
ABSTRACT
Reconfigurable computing (RC) is rapidly becoming a vital
technology for many applications, from high-performance
computing to embedded systems. The inherent advantages of
custom-logic hardware devices, such as the FPGA, combined with
the versatility of software-driven hardware configuration often
boost performance while reducing power consumption. However,
compared to software design tools, the relatively immature state of
RC design tools significantly limits productivity and consequently
limits widespread adoption of RC. Long and tedious design-
translate-execute (DTE) processes for RC applications (e.g., using
RTL through HDL) must be repeated in order to meet mission
requirements. Novel methods for rapid virtual prototyping and
performance prediction can reduce DTE repetitions by providing
fast and accurate tradeoff analysis before the design stage. This
paper presents a novel core-level modeling and design (CMD)
framework for RC algorithms to support fast, accurate and early
design-space exploration (DSE). The framework provides support
for core-level modeling, performance prediction, and rapid
bridging to design and translation. Core-level modeling enables
detailed DSE without the need for coding. Performance prediction,
such as maximum clock frequency, supports core-level DSE and
can help system-level modeling and design tools to achieve more
accurate system-level DSE. Finally, core-level models can be used
to generate code templates and design constraints that feed
translation tools and to rapidly obtain predicted performance.

Categories and Subject Descriptors

B.8.2 [Performance and Reliability]: Performance Analysis and

Design Aids; C.4 [Performance of Systems]: Design studies,

Modeling techniques, Performance attributes.

General Terms

Algorithms, Performance, Design.

1. INTRODUCTION
Reconfigurable computing (RC) bridges the gap between

hardware and software, often providing much higher performance

than software and flexibility than hardware. By providing

reconfigurable computational units with a programmable

interconnect, RC devices such as field-programmable gate arrays

(FPGAs) enable designers to create custom circuits for particular

applications, often resulting in orders of magnitude speedup [2, 5,

22, 25] and improved energy efficiency [11, 13, 18].

Despite having many advantages, FPGA usage has been limited

largely due to a requirement for hardware expertise and relatively

immature design tools and methodologies. A contemporary RC

application-development flow typically follows a design-translate-

execute (DTE) methodology (shown in Fig. 1 as the last three

steps) where the designer designs the application by specifying

RTL functionality (through HDL), translates (or implements, we

use them interchangeably in this paper) that functionality into a

custom circuit (through synthesis and placement and routing

(PAR)), and finally executes the resulting circuit for the purposes

of verification or performance analysis. One significant problem

with this approach is that, if the design needs to be changed, the

designer must re-evaluate design decisions, modify the code, re-

translate the code, and re-execute the new circuit. This process

can require weeks or months of increased development time [12,

19]. Even if only a single line of code is changed, iterative PAR

runs may take hours or even days.

To reduce the DTE iterations, previous works [20, 21] have

proposed the use of formulation as a step preceding design, for

early DSE. As shown in Fig. 1, formulation is the first step in the

FDTE model of RC application development. During formulation,

an RC application is abstractly modeled and, based on mission

requirements (e.g., performance/power), predictions are made

through simulation or analysis [14, 20, 21] to rapidly explore the

potential design space for good candidate implementations or to

rule out bad ones. It has been shown [16] that effort spent in

formulation is expected to have significant impact on the overall

productivity by reducing the number of DTE iterations since

better strategic choices in formulation mean less frequent re-

design.

One common approach of current formulation tools is to model

algorithmic components (e.g., tasks) and architectural devices as

black boxes, whose parameters (e.g., throughput, latency, area,

clock frequency) are provided by designers via experimentation or

A Framework for Core-level Modeling and Design of
Reconfigurable Computing Algorithms

Gongyu Wang, Greg Stitt, Herman Lam, Alan D. George

NSF Center for High-Performance Reconfigurable Computing (CHREC)
University of Florida, Gainesville, FL 32611

Email: {wangg, gstitt, hlam, george}@chrec.org

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HPRCTA'09, November 15, 2009, Portland, Oregon
Copyright © 2009 ACM 978-1-60558-721-9/09/11... $10.00

Abstract Representation

Performance Prediction
and DSE

Compile Code into

Executable Format

Run Application on

Target Platform

Formulation

Design

Translation

Execution

Fig. 1: FDTE Model

Debug / Performance

Analysis

Write, Debug Code

estimation. Existing formulation approaches [14, 20, 21] abstract

away many low-level details leaving DSE with only high-level

choices, such as topology of communication networks,

addition/removal of components, modification of parameters of an

entire algorithm/device, etc. Although these highly abstract

approaches are appropriate for certain situations, an approach that

also includes low-level details would enable more detailed and

accurate DSE. Secondly, for widespread adoption of RC

technology, it is not realistic to expect RC application developers

(e.g., domain scientists) to have extensive knowledge of the

hardware (e.g., FPGA) and be able to provide accurate estimation

of all the algorithmic and architectural parameters needed by these

formulation tools (e.g., the FPGA frequency required by the

formulation tool, RAT, in [14]). Without accurate parameters,

prediction fidelity of these early-DSE tools is limited. Even worse,

if bad parameter values are assumed by the designer, formulation

may increase the number of DTE iterations. Although designers

can alternatively choose to implement particular tasks to gather

accurate parameter values, implementation is time-consuming and

there is the risk that the expensive implementation may eventually

be ruled out during DSE. Finally, overly abstract models cannot

be used to produce code templates and design constraints that are

necessary to bridge system-level, model-based design to detailed

design and implementation.

To address these problems, we propose a core-level modeling and

design (CMD) framework for RC algorithms to support accurate

and fast DSE and rapid bridging to design and translation. Core-

level modeling enables more detailed DSE (in contrast to task-

level modeling) without the need of coding (in contrast to RTL

modeling) for algorithms on RC devices. CMD can be used to

complement formulation tools (e.g., [14, 21]) to enable more

accurate, system-level DSE by providing accurately predicted

parameters (e.g., maximum clock frequency). Also, CMD can be

used to complement RC design tools like System Generator [26]

by providing efficient, early DSE. Moreover, CMD provides a

core-level abstraction with enough details so that automated DSE,

function simulation, verification, code generation, and fast code

translation can be implemented as future add-ons.

The remainder of the paper is organized as follows. Section 2

presents related research. Section 3 provides an overview of the

CMD framework, focusing on the details of two key components

of the framework: core-level model construction and parameter

prediction. Our initial work on fast code translation (a promising

future direction) is briefly described as well in Section 3. In

Section 4, we present case studies to validate the parameter

prediction methods. Detailed DSE of FPGA algorithms and the

methods to obtain predicted frequencies are demonstrated via

proof-of-concept examples. Section 5 presents conclusions and

future work.

2. RELATED RESEARCH
In this paper, we focus on the primary challenges of the CMD

framework: methodologies of core-level modeling and parameter

prediction that can enable fast, accurate and early DSE.

Previous works on early DSE for RC applications [14, 20, 21]

focused on system-level modeling and prediction. Those

approaches generally modeled RC algorithms and components of

large granularity (tasks) as black boxes with user-specified

parameter values for system-level performance prediction. CMD

models RC algorithms at the core level, which is more detailed

than the task-level in [14, 20, 21], so that parameters of the tasks

can be systematically and rapidly predicted.

Mohanty [15] proposed kernel-level modeling of FPGA

algorithms, which is similar to CMD. Xilinx System Generator

[26] shares the same abstract-modeling approach. A collection of

modeling domains is described in [7]. CMD falls in the discrete-

event and/or synchronous data flow domain. CMD improves upon

these previous approaches by enabling clock-frequency prediction

and early prediction-based DSE. Previous approaches were

intended for simulation and design. Thus, instead of borrowing

from those previous methods, we created a new modeling

methodology. Future work will focus on integrating CMD with

previous methods.

For parameter prediction, Strenski [24] provides a methodology to

estimate the theoretical maximum Gflop/s for a given FPGA.

However, this approach is generic to device and not specific to

application or circuit. CMD models the algorithm of an RC

application and predicts key parameters for the algorithm after its

mapping to an RC device.

Two distinct methodologies to predict frequency and area for

FPGA algorithms are presented in [17] and [6]. The former

method works at the level of configurable logic blocks (CLBs),

which is more fine-grained than CMD’s core level. As a result,

more detailed hardware knowledge is required to build the model

and the prediction process is complicated and time-consuming.

The latter method [6] works at the task level of FPGA, which is

typically more coarse-grained than the core level in CMD. In this

case, the accuracy for parameter prediction is limited due to

greater abstraction. CMD models specific algorithm structure as

well as primitive operations, but abstracts away the low-level

architecture (e.g., CLB) information. In this manner, CMD can

achieve prediction accuracy comparable to [17], with a prediction

speed comparable to [6]. It should be noted that CMD is not a

FPGA design framework (e.g., Xilinx ISE, Altera Quartus II, VPR

[1]). CMD does not synthesize or place-and-route RTL

components and hence does not require the detailed knowledge of

FPGAs as do those design tools.

To the authors’ knowledge, CMD is the first to perform RC

algorithm modeling and FPGA frequency/area prediction at the

core level.

3. CMD FRAMEWORK
The CMD framework is a design methodology and a set of tools

that support core-level modeling, parameter prediction, code

generation, and constraint generation, for the purpose of early

DSE and fast implementation. A core-level model is comprised of

functional cores and links that connect the cores. Functional cores

can be any core primitives (as defined later), regardless of their

complexity (e.g. adders, multipliers, FFT cores, etc.). Links that

connect the cores represent the control/data signal paths. Shown

in Fig. 2 is an overview of the framework and how it integrates

within the FDTE model from Fig. 1.

Within the formulation stage, the CMD framework has two major

steps: core-level model construction and parameter prediction.

The inputs to core-level model construction are the application

algorithm to be modeled (in the form of a task graph) and the

characteristics of the target RC platform. Based on these two

inputs, a designer performs core-level model construction using a

CMD modeling tool. The core-level model is then used as input to

parameter prediction. The details of core-level model

construction are described in Section 3.1.

Parameter prediction takes in the core-level model and predicts

values of key parameters, based on target device characteristics

and optional designer inputs. DSE is performed iteratively, either

manually or with automated techniques [23], between model

construction and parameter prediction until design goals are met.

DSE is also possible by iterating through the parameter prediction

process. The parameter-prediction and DSE is detailed in Section

3.2.

DSE in the formulation stage is of little practical use if the results

cannot be easily used in the detailed design and implementation.

To bridge formulation into design, the CMD framework uses code

template generation. Constraints generation is used to supply

constraints to the translation stage. Code templates can be used to

support automated or semi-automated generation of code, which

combined with generated constraints can deliver an executable

with frequency, area, latency (and other parameters) equivalent to

those predicted during DSE. CMD can also help designers to

work with legacy code by speeding up its implementation and

optimizing its performance. Verification at the execution stage is

performed using debug and performance analysis tools. In Section

3.3, generation of code templates, constraints, and corresponding

improvements to the efficiency of implementation (i.e., translation)

will be discussed.

In the following subsections, we illustrate the CMD framework,

focusing on the details of core-level model construction and

parameter prediction. Note that some aspects of the framework

described in this section are not yet implemented as automated

tools but, for completeness of the CMD framework, they are

conceptually illustrated. Also note that, although each section

emphasizes FPGAs, CMD methods are also potentially applicable

to other RC devices.

3.1 Core-level Model Construction

Fig. 3 illustrates the process of core-level model construction. The

inputs are the application algorithm and the target RC platform.

The first step of core-level model construction is SW/HW

partitioning, which partitions out the tasks of the application to be

implemented on RC devices, which we refer to as the RC-device

tasks. Algorithms to fulfill the RC-device tasks are referred to as

algorithms of RC-device tasks. CMD does not restrict the

techniques used for SW/HW partitioning; it can use existing

partitioning techniques (e.g., [3]) or can be specified by a designer.

After partitioning, the designer models the algorithms of RC-

device tasks through core-primitive graph creation. At the same

time, a set of device characteristics (e.g., device infrastructure,

basic operation characteristics) are extracted by designers for the

target RC devices in the platform. These device characteristics are

used to determine the parameter values of the core-primitive graph

to produce a core-level model. These steps can potentially be

performed automatically but the current CMD framework requires

the designer to manually partition the algorithm and create the

core-level model.

3.1.1 Core-primitive Graph
The core-primitive graph models the algorithms of RC-device

tasks. Core primitives are the basic operations common to both

RC devices and algorithms. Because core primitives are common

a: RC-device tasks b: core-primitive graph

c: device characteristics

Fig. 3: Core-level Model Construction

a b

c

Fig. 2: CMD Framework and FDTE Model

(Dotted lines indicate iterative processes)

to RC devices, device vendors have often optimized these

operations and provide documentation on their performance and

area. Because core primitives represent basic operations that are

common building blocks for algorithms, designers are able to use

core primitives to intuitively describe their algorithm in a way

similar to other high-level modeling tools (e.g., Simulink). For the

same reason, designers can verify the functionality of their

algorithms, unlike highly abstract formulation approaches.

For example, for a DSP algorithm on an FPGA, core primitives

may consist of memory controllers, adders, multipliers, registers,

and basic control. In many cases, a core primitive will correspond

to a predefined IP core. CMD also allows for a core primitive to

be defined in terms of other primitives (e.g., multiply-accumulate

using an adder and multiplier primitive). Note that core primitives

are not necessarily defined at one specific level of granularity.

Designers can trade off prediction accuracy for reduced modeling

time by selecting a level of granularity that is appropriate for a

given situation. Core primitives are connected by directed links,

which model data or control signals, to form a core-primitive

graph. A simple example of core-primitive graph is shown in Fig.

4, which is explained in details in the next subsection.

3.1.2 Core-level Model
After modeling the RC-device tasks as a graph of core primitives,

the designer then creates a core-level model that is parameterized

by defining values for selected attributes (i.e., parameters) for

each core primitive and link. In many cases, these values can

simply be obtained from device datasheets, or can alternatively be

determined via micro-benchmarking, which takes relatively short

time because core primitives are often basic operations.

For FPGAs, CMD currently requires parameter definitions for

maximum clock frequency, resource utilization (i.e., area, we use

them interchangeably throughout the paper), and latency for each

core primitive. Also, each link in the core-level model must have a

specified bit-width. Additional attributes for core primitives can

be introduced to enable new features for CMD.

CMD combines the attributes of core primitives and links with

detailed characteristics of the targeted FPGA (e.g., logic cell

layout, unit delay of routing channels) to form a complete core-

level model, which is used by the parameter-prediction process.

The attributes and detailed characteristics are both provided by

the device characteristics extraction.

As an example, a core-level model for a pipelined double-

precision floating-point (DPFP) summation on a Xilinx Virtex-4

LX100 or Altera Stratix-II FPGA is shown in Fig. 4. The model

consists of two types of core primitives: adder and register. For

each adder, the frequency, latency, and area (the number of

digital-signal processing (DSP) slices and flip-flops (FF) used by

the adder) are determined using the floating-point-operator

datasheet [9], or provided by the Xilinx CORE Generator (or the

Altera Megafunction Wizard), thus requiring little effort from a

designer. All registers (labeled as Reg64 in Fig. 4, because the

width of the registers is 64 bits) have latency of 1 clock cycle and

they can be lumped in series to apply specific latency to signals.

3.2 Parameter Prediction

CMD parameter prediction, shown in Fig. 5, uses the core-level

model to estimate the values of key parameters for the entire

algorithm of the RC-device tasks. The placement step first assigns

physical locations of the core primitives on the target device.

Based on the placement, CMD performs routing estimation to

determine routing delays, which are used to perform frequency

prediction of the algorithm. Other parameters such as area and

latency are also determined. Although CMD can automate these

steps using techniques described in the following sections, we

currently evaluate the CMD framework by manually performing

placement and routing estimation.

3.2.1 Placement
A placer in CMD can be implemented using any existing

placement heuristic. As an example, simulated-annealing can be

used to place core primitives by first determining the bounding

boxes of all core primitives based on the resource utilization for

each of them and the characteristics of the target device (e.g.,

resource geography). The shape of a bounding box is rectangular

with changeable aspect ratio [4]. Next, the placer randomly tries

different placements of all core primitives, using a cost function

determined by different possible design goals.

If maximum frequency is the design goal, core primitives are

placed close to each other using a cost function that minimizes the

distances between linked core primitives. The distance between a

pair of linked core primitives is defined as the orthogonal distance

[8] between the centers of their bounding boxes (i.e., average-

terminal distance). The cost function also considers routing

congestion by scaling the average-terminal distance with the

resource-utilization rate of the device. If the design goal is to fit

all the core primitives into a certain bounding box, the placer uses

a: placed core-level model b: estimated routing delay

Fig. 5: CMD Parameter Prediction

a b

Fig. 4: Core-level Model of DPFP Summation

a cost function that minimizes the bounding-box size. Note that

the basic element to be placed is a core primitive. Therefore,

placement in CMD framework is more coarse-grained and will

take much less time than placing a technology-mapped netlist.

Alternatively, designers with knowledge of the hardware

architecture can manually place core primitives on the target

device. In this way, if the resulting performance/area is not

satisfactory, designers can come back and alter the placement

(DSE 2, as shown in Fig. 2 and Fig. 5).

In this paper, maximum frequency is chosen as the design goal.

For the case studies presented in Section 4, we use manual

placement because detailed knowledge of commercial FPGAs is

not available for us to implement the CMD placer and FPGA-

vendor tools can aid manual placement of the core primitives.

In the example shown in Fig. 4, using the DSPs of the target

FPGA (Virtex-4 LX100), we place the two adder core primitives

over the FPGA’s DSP columns. We then modify the adders’

aspect ratios so that the distance between them is as short as

possible. For Stratix-II S180, adders consume no DSP, which

makes it easier to manipulate their location and distance.

3.2.2 Routing Estimation
Routing estimation determines routing delays for a specified

placement. Given the knowledge of the target device’s unit-wire

delay and the previously determined average-terminal distances,

CMD calculates the routing delay between each pair of linked

core primitives. Moreover, based on the work of Feuer [8],

routing congestion is considered in terms of total utilization rate

of the device.

According to Feuer, the average internal-wire length of a circuit

increases if more components are added to it. This relationship is

given by Eq. 20 in [8]. The average internal-wire length is not

needed for CMD routing estimation but the authors find that it is a

good indicator of the routing congestion for a core-level model.

Experiments have confirmed the equation’s relation to routing

congestion and calibrated it to scale the routing delays. The

details of these experiments are outside the scope of this paper.

The assumption that the input/output ports of a core primitive are

averaged at the center of its bounding box is made in the

placement step and inherited by the routing-estimation step. CMD

could eliminate the need for this assumption by modeling the

locations of core primitives’ input/output ports, which may

involve trade-off study of quality and time and therefore is

deferred to future work. Routing estimation for the example in Fig.

4 is presented in the next subsection.

3.2.3 Frequency Prediction
Frequency prediction estimates the clock frequency of the

modeled algorithm. For our design goal, CMD initially predicts

maximum frequency of the algorithm of RC-device tasks as the

lowest frequency among all core primitives in the algorithm’s

core-level model. Then, CMD adds the routing delays between

each pair of linked core primitives to their critical-path delays

(inverse of their frequencies), resulting in adjusted frequencies of

the core primitives. The routing delays are scaled according to the

device utilization to account for routing congestion. Finally, CMD

determines the predicted frequency as the lowest adjusted

frequency among all core primitives.

For the example in Fig. 4, given the previously described

placement, CMD estimates maximum frequencies of 327 MHz for

the Virtex-4 LX100and 302MHz for the Stratix-II S180, which is

the lowest frequency among all the core primitives for each FPGA.

Although routing delays will often affect the maximum frequency,

it has no effect in this case due to the lack of routing congestion

resulting from low resource utilization. (under 10% of either

Virtex-4 LX100 or Stratix-II S180). Congestion becomes

significant for algorithms with higher device utilizations, as

shown in the case studies in Section 4.

Currently, CMD assumes a single clock domain, but the method

can be extended to handle multiple clock domains by performing

the analysis of core primitives and routing delays in each domain.

3.2.4 Area, Latency Prediction
For latency prediction, latencies of core primitives along each

path, from input ports to output ports, are summed to produce the

latency of that path. Similarly, area prediction sums the resource

utilizations of each core primitive in the core-level model to

determine overall resource utilization, assuming core primitives

do not share resources. Given accurate attribute values of core

primitives, the accuracies of latency and area prediction can be

very high. Although the flow in Fig. 5 shows only the prediction

of typical parameters such as frequency, area and latency, CMD

can be expanded to include other parameters and metrics.

3.3 Constraint Generation and Translation
As mentioned, DSE in the formulation stage is wasted if the

results cannot be easily used in design and obtained in

implementation. The CMD framework uses code-template

generation and design-constraint generation to tunnel early DSE

results into design and translation stages. Code template is

generated from the core-level model of the algorithm of RC-

device tasks to inherit design choices, such as the types of core

primitives, the links between core primitives, etc., which have

been determined during early DSE. However, code generation,

especially automatic code generation, is a complicated problem

and is deferred to future work. Constraint generation for FPGA is

described in detail as follows.

For FPGAs, constraints generation creates frequency and area

constraints that can help designers in translation stage by reducing

the number of translation iterations normally required to manually

explore different constraints. Area constraints can be determined

from the placement of core primitives, which is shown via a

proof-of-concept case study in Section 4.4.

The generated frequency constraint is determined by the predicted

frequency plus some “slack” to account for improved performance

from RTL PAR. Due to the uncertainty of the PAR process, this

slack is impossible to predict. For example, a PAR tool may not

find a solution for a frequency constraint of 250 MHz, but

surprisingly may find a solution for a higher constraint of 260

MHz. For this reason, automatically exploring all possible

frequency constraints beyond the predicted one is vital to achieve

the maximum frequency using certain FPGA PAR tools. Also, it

saves time for designers to start searching from a predicted

frequency rather than a speculated one.

CMD performs the frequency search using two possible methods.

One method uses a binary search to reduce the total number of

PAR iterations. The second method uses a cluster-based search

that performs numerous PAR executions in parallel. For both

techniques, the speedup compared to manual timing closure is

dramatic. For the case study of N-body simulation, as described in

Section 4, the time was reduced from days to less than an hour.

CMD can help designers that work with legacy code in three ways.

Our cluster-based frequency search scripts can take in legacy code

and produce better frequency in a relatively short period of time.

Secondly, the core-level model of the legacy code can be created,

possibly using automated commercial tools like Code2Graphics of

Active-HDL. The resulting core-level model can then be used to

not only generate constraints but also to optimize the performance

via fast DSE. Finally, the core-level model represents a condensed

yet precise means of documentation for the algorithm.

4. CASE STUDIES AND RESULTS
In this section, case studies are presented to showcase the

accuracy of parameter prediction and productivity advantage of

the CMD framework. The accuracy is verified through a

comparison between predicted and verified frequencies. The

productivity advantage is demonstrated in two scenarios: core-

level DSE and fast code implementation. Note that additional

productivity is gained from using a more abstract block diagram

to design because block diagrams are more natural than low-level

program code for many designers, especially those that are not

experts of VHDL or Verilog.

To test our case studies, we use the Xilinx Virtex-4 LX100 and

Altera Stratix-II S180 FPGAs as the target RC devices. ISE 9.2i

and Quartus II 9.0 are used for synthesis and PAR. The settings of

the tools are selected to maximize effort levels to achieve the

highest possible clock frequency. To derive the routing delay of

unit-length routing wire, the timing analyzers of both tools are

used to empirically determine the average routing delay of a single

switch matrix (0.5ns for Virtex-4 LX100 and 0.4ns for Stratix-II

S180).

4.1 Core-level Models for the Case Studies
Three case studies were performed. The first case study (DPFP

summation) uses the core-level model shown in Fig. 4. The

second case study features an algorithm of an 8-tap single-

precision floating-point (SPFP) FIR filter and the third case study

features an algorithm of N-body simulation. The core-level

models of the latter two case studies are shown in Fig. 6. The

(a) (b)

Fig. 6: Core-level Models of Case Studies: (a) 8-tap SPFP-FIR Filter and (b) N-body Simulation

Table 1. Parameter Values for Selected Core Primitives in FIR filter and N-body Simulation Case Studies

Parameters

Virtex-4 Stratix-II Virtex-4 Stratix-II Virtex-4 Stratix-II Virtex-4 Stratix-II

Frequency (MHz) 397 400 378 375 305 275 321 275

DSP usage 4 0 0 0 0 0 0 0

FF usage 254 1125 588 902 289 379 227 345

Latency (cycles) 10 11 13 14 6 6 6 6

FIR filter

Mult Add

N-body Simulation

FLT_FIXED FIXED_FLT

attribute values of their core primitives are summarized in Table 1.

For the sake of illustration, most core primitives in the core-level

model of N-body simulation are combined into one high-level

block (shown as Force Calculation) and attribute values of only

two sample core primitives (FLT_FIXED converts the floating-

point data to fixed point and FIXED_FLT converts the fixed-point

data to floating point) are shown in Table 1.

These case studies were selected due to their nature of being

floating-point DSP algorithms, whose clock frequencies are

generally difficult to predict. In these case studies, the core-level

models did not consider all the control logic, such as finite-state

machines, which is left as future work. However, a finite-state

machine can be modeled as one additional core. The N-body

simulation has a fixed-point core primitive (Accum), whose

characteristics were derived from benchmarking through its

VHDL code. The VHDL code of Accum has 42 lines and the

benchmarking took less than 5 minutes to derive a maximum

frequency of 500MHz, which is the upper limit of both Virtex-4

LX100 and Stratix-II S180.

Although CMD can potentially create code from core-level

models automatically, in the current CMD framework, we

manually created the code for the case studies.

4.2 Verification of Parameter Prediction
To confirm the accuracy of CMD modeling and the parameter

predictions for the algorithms of RC-device tasks, we compared

the predicted frequencies (derived using manual placement) with

the maximum frequency determined using the FPGA-vendor tools

(through PAR on the target FPGAs). To determine the maximum

frequency, we use the constraint-generation scripts described in

Section 3.3 to further explore possible frequency constraints at

increments of 1 MHz and mark the highest. Fig. 7 illustrates the

frequency-constraint search for FIR filter. Other case studies are

omitted for brevity. Note that a high frequency constraint (e.g.

319 MHz in Fig.7 (a)) can still be met even if a lower one (e.g.

316-318 MHz in Fig.7 (a)) is not.

The predicted and verified frequencies of all case studies are

summarized in Fig. 8. It can be seen from the results that,

Fig. 8: Comparison of Predicted Frequency against Verified Frequency by (a) Frequency and (b) Error Rate

(a) (b)

0

50

100

150

200

250

300

350

400

450

DPFP
summation

SPFP FIR filter N-body
simulation

F
re

q
u

e
n

c
y

 (
M

H
z
)

Predicted (Xilinx) Verified (Xilinx)

Predicted (Altera) Verified (Altera)

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

DPFP
summation

SPFP FIR filter N-body
simulation

E
rr

o
r

R
a

te
Xilinx Altera

(a) (b)

Fig. 7: Frequency Search Result of FIR-filter Case Study for (a) Virtex-4 LX100 and (b) Stratix-II S180

319

0

50

100

150

200

250

300

350

400

450

500

4 174 312 322 331 344

Frequency Constraint (MHz)

F
re

q
u
e
n
c
y
 (
M

H
z
)

Obtained

Constraint
328

0

50

100

150

200

250

300

350

400

5 285 315 321 327

Frequency Constraint (MHz)

F
re

q
u
e
n
c
y
 (
M

H
z
)

Obtained

Constraint

regardless of the algorithm complexity, CMD provides accurate

frequency prediction, which lends itself to core-level DSE and

also system-level DSE via integration with system-level tools. The

worst error rate is 3.25% for DPFP summation.

For resource usage prediction, the results for all case studies are

almost 100% accurate, even for the largest case study (N-body

simulation) that utilizes nearly half of the FPGA. Note that for

these examples, CMD can calculate the exact latency, and thus

yields 100% accuracy. For prediction of both resource usage and

latency, the accuracy is high due to the fact that corresponding

attribute values of all primitives are accurate.

4.3 Core-level DSE
To demonstrate core-level DSE, we consider several possible

DSP-usage combinations (maximum usage means 5 DSPs; full

usage means 4 DSPs; medium usage means 1 DSP) of multipliers

and adders for FIR filter on Virtex-4 LX100. The predicted and

verified frequencies for each combination are summarized in

Table 2. Note that the frequencies are correctly predicted by CMD

for all but one combination—full usage of DSP for all multipliers

and full usage of DSP for all adders (the grayed row in Table 2).

The reason for this incorrect prediction is an inefficient manual

placement, which illustrates that the performance from placement

assignment can be limited by the designer’s experiences.

Early DSE with CMD, as shown in Table 2, determines that the

first combination (full usage of DSP for all multipliers and no

usage of DSP for all adders) yields the best predicted frequency—

317 MHz, which is acceptable when compared to the best verified

frequency of the best combination (full for all multipliers and full

for all adders)—333 MHz.

Considering the predicted frequencies in Table 2 take minutes to

derive and the verified ones take days, it is a good tradeoff. In this

way, CMD can increase the DSE productivity enormously. Also,

the early DSE results can help the designer to determine if an

FPGA design can meet external timing requirements very fast

because neither coding nor PAR were needed.

DSP usage of floating-point cores of Altera FPGAs is usually not

configurable. However, early DSE of other design options that are

important to an application can be performed in a similar manner

on Altera FPGAs. For example, the latency option in Altera’s

floating-point cores can be varied to achieve different maximum

frequencies. We defer exploration of those options to future work.

4.4 Frequency with Generated Constraints
As described in Section 3.3, the frequency constraint is generated

by adding some “slack” to the predicted frequency. The area

constraint is generated by translating our placement estimation or

assignment to a format suitable for use of CAD tools. Fig. 9

shows an example of the area constraint, using the ISE area-

constraint editor, for the FIR-filter case study on Virtex-4 LX100.

The eight rectangles on the left of the figure are the bounding

boxes of the eight multipliers in the core-level model of FIR filter.

The other seven rectangles in the figure are the bounding boxes of

the seven adders in the model. Each rectangle is linked to its

adjacent ones. It can be seen that the choice of layout and shapes

0%

2%

4%

6%

8%

10%

12%

14%

16%

DPFP
summation

SPFP FIR filter N-body
simulation

E
rr

o
r

R
a

te

Xilinx Altera

(a) (b)

Fig. 10: Comparison of Predicted Frequency against Obtained Frequency by (a) Frequency and (b) Error Rate

0%

0

50

100

150

200

250

300

350

400

450

DPFP
summation

SPFP FIR filter N-body
simulation

F
re

q
u

e
n

c
y
 (

M
H

z
)

Predicted (Xilinx) Obtained (Xilinx)

Predicted (Altera) Obtained (Altera)

Table 2. DSE for FIR Case Study

For all Mult For all adder Predicted Verified

full no 317 319

max no 257 254

max full 219 215

no full 261 268

medium full 279 280

full full 246 333

no no 262 271

medium no 279 278
Fig. 9 Area Constraint for FIR Case Study

Multipliers Adders

of the rectangles makes the average-terminal distances as short as

possible. The same approach should work for Altera FPGAs as

well and it is an immediate future work of the authors.

Using the frequency constraint and area constraint generated by

CMD, a reduced number of CAD tool iterations is required to

obtain frequencies that are comparable to the predicted ones. The

obtained frequencies for all case studies using this approach are

shown in Fig. 10 (using both frequency and area constraints for

Virtex-4 LX100 and using just frequency constraint for Stratix-II

S180). Note that the results are derived by a single iteration of

vendor tools for FIR filter and N-body simulation, which is to be

compared with dozens of iterations when not using the generated

constraints to derive the same resulting frequency.

Our automated scripts can be used to work with the generated

frequency constraint to derive even better result than the obtained

in a relatively short period of time. For example, the search for the

FIR filter on a Virtex-4 LX100 took approximately 30 minutes to

achieve 319 MHz (higher than the obtained 309MHz, as shown in

Fig. 10), in contrast to several hours of using ISE serially to

obtain about the same frequency (319MHz).

5. CONCLUSIONS
The usage of reconfigurable computing has been limited largely

due to a common requirement of application designers for

hardware expertise and the relatively immature nature of design

tools and methodologies. A FDTE model of RC application

development has been proposed [20, 21] in attempt to overcome

this limitation and following this approach, several system-level

formulation tools are available to help designers carry out early

DSE. However, these tools assume that key parameters of

algorithmic components and architectural devices in the system-

level models are provided by designers, which greatly limits the

wide use of formulation tools.

To address this vital problem, we created a core-level modeling

and design (CMD) framework that support both fast, accurate

DSE (of finer granularity than system-level tools) and rapid

design and implementation (not available from system-level tools)

for reconfigurable computing algorithms. This framework

provides a core-level abstraction so that enough details are

modeled to enable accurate parameter prediction, functional

verification and fine-grained DSE. Also, the CMD framework

produces code templates and design constraints, thus bridging

formulated abstract models to concrete design and implementation.

Three case studies featuring algorithms of various complexities on

two types of FPGAs have been performed to verify the proposed

CMD framework and to demonstrate the usage scenarios.

Frequency prediction for all case studies is very accurate with a

maximum error rate of 3.25% and it takes minutes to predict

frequency in contrast to hours and even days when using vendor

tools. Thus, early DSE based on CMD framework can quickly

determine good and bad designs before writing or implementing

any code. Moreover, with generated constraints, the number of

iterations of the translate-execution process is drastically reduced

(from dozens to one for the case studies) to obtain performance

that is close to the predicted, with 14% being the maximum error

rate.

Several directions are identified to expand the CMD framework in

future work. Importing more detailed device-architecture

information into CMD can enable automatic core-primitive

placement and routing (as described in Sections 3.2.1 and 3.2.2),

which can further improve the productivity of designers in the

formulation stage. Building virtual architecture models of RC

devices (e.g. the architecture model used in VPR [1]) into CMD

can enable formulation for device architectures to help FPGA

device engineers to increase productivity and help FPGA

application developers to choose amenable devices. Automatic

code generation (as described in Section 3.3) from core-level

models can provide an effective bridge from formulation into

design.

6. ACKNOWLEDGMENTS
This work is supported in part by the I/UCRC Program of the

National Science Foundation under Grant Number EEC-0642422.

The authors gratefully acknowledge tools and equipment provided

by Xilinx and Altera that helped make this work possible.

7. REFERENCES
[1] V. Betz , J. Rose, “VPR: A new packing, placement and

routing tool for FPGA research,” Proc. of the 7th
International Workshop on Field-Programmable Logic and
Applications, London, UK, September 1997.

[2] K. Compton and S. Hauck, “Reconfigurable Computing: a
Survey of System and Software,” ACM Computing Surveys,
pp. 171-210, vol. 34, no. 2, June 2002.

[3] K. B. Chehida, and M. Auguin, “HW / SW partitioning
approach for reconfigurable system design,” Proc. of the
international Conference on Compilers, Architecture, and
Synthesis For Embedded Systems, Grenoble, France,
October 2002.

[4] C. Conger, A. Gordon-Ross, and A. George, "FPGA Design
Framework for Partial Run-Time Reconfiguration," Proc. of
2008 International Conference on Engineering of
Reconfigurable Systems and Algorithms, Las Vegas, Nevada,
July 2008.

[5] A. Dollas, E. Sotiriades, and A. Emmanouelides,
“Architecture and Design of GE1, a FCCM for Golomb
Ruler Derivation,” Proc. of the IEEE Symposium on Field-
Programmable Custom Computing Machines, Napa,
California, April 1998.

[6] R. Enzler, T. Jeger, D. Cottet, and G. Troster, “High-Level
Area and Performance Estimation of Hardware Building
Blocks on FPGAs,” In R.W. Hartenstein and H. Gr¨unbacher
(Eds.) FPL 2000, volume 1896, pages 525–534, Springer,
2000.

[7] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S.
Neuendorffer, S. Sachs, Y. Xiong, "Taming Heterogeneity---
the Ptolemy Approach," Proc. of the IEEE, volume.91(1),
January 2003.

[8] M. Feuer, "Connectivity of Random Logic," IEEE
Transactions on Computers, vol.C-31, no.1, pp.29-33,
January 1982.

[9] Floating-Point Operator v4.0 Data Sheet, www.xilinx.com
[10] Floating-Point Megafunctions User Guide, www. altera.com
[11] J. Goodman, A. P. Chandrakasan, "An energy-efficient

reconfigurable public-key cryptography processor," IEEE

Journal of Solid-State Circuits, vol.36, no.11, pp.1808-1820,
Nov 2001.

[12] M. Haldar, A. Nayak, A. Choudhary, and P. Banerjee,
“Parallel algorithms for FPGA placement” Proc. of the 10th
Great Lakes Symposium on VLSI, Chicago, Illinois, March
2000.

[13] P. M. Heysters, G. K. Rauwerda, and G. J.M. Smit,
“Implementation of a HiperLAN/2 receiver on the
reconfigurable montium architecture,” Proc. of the 11th
Reconfigurable Architectures Workshop, Santa Fe, USA,
Apirl 2004.

[14] B. Holland, K. Nagarajan, C. Conger, A. Jacobs, and A.
George, "RAT: A Methodology for Predicting Performance
in Application Design Migration to FPGAs," Proc. of High-
Performance Reconfigurable Computing Technologies &
Applications Workshop at SC'07, Reno, NV, November
2007.

[15] S. Mohanty, and V. K. Prasanna, “A model-based extensible
framework for efficient application design using
FPGA,”ACM Trans. on Design Automation of Electronic
Systems, April. 2007.

[16] S. Merchant, B. Holland, C. Reardon, A. George, H. Lam, G.
Stitt, M. Smith, N. Alam, I. Gonzalez, E. El-Araby, P. Saha,
T. El-Ghazawi, H. Simmler, "Strategic Challenges for
Application Development Productivity in Reconfigurable
Computing," Proc. of National Aerospace & Electronics
Conference, Dayton, OH, July 2008.

[17] A. Nayak, M. Haldar, A. Choudhary, P. Banerjee, "Accurate
area and delay estimators for FPGAs," Proc. of Design,
Automation and Test in Europe Conference and Exhibition,
April 2002.

[18] J. M. Rabaey, "Reconfigurable processing: the solution to
low-power programmable DSP," IEEE International
Conference on Acoustics, Speech, and Signal Processing,
Munich, Germany, April 1997.

[19] J. Rose, and D. Hill, “Architectural and physical design
challenges for one-million gate FPGAs and beyond,” Proc.
of the ACM Fifth international Symposium on Field-
Programmable Gate Arrays, Monterey, California, February
1997.

[20] C. Reardon, B. Holland, A. George, G. Stitt, H. Lam,
"RCML: An Abstract Modeling Language for Design-Space
Exploration in Reconfigurable Computing," submitted to
IEEE Symposium on Application Specific Processors, San
Francisco, California, July 2009.

[21] C. Reardon, E. Grobelny, A. George, and G. Wang, “A
Simulation Framework for Rapid Analysis of Reconfigurable
Computing Systems,” ACM Trans. on Reconfigurable
Technologies and Systems (TRETS), to appear.

[22] E. Sotiriades, A. Dollas, and P. Athanas, “Hardware-
Software Codesign and Parallel Implementation of a Golomb
Ruler Derivation Engine,” Proc. of the 2000 IEEE
Symposium on Field-Programmable Custom Computing
Machines, Napa, California ,April 2000.

[23] B. So, M. Hall, and P. Diniz, “A compiler approach to fast
hardware design-space exploration in FPGA-based systems,”
Proc. of the 2002 ACM SIGPLAN Conference on
Programming Language Design and Implementation, Berlin,
Germany, June 2002.

[24] D. Strenski, “FPGA Floating Point Performance – a pencil
and paper evaluation,” HPC Wire, January 2007,
http://www.hpcwire.com/hpc/1195762.html

[25] M. Weinhardt, and W. Luk, “Pipeline Vectorization for
Reconfigurable Systems,” Proc. of the 1999 IEEE
Symposium on Field-Programmable Custom Computing
Machines, Napa, California, Apirl 1999.

[26] Xilinx System Generator for DSP User Guides, Release
10.1.1, April, 2008.
http://www.xilinx.com/ise/optional_prod/system_generator.h
tm

