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Evaluating Partial Reconfiguration for Embedded FPGA Applications 

 
Abstract—Recent advances in Xilinx’s FPGA hardware and 

commercial software design tools, spurred in large part by the 
DOD’s Joint Tactical Radio System initiative, offer the possibility 
of incorporating dynamic partial reconfiguration (PR) into high-
performance, embedded systems outside of academic research 
laboratories.  PR can provide the flexibility and run-time 
reconfigurability that no pure hardware or software solution can 
offer.  By multiplexing the hardware resources of a single 
programmable device with time-independent tasks, a common 
architecture in DOD systems, a single FPGA can handle the same 
processing workload as a multi-device equivalent.  This paper 
analyzes the performance impact of using PR to perform remote 
updating, an important capability often used in embedded 
applications. 

I. INTRODUCTION 
ENERICALLY, an SRAM-based FPGA is a 
multiprocessing device in that multiple, user-defined 

hardware modules can operate in parallel and independently 
within the same chip.  One of the great advantages of such a 
device is the ability to modify its configuration memory easily 
and at any time.  PR enhances this paradigm by reconfiguring 
only a portion of the chip’s configuration memory, allowing 
the user to load and unload these functional hardware modules 
without interrupting or resetting the rest of the device.  
Despite this advantage, commercial interest in PR has never 
materialized due mainly to a lack of supporting software tools 
and merciless design flows.  Nevertheless, different academic 
approaches have been developed to incorporate PR into 
embedded systems using the Virtex-II FPGA [1-2].  Recently, 
however, the release of the Virtex-4 and Virtex-5 series of 
FPGAs, with their tile-based frame architectures, coupled with 
the lucrative software-defined radio market, has pushed Xilinx 
to engineer a workable PR design flow [3].  While still 
unreleased to the general public, the new design flow 
eliminates many of the burdensome requirements put in place 
by the previous flow [4] and now supports the Virtex-4 
(thought not yet the Virtex-5). 

Unfortunately, due to the relatively recent unveiling of this 
new design flow, as well as the still restricted nature of its 
release, there exists a vacuum in research and results 
exploring high-performance PR systems targeting these new 
devices.  In response, we present a study of the performance 
impact (timing, resource utilization, and other metrics) of the 
new design flow when targeting Virtex-4 FPGAs, with remote 
updating, an important usage of PR, as a platform for analysis. 

II. TARGET APPLICATION 
Although commercial FPGAs have enjoyed great success as 

development and testing platforms, their use in embedded 

applications has been limited due to their reduced flexibility 
after field-deployment and relative high cost.  If an embedded 
FPGA’s reconfigurable resources become static, the device 
turns into an expensive, power-hungry, low-performance 
ASIC.  Thus, for FPGAs to become more practical as end-use 
devices, there needs to be a way to maintain true field-
reprogrammability once deployed, i.e., the use of remote 
updating.  Remote updating for FPGAs is the equivalent of in-
application programming for microprocessors and is used to 
dynamically tailor the hardware to the application’s needs in 
real-time. 

Traditionally, an external configuration controller, usually a 
separate FPGA or microprocessor, performs remote updating.  
In the most generic sense, partial bitstreams that define 
hardware modules are sent to this device from a local or 
remote storage, over some type of communication link (e.g. 
MIL-STD-1553).  The external controller then proceeds to 
fully reconfigure the user FPGA.  This baseline approach has 
distinct advantages, namely that it provides an extremely 
flexible development environment since 100% of the user 
FPGA logic/routing resources are available for processing 
with no reconfiguration overhead or performance degradation. 

Unfortunately, the need for an external controller presents 
undesirable drawbacks.  Because the entire user FPGA is 
reconfigured, a full device bitstream must be transmitted over 
the communication link even if the designer only wishes to 
change a small portion of the design.  This requirement results 
in a needlessly high data transfer, which is especially 
detrimental in bandwidth-limited applications, such as satellite 
payloads, where the update bitstreams may not be stored on-
board.  Furthermore, fully reconfiguring the user FPGA 
produces the longest possible reconfiguration period, 
translating into lost processing time. 

A second drawback is the increased component count and 
PCB requirements necessary to accommodate an external 
device.  Besides increasing the cost of the design, the 
increased complexity allows more failure points to exist in all 
phases of the system’s lifetime (fabrication, assembly, testing, 
deployment, etc.).  Most DOD designs are particularly 
affected since they must be qualified to strict environmental 
standards with regard to shock, vibration, ESD, etc. 

In this paper, we describe an approach for configuration 
control in which we embed the controller within the user 
FPGA.  By using the Internal Configuration Access Port 
(ICAP) to perform partial reconfiguration, the remote update 
is performed in-situ, eliminating the need for an external 
device.  In addition to mitigating many of the disadvantages 
previously mentioned, there are many advantages inherent in 
this approach.  Most importantly, unrelated processing can 
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continue uninterrupted during partial device reconfiguration, 
automatically maintaining state information.  The remainder 
of this paper analyzes the performance impact of 
incorporating remote updating into three permutations of a 
generic PR architecture targeting an XC4VLX25 FPGA. 

III. EXPERIMENTAL ARCHITECTURES 
In order to facilitate PR in real hardware with a 

commercially-available design flow, key design issues and 
trade-offs must be addressed, including the number of 
partially reconfigurable regions (PRRs), the PRR shape, size, 
and placement, the PRR’s access to the global clock network 
and I/O pads, and the communication interface amongst 
different PRRs and the static portion of the design.  A 
complete description of each experimental study will appear 
in the full presentation, while a condensed version appears 
here. 

Each design permutation contains a static communication 
and configuration controller, as well as a different number of 
PRRs, ranging from one PRR of maximal size, to two side-by-
side PRRs, to four PRRs arranged in a 2x2 fashion.  Each of 
the regions has a generic black-box, top-level interface.  The 
advantage of such an approach is that a designer can use any 
high- or low-level tool to synthesize the PRR, so long as the 
top-level interfaces match.  Then the designer need only run 
an existing script that automatically handles the details of the 
PR design flow to generate the partial bitstreams. 

We evaluated each design permutation using different high-
performance computing cores, including Radix-4 FFT, AES, 
ARM7 soft-core processing, and others.  We measured the 
minimum clock period at which each design could run twice, 
once when the design operated without any PR modifications 
and once after plugging into the experimental PR architecture.  
We also measured the size of the programming bitstream 
twice in the same fashion. 
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Figure 1: Measured Effects of PR vs. non-PR Baseline 

 
Figure 1 displays a set of average measured PR 

performance effects, including the bitstream size reduction, 
the PR overhead of each design, and the decrease in maximum 
clock frequency due to PR.  The PR overhead consists of 

resources that the FPGA uses to facilitate the design flow (e.g. 
bus macros) but that do not contribute to processing.  The 
clock frequency numbers are split into two categories, one for 
all designs and one for designs that originally operated at less 
than 100 MHz.  The discrepancy is due to a single enable net 
in the static region whose purpose is to put the PRRs into a 
known state during reconfiguration.  This net is most often the 
critical path for designs over 100 MHz due to its length and 
fanout.  In absolute terms, the results averaged across all 
design permutations are -162 KB, +727 slices, -57.6 MHz, 
and -8.09 MHz, respectively.  In addition, the relative 
percentages should remain constant across different device 
sizes.  The full presentation will include a detailed breakdown 
of these results. 

IV. CONCLUSIONS 
The use of partial reconfiguration in conjunction with 

commercial FPGAs and software tools can provide a reliable, 
resource-saving, and flexible means for updating the 
processing load of a deployed programmable device.  By 
time-multiplexing the device, the designer has, in effect, an 
FPGA that contains more resources than are actually 
physically present, providing multiprocessing across both time 
and space.  This method not only reduces the reconfiguration 
time but also the amount of bitstream data.  Furthermore, 
using a generic architecture simplifies the design flow at the 
hardware level to allow rapid system development by 
designers untrained in the nuances of PR.  These factors are 
especially important in DOD systems, as the generic hardware 
can be qualified to the necessary environmental standards and 
then reused in other platforms without knowledge of the low-
level details. 

Future directions for this work include exploring “full” 
partial reconfiguration.  As Virtex-4 devices contain two 
separate ICAP primitives, we have the ability to reconfigure 
the reconfiguration engine itself by switching configuration 
control between different regions.  Doing so would allow us to 
update the previously static controller, e.g., to change the 
encryption standard or the communication protocol it uses. 
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