient use of the 
unique resources of each device in a heterogeneous system. 

Recently, much effort has been channeled towards standardizing 
the interface between microprocessors and enhanced devices such 
as FPGAs [26] and GPUs [27]. Focus of these efforts has been on 
low-level interaction between accelerator devices and 
microprocessors, not making any assumptions on higher-level 
forms of communication and synchronization. The scope of SCF 
is much larger and complements such efforts, as it can overlay a 
coordination framework on top of such existing APIs/languages. 

3. SCF OVERVIEW 

 

Figure 1: Application design philosophy using SCF. (a) Designer defines tasks independently from task graph and device mapping, 

(b) creates a task graph by simply interconnecting tasks without changing individual task definitions, and then (c) maps tasks onto 

devices, while using (d) automated communication synthesis to create efficient coordination mechanisms based on the mapping. 



Figure 1 presents an overview of the application design 
methodology with SCF. This description illustrates a bottom-up 
approach where an application is built by connecting constituent 
tasks. However, it can easily be adapted to a top-down design 
flow by switching the order of the first two stages involved in the 
process. 

The designer begins by defining individual tasks as shown in 
Figure 1(a), using potentially any language, compiler, or synthesis 
tool per task, thus enabling tool-chain interoperability by allowing 
different tasks to be written in different languages. Such behavior 
is critical for heterogeneous systems, where each device may 
require a different, specialized language [[28]-[30]]. Existing IP 
cores could also be easily used as task definitions.  

An important part of each task definition is defining the input and 
output to other tasks, which can have a large effect on designer 
productivity. Without SCF, defining task interactions is dependent 
on the source device and the receiver device, often requiring 
different device/platform-specific APIs for different mappings. In 
many cases, changing a mapping requires time-consuming 
modifications to task definition code. With SCF, a designer 
specifies all task interactions using a message-passing library 
called the System Coordination Library (SCL). When defining 
task interactions with SCL, a designer can be completely unaware 
of the source or destination device, a key advantage that enables 
task portability across multiple devices, task reuse in different 
applications, and transparency of low-level, device-specific 
communication details. Furthermore, because SCF is aware of the 
source and destination device for all inter-task data transfers, SCF 
can allow for automatic conversion between data formats, which 
further improves designer productivity. 

After defining individual tasks, the designer then builds the 
complete application by simply connecting inputs and outputs of 
the various tasks to form a task graph, as shown in Figure 1(b).  
Note that this process does not require any changes to the 
definition of the individual tasks. Currently, SCF can map a task 
to any device, provided that the code for the task can be 
implemented on that device. In the worst case, a designer would 
have to provide task code for each device under consideration. 
However, improvements in high-level synthesis tools (e.g. C to 
VHDL) can provide the capability of converting task-definition 
code of one device to another. SCF does not attempt to automate 
this conversion of code specified using a particular language or 
vendor tools to another. 

Once the task graph is defined, the designer maps individual tasks 
to specific devices in the system architecture (as shown in Figure 
1(c)), again without making any modifications to the task 
definition code or the task graph of the application. SCF can be 
used with systems from domains ranging from high-performance 
computing (HPC) to embedded computing. Figure 1(c) shows 
several examples of system architectures where SCF can be 
employed such as, a cluster of CPU nodes (HPC system) 
optionally equipped with accelerators, a combination of FPGAs 
and embedded processor (HPEC system), or a system based on a 
stand-alone FPGA (embedded system). 

As shown in Figure 1(d), SCF uses the specified mapping to 
automatically implement all data transfers in the task graph using 
the specific communication capabilities of the system. For 
example, in a platform comprised of a host microprocessor and an 
accelerator board with multiple FPGAs (such as our experimental 

system in Section 5), SCF could implement communication 
between any FPGA and the host CPU using on-board memory, 
whereas communication between different FPGAs could be 
implemented using physical wires on the board, while hiding all 
implementation details from the designer. Furthermore, 
knowledge of task interaction and their specific mapping onto 
system resources prior to compilation allows SCF to perform 
optimizations for reconfigurable devices such as FPGAs, that are 
not possible in approaches that use dynamic routing to enable 
arbitrary communication between tasks, such as packet-switched, 
NoC design employed by [24]. Such optimizations can improve 
application performance and reduce area requirements.  

The transparency provided by SCF enables a designer to rapidly 
explore mappings of tasks to different devices, which is often 
critical for meeting design constraints. Although much previous 
work has focused on automatic design-space exploration [31][32], 
such exploration is still largely a manual process for 
heterogeneous systems. It should be noted that SCF itself does not 
provide any automated design-space exploration. Rather, this 
work abstracts away from the designer the details of coordination 
between various tasks mapped over heterogeneous resources. 
Designers may still perform optimization and design-space 
exploration by means of external tools, and SCF provides an easy-
to-use entry point for implementing those designs. 

The following subsections explain SCF in more detail and discuss 
the programming and communication model adopted by this 
framework. 

3.1 Programming Model 
There are four terms that define the SCF programming model. A 
task in SCF is the finest, indivisible unit of computation that can 
be mapped onto a device. Each SCF task has inputs and outputs 
represented using the SCL message-passing library. Task-

definition code implements the computational portion of a task 
using code in potentially any language such as C++, VHDL, 
Impulse-C, CUDA, OpenCL, etc. As long as SCL message-
passing constructs can somehow be specified in a language, SCF 
can support task definitions using that language. Whereas the task 
definition code defines behavior and interactions of individual 
tasks, a task graph in SCF defines communication between the 
tasks by connecting the inputs and outputs of various tasks 
together, where each edge represents a communication stream. 
Finally, a mapping in SCF defines how tasks are mapped onto 
specific devices and system resources. 

3.2 Architectural Model 
To enable coordination between heterogeneous devices on as 
many systems as possible, SCF uses a hierarchical architecture 
model that captures structures common to heterogeneous systems, 
while abstracting away details that designers may not require. The 

 
Figure 2: Architectural model of an example system. 



SCF architecture model consists of three levels of abstraction: 
devices, platforms, and systems. All SCF tasks execute on SCF 

devices, which are the finest-grained computational resources of a 
given system. Every SCF device is part of an SCF platform, which 
is a subsystem containing a set of SCF devices interconnected by 
a specific communication topology. Each SCF platform is part of 
an SCF system, at the top of the hierarchy, which connects a set of 
platforms using a specific communication topology. 

Figure 2 illustrates how SCF architecture models can be used to 
represent common systems. The figure shows a representation of a 
cluster of nodes connected over Ethernet (or any other network 
technology), where some nodes consist of a CPU (D1 devices in 
Figure 2), or a CPU and an accelerator board, each having 
multiple FPGAs (D2 and D3 devices). This architecture is 
represented as an SCF model in the following way. The FPGAs 
and CPUs are SCF devices, each node collectively acts as an SCF 
platform, and the cluster of all nodes forms an SCF system. The 
different levels of abstraction are not necessarily mutually 
exclusive; a single physical device could be a SCF device, 
platform, and system.  For example, platform P1, which is 
comprised of a single device, is both an SCF device and platform. 

3.3 Communication Model 
One key advantage to the multiple levels of abstraction in the 
architecture model is that communication can be made transparent 
to the designer by distributing communication responsibilities 
throughout the system. Furthermore, such transparency eases 
conversion of existing devices and platforms into SCF systems. 
SCF-compliant devices are capable of handling all device-level 
communication, which we define to be communication between 
tasks mapped onto the same SCF device. For example, a 
microprocessor is SCF-compliant if it is capable of supporting 
communication between multiple tasks mapped onto it. The 
physical implementation does not affect SCF compliance and 
could vary for different devices; it could be achieved via a 
message-passing library or message queues supported by 
operating systems. Similarly, SCF-compliant platforms provide 
communication routines that are responsible for all data transfers 
when the receiver is not implemented on the same device, 
however on another device of the same platform. SCF platforms 
are capable of transferring messages to the appropriate SCF 
device in target platform. Again, the physical implementation of 
such communication could vary for different platforms. For 
example, in an SCF platform containing multiple processor cores, 
messages could be passed through FIFOs in shared memory 
whereas, for an SCF platform comprised of multiple FPGAs, 
streaming data transfer could be achieved through physical wires. 
Alternatively, SCF resorts to the system-level communication 
routines if the receiver task is mapped on a different platform.  

Despite the existence of distinct communication levels, SCF hides 
these levels from designers, who are instead exposed to a single 
communication API. Without SCF, a designer would have to go 
through an extensive process of using ad-hoc methods of 
establishing communication between any two devices on which 
the communicating tasks are mapped. Furthermore, the designer 
would have to re-establish the communication mechanism 
following any changes in the resource mapping. With SCF, a 
designer simply specifies the input and output of each task while 
relying on CAD tools (discussed in Section 4) to implement the 
communication. 

Communication between SCF tasks uses a synchronous message-
passing model, which is widely used in the parallel computing 
community [33]) in which all communication in a task-definition 
code is specified explicitly, as function calls that send or receive 
data and require participating tasks to synchronize before 
performing the data transfer. Such a model is generic enough to 
be adapted to potentially any programming model associated with 
any device. Table 1 presents the coordination primitives currently 
supported by SCL. The setup routine, SCL_Init, performs 
initialization operations and allocation of resources for all levels 
of communication and underlying libraries. SCL_Finalize 
performs complementary termination functions such as de-
allocation of the resources which were setup during initialization. 
SCL_Send and SCL_Recv are synchronous blocking 
communication calls that provide data transfer between tasks. In 
Sections 4 and 5 we further describe how this simple set of 
communication routines can be adapted to various programming 
models associated with different devices. 

Note that this API is intentionally much simpler than other 
message-passing libraries (e.g., MPI), which typically contain 
constructs for scatter, gather, broadcast, etc. With SCF, a designer 
defining a task does not need to know if the inputs and outputs of 
the task are used for point-to-point communication or collective 
communication. The designer simply defines the inputs and 
outputs of the task. Then, at the task-graph level, collective 
communication operations can be specified via specialized edges 
between tasks. By separating specialized communication from 
task definitions, SCF increases portability of task-definition codes 
to different applications. The SCF tool being developed for 
describing task graphs currently supports unicast edges (single 
source, single receiver) and multicast edges (single source, 
multiple receivers). A broadcast can be considered as a special 
case of multicast edges, where all the tasks in the application 

Table 1: System Coordination Library (SCL) primitives.  

Function API Type 

Initialization SCL_Init Setup 

Termination SCL_Finalize Setup 

Send SCL_Send Point-to-Point 

Receive SCL_Recv Point-to-Point 

 

Figure 3: SCF tool flow. 



receive from the multicast edge.  

4. TOOL FLOW 
The SCF tool flow shown in Figure 3 begins with a task definition 
step. Designers define the computations of tasks, or use 
appropriate cores, using any language, compiler, or synthesis tool, 
while defining all task interactions using API functions of SCL. 
Figure 4(a) shows the task graph of an example application 
consisting of two tasks, which will be mapped to a CPU and 
FPGA, respectively. As shown in Figure 4(b), one task, written in 
C++, generates random numbers and outputs the random numbers 
to an output called “out1” while the other task, described using 
Handel-C, receives these numbers through input called “in1” and 
accumulates them. Note that these two tasks are defined 
independently of each other, using conventional programming 
languages. The communication is specified using SCL, which is 
adapted to meet the requirements of the programming 
environment associated with the target device.  

After defining tasks, the designer performs task graph definition, 
which consists of instantiating tasks and connecting inputs and 
outputs of the tasks using different types of edges. Figure 4(c) 
shows an example task graph definition (“.scl” file) specified 
using the SCF tools. This file supports two major components, 
namely tasks and edges. Each individual task of the application is 
instantiated independently in this file, along with a list of its 
inputs and outputs. The edges are used to specify the 
interconnections between various tasks. Loop constructs are 
provided for effortless scaling of parts of a task graph. As shown 
in Figure 4(c), the output of task “random” is connected to the 
input of task “accumu” through the “edge1” edge. 

Mapping is responsible for determining which SCF resource in 
the system will execute each task. An example mapping (“.map” 
file) is shown in Figure 4(d). It includes various attributes for each 
task that collectively indicate the resource mapping, such as target 
IDE, communication libraries available at different levels of 
hierarchy (device, platform, and system), and most importantly, 
the target resource (specified by means of an SCF device address, 

which uniquely identifies an SCF device in the system). Although 
this mapping process is currently performed manually, existing 
design-space exploration techniques could be integrated into the 
SCF tool flow to provide optimal mapping suggestions to 
designers.  

Communication synthesis analyzes the mapping and the 
architectural model to automatically create efficient 
implementations for all edges of the task graph.  At each level of 
hierarchy in the SCF architecture model, communication synthesis 
determines what mechanisms to use, and based on this 
information it generates definitions of the required SCL functions 
for different devices and platforms. In the simplest case, 
communication synthesis determines if an edge of the task graph 
corresponds to device-level, platform-level, or system-level 
communication and translates SCL functions to the underlying 
library specified in the mapping file. For example, on a platform 
consisting of a CPU and PCI-X FPGA board, communication 
synthesis would define an SCL send from the FPGA to another 
device using the vendor API to transfer data over PCI-X. 
Although communication synthesis currently implements all 
communication as a mapping onto underlying vendor API calls, 
there are numerous possibilities for future work. For example, 
communication synthesis could potentially implement a broadcast 
between tasks on a single FPGA with just wires and a small 
amount of control logic. 

The SCF tools extract information from the “.scl” and “.map” 
files, and further invoke separate plug-ins (one for each IDE) to 
auto-generate the SCL communication routines for different 
programming languages. For the example showed in Figure 4, 
there will be a separate plug-in for C++ and Handel-C, each of 
which will generate the behavior of the SCL_send and 
SCL_receive routines for their respective tasks. Such a structure 
allows for new computational devices along with their 
programming languages and tools to be easily integrated into 
SCF, by simply creating a plug-in for the new tool (or 
programming language). We hope such a framework will be 
amenable to vendors of future technology, and provide an easy 
mechanism for using their technology with other devices in the 
system. After communication synthesis, the user combines the 
definitions for SCL functions with their corresponding task-
definition code and compiles them collectively using the native 
compiler of the associated programming language to form an SCF 

executable that can run on the corresponding system. 

4.1 Execution Model Interfacing 
One obvious challenge of SCF is enabling transparent 
coordination between different execution models (e.g., C and 
VHDL). In Section 3.3, we described the semantics of the 
message-passing model, which are simple yet sufficient to meet 
requirements of communication with most device architectures. 
To allow tasks from different execution models to co-exist, SCF 
requires communication between any two tasks to be preceded by 
a mutually agreed handshaking protocol. In addition to the 
synchronization, the implementation of communication functions 
in SCL is also responsible for ensuring the consistency of data as 
it moves from the context of one execution model to another. 
Consider an example of a data transfer from a task written in C for 
a CPU to a task written in VHDL for an FPGA. The semantics of 
message transfer are different for both the devices, and hence 
communication is established by transferring the data into an 

 

Figure 4: Example application in SCF environment. 



intermediate memory location from the source, which is then read 
by the destination task. 

In this paper, we illustrate an example of adapting such semantics 
to the execution model of an FPGA. The send and recv methods, 
commonly implemented as function calls for processors, were 
emulated as entities described using any HDL for an FPGA. These 
entities implement a simple communication protocol that enables 
FPGA tasks to communicate with other SCF devices in the 
system. The user application connects to these entities through 
data and control ports and performs data transfers by simply 
supplying the required control and data values. 

4.2 Automatic Data Conversion 
Passing data and control messages across varied platforms 
requires some mechanism of translation of data to a form 
understood by the local resources. The need for representing data 
in standardized format across a system of diverse resources has 
resulted in several standards, such as eXternal Data 
Representation (XDR) [34], Structured Data eXchange Format 
(SDXF) [35], and many more. However, the target systems for 
these standards have been loosely-coupled systems distributed 
over a wide-area network. The overhead generally associated with 
these schemes renders them less effective for systems of closely 
coupled resources and HPC applications. In our work, we use a 
modification of an approach employed by OpenMPI [20], which 
provides transparent translation of data between source and 
destination entities. 

Since only send and receive semantics are required in SCF for any 
exchange, it is sufficient to employ a data representation which is 
compatible with both the sender and receiver of data, instead of a 
data format that is compatible with all the devices in the system. 
Data conversion operations are performed by the sender into a 
representation compatible with the receiver. The SCF tools are 
informed about the appropriate conversion routines that need to 
be employed, through the information specified in the mapping 
file. These operations are automatically inserted during the 
process of custom communication synthesis on a per-need basis. 
If both communicating entities use the same data representation, 
these operations are omitted to avoid the overhead of conversion. 

A notable feature of SCF data conversion is the provision for 
user-defined bit-width. This feature allows for special devices 
which are capable of manipulating the data at the granularity of 
bits with the flexibility of passing data of arbitrary bit-widths. As 
an example, for two communicating tasks mapped onto the same 
FPGA, it may be most meaningful to synthesize connecting wires 
of the required bit-width (to conserve resources), as opposed to 
restricting to the size of one of the data types defined by any 
standard. The current prototype of the tool does not include this 
feature to support automatic data conversion, but it will be the 
focus of future work. 

5. RESULTS AND ANALYSIS 
In this section, we present experiments illustrating the 
productivity and performance advantages of SCF. First, we 
describe our experimental system and the prototype of SCL which 
we developed to support this system in SCF. We then demonstrate 
the advantages of custom communication in SCF, by comparing it 
with previous work based on a packet-switched, NoC 
communication architecture. Finally, we demonstrate the benefits 

of rapid-design space exploration using SCF through a case study 
featuring a target-tracking application. 

5.1 Experimental Setup 
The system used in our experiments consists of two Windows 
server nodes connected via Gigabit Ethernet. The first node is 
comprised of a 2GHz Athlon 3200+ processor and equipped with 
a PROCStar-II FPGA board from GiDEL. This FPGA board 
features four Altera Stratix-II EP2S180 FPGA accelerators, each 
with an external DDR memory of 128MB. The board sits in a 64-
bit PCI-X slot. The second node is comprised of a 3 GHz Xeon 
processor. To evaluate SCF, a set of prototype tools were created 
using the Eclipse environment [36][37], which allow designers to 
specify the task graph definition (“.scl” file) and the mapping 
information (“.map” file) for the application. 

The target system is represented in the SCF architecture as 
follows (shown in Figure 5). The combination of the four FPGAs 
and the host CPU form an SCF platform (P1 in the figure) and the 
second CPU forms another SCF platform (P2 in the figure). These 
two platforms collectively form our experimental SCF system. 
Each FPGA and CPU is an SCF device.  

We developed our coordination library (SCL) for our target 
system to support various levels of communication in the system. 
System-level communication between CPUs is established using 
MPI as the underlying communication mechanism. Platform-level 
communication on the CPU (P1 in Figure 5), which allows it to 
interact with the FPGAs, employs API calls provided by GiDEL. 
Device-level and platform-level communication on the FPGAs is 
supported by send and recv entities which were developed in 
VHDL and are analogous to send/recv function calls on a CPU. 
The entities connect to the user’s VHDL applications through data 
and control ports, and execute a simple communication protocol 
to communicate with the host CPU and other FPGAs when 
signaled by the user application. Note that a designer is not 
exposed to MPI or GiDEL APIs. Instead, a designer simply 
specifies all task communication using the SCL calls, which SCF 
tools automatically map onto underlying APIs (e.g., MPI and the 
GiDEL API in our case). 

5.2 Custom Communication Synthesis 
One of the advantages of SCF is its ability to synthesize custom 
communication well suited to the requirements of the application 
and the capabilities of the system. We demonstrate the advantages 
of such a scheme versus a generic, packet-switched solution using 
a simplified application, which involves sending data from two 
tasks to a third task. The task graph of the application is shown in 
Figure 6 (a), in which tasks T2 and T3 send data to T1. The figure 

 

Figure 5: SCF architectural model for experimental system. 



also shows two possible designs for the example application, both 
of which were implemented on a single FPGA. 

The first design (Figure 6(b)) employs a simple router that has a 
connection to each task with a FIFO to buffer outgoing data on its 
output ports. While this design is generic and can support a 
variety of permutations for data communication between 
connected tasks, it fails to capture information specified by data 
dependencies in the task graph. The second design (Figure 6(c)), 
alternatively, adopts a customized design based on details of data 
communication extracted from the task graph. It instantiates T1 
with two ports and connects them to T2 and T3 directly. As a 
result of this optimization, the latter design offers superior 
performance over the generic solution, as indicated by application 
execution times for two different data sizes in Figure 6(d). 

In a similar manner, custom communication, one of the important 
components of SCF, can lead to better application designs in other 
situations. Although communication synthesis is currently defined 
by implementing all communication as a mapping onto underlying 
vendor-API calls, there are numerous automatic synthesis 
possibilities for future work. 

5.3 Case Study: Target Tracking  
Target tracking using Kalman filtering [38] is a method for 
predicting the trajectory of environmental targets such as vehicles, 
missiles, animals, hostiles, or even unidentified objects. We 
selected this algorithm due to its numerous constraints that are 
often met using heterogeneous devices. There are a variety of 
factors such as error tolerance, sampling rate of input, target 
proximity to sensors, etc. that determine the exact operational 

characteristics required for a particular target-object. Different 
targets have varying requirements which mandate an appropriate 
computational platform such as an FPGA, an embedded processor 
or a desktop processor (CPU).  

In this study, we analyze the overall performance of the system by 
using SCF to rapidly evaluate different resource mappings of our 
target-tracking application which tracks three objects using three 
Kalman filters (one each). Figure 7 shows the task graph of the 
application. Task T1, the sensor process, creates the inputs for all 
three filters and is implemented in C++. The three Kalman filters 
(tasks T2, T3, T4) can be mapped on a CPU (with its design 
implemented in C++) or on an FPGA (as a VHDL design). 

Table 2 presents execution times of the application under various 
mapping scenarios for three different systems. System I is our 
experimental system (described in Section 5.1). Systems II and III 
represent notional systems, emulating the characteristics of a 
system that has lower bandwidth and higher latency of 
communication between the CPU and FPGAs. When power 
consumption is a major consideration, systems often employ 
FPGAs running at a lower frequency, perhaps attached to the 
system over a lower-speed bus. We implemented these emulations 
by adding extra delays on the FPGA in our experimental system to 
reduce bandwidth. The rows of the table represent the number of 
tasks (amongst T2 to T4) mapped to CPUs and FPGAs. T1 is 
always mapped on the CPU device of platform P1 (in Figure 5). 
Each of the other three tasks either time-shares the CPU device on 
platform P2 with other tasks mapped onto it or executes on an 
FPGA on platform P1. 

Table 2 shows that the three systems, although similar, yield 
different optimal mappings (where optimal mapping is defined as 
the mapping which achieves best performance and, in case of tie, 
with least number of FPGAs). With SCF, exploring these different 

 

Data 
Transferred 

Execution Time (ms) 

Speedup NoC-based 
Design  (a)    

SCF Custom 
Communication (b) 

4MB 16.8 8.4 2 

8MB 33.6 16.8  2 

(d) 

Figure 6: (a) Task graph of an application implemented using 

(b) a NoC-based design and (c) SCF custom communication, 

which (d) results in a speedup of 2×. 

 

Figure 7: Task graph for target-tracking application. 

Table 2: Execution time of target-tracking application under 

different mapping scenarios for three systems.  Speedup shows 

performance gain of optimal mapping (highlighted in bold) 

compared to all-CPU baseline (i.e.  3-CPU, 0-FPGA mapping). 

Mappings 
Execution Time (ms) 

System I System II System III 

3-CPU, 0-FPGA 243 243 243 

2-CPU, 1-FPGA 152 152 167 

1-CPU, 2-FPGA 67 86 167 

0-CPU, 3-FPGA 8 86 167 

Speedup 28.3 2.8 1.4 



mappings only required simple modifications to the resource 
mapping file, and none to source code. The SCF communication 
synthesis tool adapted the communication infrastructure based on 
information in the mapping file. In contrast, any such changes 
traditionally would require modifications to the application source 
code and designer intervention to create communication 
infrastructure to match the new resource mapping. Moreover, that 
process would have to be repeated multiple times until a suitable 
level of performance is obtained. With SCF, we were able to 
perform design-space exploration rapidly, which led to speedups 
ranging from 1.4 times faster to more than 28.  

In order to understand productivity gains obtained by employing 
SCF, we recorded development hours that we spent during our 
experiments, in addition to source lines of code (SLOC) involved 
in certain parts of the application code. Table 3(a) shows the 
increase in source lines of code involved for establishing 
communication from the CPU to each FPGA without SCF. A 
large part of this improvement comes from hiding details of 
communication from the designer while presenting an easily used 
interface through SCL. Although these numbers are specific to 
our experimental system and team personnel, we believe them to 
be a fair estimate of improvements we expect to obtain with SCF. 

The development hours reported in the table include time spent in 
modifying the application design to match the resource mapping, 
in addition to time required for learning the vendor-specific APIs, 
both of which can be reduced significantly when using SCF. 
Based on these results, we estimate SCF framework can reduce 
development time and improve productivity by a factor of 
approximately five. The optimistic case in Table 3(a) represents a 
case where designer is unfamiliar with the system, and thus has to 
undergo a steep learning process for the APIs for each device. The 
conservative case represents an experienced designer who is 
familiar with the tools and vendor-APIs for that particular system. 

Table 3(b) lists the overhead incurred by our VHDL design where 
the communication infrastructure was created using the SCF, in 
comparison to optimized, hand-written design developed for the 
same application. It is clear from these results that the 
communication routines employed by the tools result in modest 
overheads in terms of both resources and performance. 

6. CONCLUSIONS 
To address challenges involving task coordination in future 
reconfigurable, heterogeneous systems, we have introduced a 
system-level coordination framework that enables communication 
and synchronization between tasks running on heterogeneous 
processing devices in a system. SCF hides the low-level 
architectural details from the application designer, resulting in 
improved productivity. By allowing designers to define 
communication independently of the devices in a system, SCF 
improves application portability. In addition, SCF allows 
designers to define tasks using potentially any language, which 
enhances the inter-operability between different vendor tools. 

We analyzed a prototype of the framework and its associated tools 
and libraries through various experiments. Our experiments 
indicate that custom communication, one of the important 
components of SCF, creates designs that offer superior 
performance over a generic solution. The performance advantages 
of SCF were illustrated with a target-tracking application study 
that achieved a speedup of 28× by using the rapid design-space 
exploration enabled by SCF. Higher level of abstraction offered 
by this framework leads to substantially improved designer 
productivity, with current estimates ranging up to 5×. 

In future, we intend to add support for automatic data-conversion 
mechanisms as outlined in this paper. We also plan to extend the 
communication infrastructure to incorporate non-blocking 
communication and thus allow applications to exploit more 
concurrency. In addition, we would like to standardize the 
mechanism of supporting new platforms in this framework to 
allow vendors to comply with requirements in an easy manner. 
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