
 1

Evaluating Partial Reconfiguration for Embedded FPGA Applications

Abstract—Recent advances in Xilinx’s FPGA hardware and

commercial software design tools, spurred in large part by the
DOD’s Joint Tactical Radio System initiative, offer the possibility
of incorporating dynamic partial reconfiguration (PR) into high-
performance, embedded systems outside of academic research
laboratories. PR can provide the flexibility and run-time
reconfigurability that no pure hardware or software solution can
offer. By multiplexing the hardware resources of a single
programmable device with time-independent tasks, a common
architecture in DOD systems, a single FPGA can handle the same
processing workload as a multi-device equivalent. This paper
analyzes the performance impact of using PR to perform remote
updating, an important capability often used in embedded
applications.

I. INTRODUCTION
ENERICALLY, an SRAM-based FPGA is a
multiprocessing device in that multiple, user-defined

hardware modules can operate in parallel and independently
within the same chip. One of the great advantages of such a
device is the ability to modify its configuration memory easily
and at any time. PR enhances this paradigm by reconfiguring
only a portion of the chip’s configuration memory, allowing
the user to load and unload these functional hardware modules
without interrupting or resetting the rest of the device.
Despite this advantage, commercial interest in PR has never
materialized due mainly to a lack of supporting software tools
and merciless design flows. Nevertheless, different academic
approaches have been developed to incorporate PR into
embedded systems using the Virtex-II FPGA [1-2]. Recently,
however, the release of the Virtex-4 and Virtex-5 series of
FPGAs, with their tile-based frame architectures, coupled with
the lucrative software-defined radio market, has pushed Xilinx
to engineer a workable PR design flow [3]. While still
unreleased to the general public, the new design flow
eliminates many of the burdensome requirements put in place
by the previous flow [4] and now supports the Virtex-4
(thought not yet the Virtex-5).

Unfortunately, due to the relatively recent unveiling of this
new design flow, as well as the still restricted nature of its
release, there exists a vacuum in research and results
exploring high-performance PR systems targeting these new
devices. In response, we present a study of the performance
impact (timing, resource utilization, and other metrics) of the
new design flow when targeting Virtex-4 FPGAs, with remote
updating, an important usage of PR, as a platform for analysis.

II. TARGET APPLICATION
Although commercial FPGAs have enjoyed great success as

development and testing platforms, their use in embedded

applications has been limited due to their reduced flexibility
after field-deployment and relative high cost. If an embedded
FPGA’s reconfigurable resources become static, the device
turns into an expensive, power-hungry, low-performance
ASIC. Thus, for FPGAs to become more practical as end-use
devices, there needs to be a way to maintain true field-
reprogrammability once deployed, i.e., the use of remote
updating. Remote updating for FPGAs is the equivalent of in-
application programming for microprocessors and is used to
dynamically tailor the hardware to the application’s needs in
real-time.

Traditionally, an external configuration controller, usually a
separate FPGA or microprocessor, performs remote updating.
In the most generic sense, partial bitstreams that define
hardware modules are sent to this device from a local or
remote storage, over some type of communication link (e.g.
MIL-STD-1553). The external controller then proceeds to
fully reconfigure the user FPGA. This baseline approach has
distinct advantages, namely that it provides an extremely
flexible development environment since 100% of the user
FPGA logic/routing resources are available for processing
with no reconfiguration overhead or performance degradation.

Unfortunately, the need for an external controller presents
undesirable drawbacks. Because the entire user FPGA is
reconfigured, a full device bitstream must be transmitted over
the communication link even if the designer only wishes to
change a small portion of the design. This requirement results
in a needlessly high data transfer, which is especially
detrimental in bandwidth-limited applications, such as satellite
payloads, where the update bitstreams may not be stored on-
board. Furthermore, fully reconfiguring the user FPGA
produces the longest possible reconfiguration period,
translating into lost processing time.

A second drawback is the increased component count and
PCB requirements necessary to accommodate an external
device. Besides increasing the cost of the design, the
increased complexity allows more failure points to exist in all
phases of the system’s lifetime (fabrication, assembly, testing,
deployment, etc.). Most DOD designs are particularly
affected since they must be qualified to strict environmental
standards with regard to shock, vibration, ESD, etc.

In this paper, we describe an approach for configuration
control in which we embed the controller within the user
FPGA. By using the Internal Configuration Access Port
(ICAP) to perform partial reconfiguration, the remote update
is performed in-situ, eliminating the need for an external
device. In addition to mitigating many of the disadvantages
previously mentioned, there are many advantages inherent in
this approach. Most importantly, unrelated processing can

 la
Ross Hymel, Alan D. George, and Herman Lam

{hymel, george, m}@chrec.org
NSF Center for High-Performance Reconfigurable Computing (CHREC), University of Florida

G

 2

continue uninterrupted during partial device reconfiguration,
automatically maintaining state information. The remainder
of this paper analyzes the performance impact of
incorporating remote updating into three permutations of a
generic PR architecture targeting an XC4VLX25 FPGA.

III. EXPERIMENTAL ARCHITECTURES
In order to facilitate PR in real hardware with a

commercially-available design flow, key design issues and
trade-offs must be addressed, including the number of
partially reconfigurable regions (PRRs), the PRR shape, size,
and placement, the PRR’s access to the global clock network
and I/O pads, and the communication interface amongst
different PRRs and the static portion of the design. A
complete description of each experimental study will appear
in the full presentation, while a condensed version appears
here.

Each design permutation contains a static communication
and configuration controller, as well as a different number of
PRRs, ranging from one PRR of maximal size, to two side-by-
side PRRs, to four PRRs arranged in a 2x2 fashion. Each of
the regions has a generic black-box, top-level interface. The
advantage of such an approach is that a designer can use any
high- or low-level tool to synthesize the PRR, so long as the
top-level interfaces match. Then the designer need only run
an existing script that automatically handles the details of the
PR design flow to generate the partial bitstreams.

We evaluated each design permutation using different high-
performance computing cores, including Radix-4 FFT, AES,
ARM7 soft-core processing, and others. We measured the
minimum clock period at which each design could run twice,
once when the design operated without any PR modifications
and once after plugging into the experimental PR architecture.
We also measured the size of the programming bitstream
twice in the same fashion.

0

5

10

15

20

25

30

35

40

Bitstream
Reduction

Overhead Max. Freq.
Reduction

Max. Freq.
Reduction

(<100 MHz)

%
 C

ha
ng

e
fr

om
 n

on
-P

R
 B

as
el

in
e

1 PRR 2 PRRs 4 PRRs
Figure 1: Measured Effects of PR vs. non-PR Baseline

Figure 1 displays a set of average measured PR

performance effects, including the bitstream size reduction,
the PR overhead of each design, and the decrease in maximum
clock frequency due to PR. The PR overhead consists of

resources that the FPGA uses to facilitate the design flow (e.g.
bus macros) but that do not contribute to processing. The
clock frequency numbers are split into two categories, one for
all designs and one for designs that originally operated at less
than 100 MHz. The discrepancy is due to a single enable net
in the static region whose purpose is to put the PRRs into a
known state during reconfiguration. This net is most often the
critical path for designs over 100 MHz due to its length and
fanout. In absolute terms, the results averaged across all
design permutations are -162 KB, +727 slices, -57.6 MHz,
and -8.09 MHz, respectively. In addition, the relative
percentages should remain constant across different device
sizes. The full presentation will include a detailed breakdown
of these results.

IV. CONCLUSIONS
The use of partial reconfiguration in conjunction with

commercial FPGAs and software tools can provide a reliable,
resource-saving, and flexible means for updating the
processing load of a deployed programmable device. By
time-multiplexing the device, the designer has, in effect, an
FPGA that contains more resources than are actually
physically present, providing multiprocessing across both time
and space. This method not only reduces the reconfiguration
time but also the amount of bitstream data. Furthermore,
using a generic architecture simplifies the design flow at the
hardware level to allow rapid system development by
designers untrained in the nuances of PR. These factors are
especially important in DOD systems, as the generic hardware
can be qualified to the necessary environmental standards and
then reused in other platforms without knowledge of the low-
level details.

Future directions for this work include exploring “full”
partial reconfiguration. As Virtex-4 devices contain two
separate ICAP primitives, we have the ability to reconfigure
the reconfiguration engine itself by switching configuration
control between different regions. Doing so would allow us to
update the previously static controller, e.g., to change the
encryption standard or the communication protocol it uses.

V. ACKNOWLEDGEMENTS
This work was supported in part by the I/UCRC Program of

the National Science Foundation under Grant No. EEC-
0642422. The authors gratefully acknowledge tools and
equipment provided by Sandia National Laboratories and
Xilinx that helped make this work possible.

VI. REFERENCES
[1] M. Ullmann, B. Grimm, M. Hübner, and J. Becker, “An

FPGA Run-Time System for Dynamical On-Demand
Reconfiguration,” Proc. IEEE Parallel and Distributed
Processing Symposium, Santa Fe, NM, Apr. 26-30, 2004.

[2] M. Hübner, J. Becker, “Exploiting Dynamic and Partial
Reconfiguration for FPGAs – Toolflow, Architecture, and
System Integration,” Proc. 19th SBCCI Symp. on Integrated
Circuits and Systems Design, Ouro Preot, Brazil, 2006.

 3

[3] Early Access Partial Reconfiguration User Guide, UG208
(v1.1), Xilinx Inc., Mar. 6, 2006.

[4] Two Flows for Partial Reconfiguration: Module Based or
Difference Based, XAPP290 (v1.2), Xilinx Inc., Sept. 9, 2004.

	I. INTRODUCTION
	II. Target Application
	III. Experimental architectures
	IV. Conclusions
	V. Acknowledgements
	VI. References

