
ABSTRACT 
Reconfigurable computing (RC) is rapidly becoming a vital 
technology for many applications, from high-performance 
computing to embedded systems. The inherent advantages of 
custom-logic hardware devices, such as the FPGA, combined with 
the versatility of software-driven hardware configuration often 
boost performance while reducing power consumption.  However, 
compared to software design tools, the relatively immature state of 
RC design tools significantly limits productivity and consequently 
limits widespread adoption of RC. Long and tedious design-
translate-execute (DTE) processes for RC applications (e.g., using 
RTL through HDL) must be repeated in order to meet mission 
requirements. Novel methods for rapid virtual prototyping and 
performance prediction can reduce DTE repetitions by providing 
fast and accurate tradeoff analysis before the design stage.  This 
paper presents a novel core-level modeling and design (CMD) 
framework for RC algorithms to support fast, accurate and early 
design-space exploration (DSE). The framework provides support 
for core-level modeling, performance prediction, and rapid 
bridging to design and translation. Core-level modeling enables 
detailed DSE without the need for coding. Performance prediction, 
such as maximum clock frequency, supports core-level DSE and 
can help system-level modeling and design tools to achieve more 
accurate system-level DSE. Finally, core-level models can be used 
to generate code templates and design constraints that feed 
translation tools and to rapidly obtain predicted performance. 

Categories and Subject Descriptors 

B.8.2 [Performance and Reliability]: Performance Analysis and 

Design Aids; C.4 [Performance of Systems]: Design studies, 

Modeling techniques, Performance attributes. 

General Terms 

Algorithms, Performance, Design.  

1. INTRODUCTION 
Reconfigurable computing (RC) bridges the gap between 

hardware and software, often providing much higher performance 

than software and flexibility than hardware. By providing 

reconfigurable computational units with a programmable 

interconnect, RC devices such as field-programmable gate arrays 

(FPGAs) enable designers to create custom circuits for particular 

applications, often resulting in orders of magnitude speedup [2, 5, 

22, 25] and improved energy efficiency [11, 13, 18]. 

Despite having many advantages, FPGA usage has been limited 

largely due to a requirement for hardware expertise and relatively 

immature design tools and methodologies. A contemporary RC 

application-development flow typically follows a design-translate-

execute (DTE) methodology (shown in Fig. 1 as the last three 

steps) where the designer designs the application by specifying 

RTL functionality (through HDL), translates (or implements, we 

use them interchangeably in this paper) that functionality into a 

custom circuit (through synthesis and placement and routing 

(PAR)), and finally executes the resulting circuit for the purposes 

of verification or performance analysis. One significant problem 

with this approach is that, if the design needs to be changed, the 

designer must re-evaluate design decisions, modify the code, re-

translate the code, and re-execute the new circuit. This process 

can require weeks or months of increased development time [12, 

19]. Even if only a single line of code is changed, iterative PAR 

runs may take hours or even days.  

To reduce the DTE iterations, previous works [20, 21] have 

proposed the use of formulation as a step preceding design, for 

early DSE. As shown in Fig. 1, formulation is the first step in the 

FDTE model of RC application development. During formulation, 

an RC application is abstractly modeled and, based on mission 

requirements (e.g., performance/power), predictions are made 

through simulation or analysis [14, 20, 21] to rapidly explore the 

potential design space for good candidate implementations or to 

rule out bad ones. It has been shown [16] that effort spent in 

formulation is expected to have significant impact on the overall 

productivity by reducing the number of DTE iterations since 

better strategic choices in formulation mean less frequent re-

design.  

One common approach of current formulation tools is to model 

algorithmic components (e.g., tasks) and architectural devices as 

black boxes, whose parameters (e.g., throughput, latency, area, 

clock frequency) are provided by designers via experimentation or 
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estimation. Existing formulation approaches [14, 20, 21] abstract 

away many low-level details leaving DSE with only high-level 

choices, such as topology of communication networks, 

addition/removal of components, modification of parameters of an 

entire algorithm/device, etc. Although these highly abstract 

approaches are appropriate for certain situations, an approach that 

also includes low-level details would enable more detailed and 

accurate DSE. Secondly, for widespread adoption of RC 

technology, it is not realistic to expect RC application developers 

(e.g., domain scientists) to have extensive knowledge of the 

hardware (e.g., FPGA) and be able to provide accurate estimation 

of all the algorithmic and architectural parameters needed by these 

formulation tools (e.g., the FPGA frequency required by the 

formulation tool, RAT, in [14]). Without accurate parameters, 

prediction fidelity of these early-DSE tools is limited. Even worse, 

if bad parameter values are assumed by the designer, formulation 

may increase the number of DTE iterations. Although designers 

can alternatively choose to implement particular tasks to gather 

accurate parameter values, implementation is time-consuming and 

there is the risk that the expensive implementation may eventually 

be ruled out during DSE. Finally, overly abstract models cannot 

be used to produce code templates and design constraints that are 

necessary to bridge system-level, model-based design to detailed 

design and implementation. 

To address these problems, we propose a core-level modeling and 

design (CMD) framework for RC algorithms to support accurate 

and fast DSE and rapid bridging to design and translation. Core-

level modeling enables more detailed DSE (in contrast to task-

level modeling) without the need of coding (in contrast to RTL 

modeling) for algorithms on RC devices. CMD can be used to 

complement formulation tools (e.g., [14, 21]) to enable more 

accurate, system-level DSE by providing accurately predicted 

parameters (e.g., maximum clock frequency). Also, CMD can be 

used to complement RC design tools like System Generator [26] 

by providing efficient, early DSE. Moreover, CMD provides a 

core-level abstraction with enough details so that automated DSE, 

function simulation, verification, code generation, and fast code 

translation can be implemented as future add-ons.  

The remainder of the paper is organized as follows. Section 2 

presents related research. Section 3 provides an overview of the 

CMD framework, focusing on the details of two key components 

of the framework: core-level model construction and parameter 

prediction. Our initial work on fast code translation (a promising 

future direction) is briefly described as well in Section 3. In 

Section 4, we present case studies to validate the parameter 

prediction methods. Detailed DSE of FPGA algorithms and the 

methods to obtain predicted frequencies are demonstrated via 

proof-of-concept examples. Section 5 presents conclusions and 

future work. 

2. RELATED RESEARCH 
In this paper, we focus on the primary challenges of the CMD 

framework: methodologies of core-level modeling and parameter 

prediction that can enable fast, accurate and early DSE.  

Previous works on early DSE for RC applications [14, 20, 21] 

focused on system-level modeling and prediction. Those 

approaches generally modeled RC algorithms and components of 

large granularity (tasks) as black boxes with user-specified 

parameter values for system-level performance prediction. CMD 

models RC algorithms at the core level, which is more detailed 

than the task-level in [14, 20, 21], so that parameters of the tasks 

can be systematically and rapidly predicted.  

Mohanty [15] proposed kernel-level modeling of FPGA 

algorithms, which is similar to CMD. Xilinx System Generator 

[26] shares the same abstract-modeling approach. A collection of 

modeling domains is described in [7]. CMD falls in the discrete-

event and/or synchronous data flow domain. CMD improves upon 

these previous approaches by enabling clock-frequency prediction 

and early prediction-based DSE. Previous approaches were 

intended for simulation and design. Thus, instead of borrowing 

from those previous methods, we created a new modeling 

methodology. Future work will focus on integrating CMD with 

previous methods.  

For parameter prediction, Strenski [24] provides a methodology to 

estimate the theoretical maximum Gflop/s for a given FPGA. 

However, this approach is generic to device and not specific to 

application or circuit. CMD models the algorithm of an RC 

application and predicts key parameters for the algorithm after its 

mapping to an RC device.  

Two distinct methodologies to predict frequency and area for 

FPGA algorithms are presented in [17] and [6]. The former 

method works at the level of configurable logic blocks (CLBs), 

which is more fine-grained than CMD’s core level. As a result, 

more detailed hardware knowledge is required to build the model 

and the prediction process is complicated and time-consuming.  

The latter method [6] works at the task level of FPGA, which is 

typically more coarse-grained than the core level in CMD. In this 

case, the accuracy for parameter prediction is limited due to 

greater abstraction. CMD models specific algorithm structure as 

well as primitive operations, but abstracts away the low-level 

architecture (e.g., CLB) information. In this manner, CMD can 

achieve prediction accuracy comparable to [17], with a prediction 

speed comparable to [6]. It should be noted that CMD is not a 

FPGA design framework (e.g., Xilinx ISE, Altera Quartus II, VPR 

[1]). CMD does not synthesize or place-and-route RTL 

components and hence does not require the detailed knowledge of 

FPGAs as do those design tools. 



To the authors’ knowledge, CMD is the first to perform RC 

algorithm modeling and FPGA frequency/area prediction at the 

core level. 

3. CMD FRAMEWORK 
The CMD framework is a design methodology and a set of tools 

that support core-level modeling, parameter prediction, code 

generation, and constraint generation, for the purpose of early 

DSE and fast implementation. A core-level model is comprised of 

functional cores and links that connect the cores. Functional cores 

can be any core primitives (as defined later), regardless of their 

complexity (e.g. adders, multipliers, FFT cores, etc.). Links that 

connect the cores represent the control/data signal paths.  Shown 

in Fig. 2 is an overview of the framework and how it integrates 

within the FDTE model from Fig. 1.  

Within the formulation stage, the CMD framework has two major 

steps: core-level model construction and parameter prediction. 

The inputs to core-level model construction are the application 

algorithm to be modeled (in the form of a task graph) and the 

characteristics of the target RC platform.  Based on these two 

inputs, a designer performs core-level model construction using a 

CMD modeling tool. The core-level model is then used as input to 

parameter prediction. The details of core-level model 

construction are described in Section 3.1. 

Parameter prediction takes in the core-level model and predicts 

values of key parameters, based on target device characteristics 

and optional designer inputs. DSE is performed iteratively, either 

manually or with automated techniques [23], between model 

construction and parameter prediction until design goals are met. 

DSE is also possible by iterating through the parameter prediction 

process. The parameter-prediction and DSE is detailed in Section 

3.2. 

DSE in the formulation stage is of little practical use if the results 

cannot be easily used in the detailed design and implementation. 

To bridge formulation into design, the CMD framework uses code 

template generation. Constraints generation is used to supply 

constraints to the translation stage. Code templates can be used to 

support automated or semi-automated generation of code, which 

combined with generated constraints can deliver an executable 

with frequency, area, latency (and other parameters) equivalent to 

those predicted during DSE. CMD can also help designers to 

work with legacy code by speeding up its implementation and 

optimizing its performance. Verification at the execution stage is 

performed using debug and performance analysis tools. In Section 

3.3, generation of code templates, constraints, and corresponding 

improvements to the efficiency of implementation (i.e., translation) 

will be discussed. 

In the following subsections, we illustrate the CMD framework, 

focusing on the details of core-level model construction and 

parameter prediction. Note that some aspects of the framework 

described in this section are not yet implemented as automated 

tools but, for completeness of the CMD framework, they are 

conceptually illustrated. Also note that, although each section 

emphasizes FPGAs, CMD methods are also potentially applicable 

to other RC devices. 

3.1 Core-level Model Construction 

Fig. 3 illustrates the process of core-level model construction. The 

inputs are the application algorithm and the target RC platform. 

The first step of core-level model construction is SW/HW 

partitioning, which partitions out the tasks of the application to be 

implemented on RC devices, which we refer to as the RC-device 

tasks. Algorithms to fulfill the RC-device tasks are referred to as 

algorithms of RC-device tasks. CMD does not restrict the 

techniques used for SW/HW partitioning; it can use existing 

partitioning techniques (e.g., [3]) or can be specified by a designer. 

After partitioning, the designer models the algorithms of RC-

device tasks through core-primitive graph creation. At the same 

time, a set of device characteristics (e.g., device infrastructure, 

basic operation characteristics) are extracted by designers for the 

target RC devices in the platform. These device characteristics are 

used to determine the parameter values of the core-primitive graph 

to produce a core-level model. These steps can potentially be 

performed automatically but the current CMD framework requires 

the designer to manually partition the algorithm and create the 

core-level model. 

3.1.1 Core-primitive Graph 
The core-primitive graph models the algorithms of RC-device 

tasks. Core primitives are the basic operations common to both 

RC devices and algorithms. Because core primitives are common 

a: RC-device tasks      b: core-primitive graph 

c: device characteristics 
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to RC devices, device vendors have often optimized these 

operations and provide documentation on their performance and 

area. Because core primitives represent basic operations that are 

common building blocks for algorithms, designers are able to use 

core primitives to intuitively describe their algorithm in a way 

similar to other high-level modeling tools (e.g., Simulink). For the 

same reason, designers can verify the functionality of their 

algorithms, unlike highly abstract formulation approaches.  

For example, for a DSP algorithm on an FPGA, core primitives 

may consist of memory controllers, adders, multipliers, registers, 

and basic control. In many cases, a core primitive will correspond 

to a predefined IP core. CMD also allows for a core primitive to 

be defined in terms of other primitives (e.g., multiply-accumulate 

using an adder and multiplier primitive). Note that core primitives 

are not necessarily defined at one specific level of granularity. 

Designers can trade off prediction accuracy for reduced modeling 

time by selecting a level of granularity that is appropriate for a 

given situation. Core primitives are connected by directed links, 

which model data or control signals, to form a core-primitive 

graph. A simple example of core-primitive graph is shown in Fig. 

4, which is explained in details in the next subsection. 

3.1.2 Core-level Model 
After modeling the RC-device tasks as a graph of core primitives, 

the designer then creates a core-level model that is parameterized 

by defining values for selected attributes (i.e., parameters) for 

each core primitive and link. In many cases, these values can 

simply be obtained from device datasheets, or can alternatively be 

determined via micro-benchmarking, which takes relatively short 

time because core primitives are often basic operations. 

For FPGAs, CMD currently requires parameter definitions for 

maximum clock frequency, resource utilization (i.e., area, we use 

them interchangeably throughout the paper), and latency for each 

core primitive. Also, each link in the core-level model must have a 

specified bit-width. Additional attributes for core primitives can 

be introduced to enable new features for CMD. 

CMD combines the attributes of core primitives and links with 

detailed characteristics of the targeted FPGA (e.g., logic cell 

layout, unit delay of routing channels) to form a complete core-

level model, which is used by the parameter-prediction process. 

The attributes and detailed characteristics are both provided by 

the device characteristics extraction. 

As an example, a core-level model for a pipelined double-

precision floating-point (DPFP) summation on a Xilinx Virtex-4 

LX100 or Altera Stratix-II FPGA is shown in Fig. 4. The model 

consists of two types of core primitives: adder and register. For 

each adder, the frequency, latency, and area (the number of 

digital-signal processing (DSP) slices and flip-flops (FF) used by 

the adder) are determined using the floating-point-operator 

datasheet [9], or provided by the Xilinx CORE Generator (or the 

Altera Megafunction Wizard), thus requiring little effort from a 

designer. All registers (labeled as Reg64 in Fig. 4, because the 

width of the registers is 64 bits) have latency of 1 clock cycle and 

they can be lumped in series to apply specific latency to signals. 

3.2 Parameter Prediction 

CMD parameter prediction, shown in Fig. 5, uses the core-level 

model to estimate the values of key parameters for the entire 

algorithm of the RC-device tasks. The placement step first assigns 

physical locations of the core primitives on the target device. 

Based on the placement, CMD performs routing estimation to 

determine routing delays, which are used to perform frequency 

prediction of the algorithm. Other parameters such as area and 

latency are also determined. Although CMD can automate these 

steps using techniques described in the following sections, we 

currently evaluate the CMD framework by manually performing 

placement and routing estimation. 

3.2.1 Placement 
A placer in CMD can be implemented using any existing 

placement heuristic.  As an example, simulated-annealing can be 

used to place core primitives by first determining the bounding 

boxes of all core primitives based on the resource utilization for 

each of them and the characteristics of the target device (e.g., 

resource geography).  The shape of a bounding box is rectangular 

with changeable aspect ratio [4]. Next, the placer randomly tries 

different placements of all core primitives, using a cost function 

determined by different possible design goals.  

If maximum frequency is the design goal, core primitives are 

placed close to each other using a cost function that minimizes the 

distances between linked core primitives. The distance between a 

pair of linked core primitives is defined as the orthogonal distance 

[8] between the centers of their bounding boxes (i.e., average-

terminal distance). The cost function also considers routing 

congestion by scaling the average-terminal distance with the 

resource-utilization rate of the device. If the design goal is to fit 

all the core primitives into a certain bounding box, the placer uses 

a: placed core-level model      b: estimated routing delay 

Fig. 5: CMD Parameter Prediction 
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Fig. 4: Core-level Model of DPFP Summation 



a cost function that minimizes the bounding-box size. Note that 

the basic element to be placed is a core primitive. Therefore, 

placement in CMD framework is more coarse-grained and will 

take much less time than placing a technology-mapped netlist.  

Alternatively, designers with knowledge of the hardware 

architecture can manually place core primitives on the target 

device. In this way, if the resulting performance/area is not 

satisfactory, designers can come back and alter the placement 

(DSE 2, as shown in Fig. 2 and Fig. 5).  

In this paper, maximum frequency is chosen as the design goal. 

For the case studies presented in Section 4, we use manual 

placement because detailed knowledge of commercial FPGAs is 

not available for us to implement the CMD placer and FPGA-

vendor tools can aid manual placement of the core primitives.  

In the example shown in Fig. 4, using the DSPs of the target 

FPGA (Virtex-4 LX100), we place the two adder core primitives 

over the FPGA’s DSP columns. We then modify the adders’ 

aspect ratios so that the distance between them is as short as 

possible.  For Stratix-II S180, adders consume no DSP, which 

makes it easier to manipulate their location and distance. 

3.2.2 Routing Estimation 
Routing estimation determines routing delays for a specified 

placement. Given the knowledge of the target device’s unit-wire 

delay and the previously determined average-terminal distances, 

CMD calculates the routing delay between each pair of linked 

core primitives. Moreover, based on the work of Feuer [8], 

routing congestion is considered in terms of total utilization rate 

of the device.  

According to Feuer, the average internal-wire length of a circuit 

increases if more components are added to it. This relationship is 

given by Eq. 20 in [8]. The average internal-wire length is not 

needed for CMD routing estimation but the authors find that it is a 

good indicator of the routing congestion for a core-level model. 

Experiments have confirmed the equation’s relation to routing 

congestion and calibrated it to scale the routing delays. The 

details of these experiments are outside the scope of this paper.  

The assumption that the input/output ports of a core primitive are 

averaged at the center of its bounding box is made in the 

placement step and inherited by the routing-estimation step. CMD 

could eliminate the need for this assumption by modeling the 

locations of core primitives’ input/output ports, which may 

involve trade-off study of quality and time and therefore is 

deferred to future work. Routing estimation for the example in Fig. 

4 is presented in the next subsection. 

3.2.3 Frequency Prediction 
Frequency prediction estimates the clock frequency of the 

modeled algorithm. For our design goal, CMD initially predicts 

maximum frequency of the algorithm of RC-device tasks as the 

lowest frequency among all core primitives in the algorithm’s 

core-level model. Then, CMD adds the routing delays between 

each pair of linked core primitives to their critical-path delays 

(inverse of their frequencies), resulting in adjusted frequencies of 

the core primitives. The routing delays are scaled according to the 

device utilization to account for routing congestion. Finally, CMD 

determines the predicted frequency as the lowest adjusted 

frequency among all core primitives. 

For the example in Fig. 4, given the previously described 

placement, CMD estimates maximum frequencies of 327 MHz for 

the Virtex-4 LX100and 302MHz for the Stratix-II S180, which is 

the lowest frequency among all the core primitives for each FPGA. 

Although routing delays will often affect the maximum frequency, 

it has no effect in this case due to the lack of routing congestion 

resulting from low resource utilization. (under 10% of either 

Virtex-4 LX100 or Stratix-II S180). Congestion becomes 

significant for algorithms with higher device utilizations, as 

shown in the case studies in Section 4. 

Currently, CMD assumes a single clock domain, but the method 

can be extended to handle multiple clock domains by performing 

the analysis of core primitives and routing delays in each domain.  

3.2.4 Area, Latency Prediction 
For latency prediction, latencies of core primitives along each 

path, from input ports to output ports, are summed to produce the 

latency of that path. Similarly, area prediction sums the resource 

utilizations of each core primitive in the core-level model to 

determine overall resource utilization, assuming core primitives 

do not share resources. Given accurate attribute values of core 

primitives, the accuracies of latency and area prediction can be 

very high. Although the flow in Fig. 5 shows only the prediction 

of typical parameters such as frequency, area and latency, CMD 

can be expanded to include other parameters and metrics. 

3.3 Constraint Generation and Translation 
As mentioned, DSE in the formulation stage is wasted if the 

results cannot be easily used in design and obtained in 

implementation. The CMD framework uses code-template 

generation and design-constraint generation to tunnel early DSE 

results into design and translation stages. Code template is 

generated from the core-level model of the algorithm of RC-

device tasks to inherit design choices, such as the types of core 

primitives, the links between core primitives, etc., which have 

been determined during early DSE. However, code generation, 

especially automatic code generation, is a complicated problem 

and is deferred to future work. Constraint generation for FPGA is 

described in detail as follows.  

For FPGAs, constraints generation creates frequency and area 

constraints that can help designers in translation stage by reducing 

the number of translation iterations normally required to manually 

explore different constraints. Area constraints can be determined 

from the placement of core primitives, which is shown via a 

proof-of-concept case study in Section 4.4. 

The generated frequency constraint is determined by the predicted 

frequency plus some “slack” to account for improved performance 

from RTL PAR. Due to the uncertainty of the PAR process, this 

slack is impossible to predict.  For example, a PAR tool may not 

find a solution for a frequency constraint of 250 MHz, but 

surprisingly may find a solution for a higher constraint of 260 

MHz. For this reason, automatically exploring all possible 



frequency constraints beyond the predicted one is vital to achieve 

the maximum frequency using certain FPGA PAR tools. Also, it 

saves time for designers to start searching from a predicted 

frequency rather than a speculated one. 

CMD performs the frequency search using two possible methods. 

One method uses a binary search to reduce the total number of 

PAR iterations. The second method uses a cluster-based search 

that performs numerous PAR executions in parallel. For both 

techniques, the speedup compared to manual timing closure is 

dramatic. For the case study of N-body simulation, as described in 

Section 4, the time was reduced from days to less than an hour. 

CMD can help designers that work with legacy code in three ways. 

Our cluster-based frequency search scripts can take in legacy code 

and produce better frequency in a relatively short period of time. 

Secondly, the core-level model of the legacy code can be created, 

possibly using automated commercial tools like Code2Graphics of 

Active-HDL. The resulting core-level model can then be used to 

not only generate constraints but also to optimize the performance 

via fast DSE. Finally, the core-level model represents a condensed 

yet precise means of documentation for the algorithm. 

4. CASE STUDIES AND RESULTS 
In this section, case studies are presented to showcase the 

accuracy of parameter prediction and productivity advantage of 

the CMD framework. The accuracy is verified through a 

comparison between predicted and verified frequencies. The 

productivity advantage is demonstrated in two scenarios: core-

level DSE and fast code implementation. Note that additional 

productivity is gained from using a more abstract block diagram 

to design because block diagrams are more natural than low-level 

program code for many designers, especially those that are not 

experts of VHDL or Verilog. 

To test our case studies, we use the Xilinx Virtex-4 LX100 and 

Altera Stratix-II S180 FPGAs as the target RC devices. ISE 9.2i 

and Quartus II 9.0 are used for synthesis and PAR. The settings of 

the tools are selected to maximize effort levels to achieve the 

highest possible clock frequency. To derive the routing delay of 

unit-length routing wire, the timing analyzers of both tools are 

used to empirically determine the average routing delay of a single 

switch matrix (0.5ns for Virtex-4 LX100 and 0.4ns for Stratix-II 

S180).  

4.1 Core-level Models for the Case Studies 
Three case studies were performed. The first case study (DPFP 

summation) uses the core-level model shown in Fig. 4. The 

second case study features an algorithm of an 8-tap single-

precision floating-point (SPFP) FIR filter and the third case study 

features an algorithm of N-body simulation. The core-level 

models of the latter two case studies are shown in Fig. 6. The 

(a) (b) 

Fig. 6: Core-level Models of Case Studies: (a) 8-tap SPFP-FIR Filter and (b) N-body Simulation  

Table 1. Parameter Values for Selected Core Primitives in FIR filter and N-body Simulation Case Studies 

Parameters

Virtex-4 Stratix-II Virtex-4 Stratix-II Virtex-4 Stratix-II Virtex-4 Stratix-II

Frequency (MHz) 397 400 378 375 305 275 321 275

DSP usage 4 0 0 0 0 0 0 0

FF usage 254 1125 588 902 289 379 227 345

Latency (cycles) 10 11 13 14 6 6 6 6

FIR filter

Mult Add

N-body Simulation

FLT_FIXED FIXED_FLT



attribute values of their core primitives are summarized in Table 1. 

For the sake of illustration, most core primitives in the core-level 

model of N-body simulation are combined into one high-level 

block (shown as Force Calculation) and attribute values of only 

two sample core primitives (FLT_FIXED converts the floating-

point data to fixed point and FIXED_FLT converts the fixed-point 

data to floating point) are shown in Table 1. 

These case studies were selected due to their nature of being 

floating-point DSP algorithms, whose clock frequencies are 

generally difficult to predict. In these case studies, the core-level 

models did not consider all the control logic, such as finite-state 

machines, which is left as future work. However, a finite-state 

machine can be modeled as one additional core. The N-body 

simulation has a fixed-point core primitive (Accum), whose 

characteristics were derived from benchmarking through its 

VHDL code. The VHDL code of Accum has 42 lines and the 

benchmarking took less than 5 minutes to derive a maximum 

frequency of 500MHz, which is the upper limit of both Virtex-4 

LX100 and Stratix-II S180. 

Although CMD can potentially create code from core-level 

models automatically, in the current CMD framework, we 

manually created the code for the case studies.  

4.2 Verification of Parameter Prediction 
To confirm the accuracy of CMD modeling and the parameter 

predictions for the algorithms of RC-device tasks, we compared 

the predicted frequencies (derived using manual placement) with 

the maximum frequency determined using the FPGA-vendor tools 

(through PAR on the target FPGAs). To determine the maximum 

frequency, we use the constraint-generation scripts described in 

Section 3.3 to further explore possible frequency constraints at 

increments of 1 MHz and mark the highest. Fig. 7 illustrates the 

frequency-constraint search for FIR filter. Other case studies are 

omitted for brevity. Note that a high frequency constraint (e.g. 

319 MHz in Fig.7 (a)) can still be met even if a lower one (e.g. 

316-318 MHz in Fig.7 (a)) is not. 

The predicted and verified frequencies of all case studies are 

summarized in Fig. 8. It can be seen from the results that, 

Fig. 8: Comparison of Predicted Frequency against Verified Frequency by (a) Frequency and (b) Error Rate 
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Fig. 7: Frequency Search Result of FIR-filter Case Study for (a) Virtex-4 LX100 and (b) Stratix-II S180 
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regardless of the algorithm complexity, CMD provides accurate 

frequency prediction, which lends itself to core-level DSE and 

also system-level DSE via integration with system-level tools. The 

worst error rate is 3.25% for DPFP summation. 

For resource usage prediction, the results for all case studies are 

almost 100% accurate, even for the largest case study (N-body 

simulation) that utilizes nearly half of the FPGA. Note that for 

these examples, CMD can calculate the exact latency, and thus 

yields 100% accuracy. For prediction of both resource usage and 

latency, the accuracy is high due to the fact that corresponding 

attribute values of all primitives are accurate.  

4.3 Core-level DSE 
To demonstrate core-level DSE, we consider several possible 

DSP-usage combinations (maximum usage means 5 DSPs; full 

usage means 4 DSPs; medium usage means 1 DSP) of multipliers 

and adders for FIR filter on Virtex-4 LX100. The predicted and 

verified frequencies for each combination are summarized in 

Table 2. Note that the frequencies are correctly predicted by CMD 

for all but one combination—full usage of DSP for all multipliers 

and full usage of DSP for all adders (the grayed row in Table 2). 

The reason for this incorrect prediction is an inefficient manual 

placement, which illustrates that the performance from placement 

assignment can be limited by the designer’s experiences.  

Early DSE with CMD, as shown in Table 2, determines that the 

first combination (full usage of DSP for all multipliers and no 

usage of DSP for all adders) yields the best predicted frequency—

317 MHz, which is acceptable when compared to the best verified 

frequency of the best combination (full for all multipliers and full 

for all adders)—333 MHz.  

Considering the predicted frequencies in Table 2 take minutes to 

derive and the verified ones take days, it is a good tradeoff. In this 

way, CMD can increase the DSE productivity enormously. Also, 

the early DSE results can help the designer to determine if an 

FPGA design can meet external timing requirements very fast 

because neither coding nor PAR were needed. 

DSP usage of floating-point cores of Altera FPGAs is usually not 

configurable. However, early DSE of other design options that are 

important to an application can be performed in a similar manner 

on Altera FPGAs. For example, the latency option in Altera’s 

floating-point cores can be varied to achieve different maximum 

frequencies. We defer exploration of those options to future work. 

4.4 Frequency with Generated Constraints 
As described in Section 3.3, the frequency constraint is generated 

by adding some “slack” to the predicted frequency. The area 

constraint is generated by translating our placement estimation or 

assignment to a format suitable for use of CAD tools. Fig. 9 

shows an example of the area constraint, using the ISE area-

constraint editor, for the FIR-filter case study on Virtex-4 LX100. 

The eight rectangles on the left of the figure are the bounding 

boxes of the eight multipliers in the core-level model of FIR filter. 

The other seven rectangles in the figure are the bounding boxes of 

the seven adders in the model. Each rectangle is linked to its 

adjacent ones. It can be seen that the choice of layout and shapes 
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of the rectangles makes the average-terminal distances as short as 

possible. The same approach should work for Altera FPGAs as 

well and it is an immediate future work of the authors. 

Using the frequency constraint and area constraint generated by 

CMD, a reduced number of CAD tool iterations is required to 

obtain frequencies that are comparable to the predicted ones. The 

obtained frequencies for all case studies using this approach are 

shown in Fig. 10 (using both frequency and area constraints for 

Virtex-4 LX100 and using just frequency constraint for Stratix-II 

S180). Note that the results are derived by a single iteration of 

vendor tools for FIR filter and N-body simulation, which is to be 

compared with dozens of iterations when not using the generated 

constraints to derive the same resulting frequency. 

Our automated scripts can be used to work with the generated 

frequency constraint to derive even better result than the obtained 

in a relatively short period of time. For example, the search for the 

FIR filter on a Virtex-4 LX100 took approximately 30 minutes to 

achieve 319 MHz (higher than the obtained 309MHz, as shown in 

Fig. 10), in contrast to several hours of using ISE serially to 

obtain about the same frequency (319MHz). 

5. CONCLUSIONS 
The usage of reconfigurable computing has been limited largely 

due to a common requirement of application designers for 

hardware expertise and the relatively immature nature of design 

tools and methodologies. A FDTE model of RC application 

development has been proposed [20, 21] in attempt to overcome 

this limitation and following this approach, several system-level 

formulation tools are available to help designers carry out early 

DSE. However, these tools assume that key parameters of 

algorithmic components and architectural devices in the system-

level models are provided by designers, which greatly limits the 

wide use of formulation tools. 

To address this vital problem, we created a core-level modeling 

and design (CMD) framework that support both fast, accurate 

DSE (of finer granularity than system-level tools) and rapid 

design and implementation (not available from system-level tools) 

for reconfigurable computing algorithms. This framework 

provides a core-level abstraction so that enough details are 

modeled to enable accurate parameter prediction, functional 

verification and fine-grained DSE. Also, the CMD framework 

produces code templates and design constraints, thus bridging 

formulated abstract models to concrete design and implementation.  

Three case studies featuring algorithms of various complexities on 

two types of FPGAs have been performed to verify the proposed 

CMD framework and to demonstrate the usage scenarios. 

Frequency prediction for all case studies is very accurate with a 

maximum error rate of 3.25% and it takes minutes to predict 

frequency in contrast to hours and even days when using vendor 

tools. Thus, early DSE based on CMD framework can quickly 

determine good and bad designs before writing or implementing 

any code. Moreover, with generated constraints, the number of 

iterations of the translate-execution process is drastically reduced 

(from dozens to one for the case studies) to obtain performance 

that is close to the predicted, with 14% being the maximum error 

rate. 

Several directions are identified to expand the CMD framework in 

future work. Importing more detailed device-architecture 

information into CMD can enable automatic core-primitive 

placement and routing (as described in Sections 3.2.1 and 3.2.2), 

which can further improve the productivity of designers in the 

formulation stage. Building virtual architecture models of RC 

devices (e.g. the architecture model used in VPR [1]) into CMD 

can enable formulation for device architectures to help FPGA 

device engineers to increase productivity and help FPGA 

application developers to choose amenable devices. Automatic 

code generation (as described in Section 3.3) from core-level 

models can provide an effective bridge from formulation into 

design. 
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