
HISC/R: An Efficient Hypersparse-Matrix Storage
Format for Scalable Graph Processing

Robert Kirchgessner∗, Giovanni De La Torre†, Alan D. George‡
NSF Center for High-Performance Reconfigurable Computing (CHREC)

Department of Electrical and Computer Engineering

University of Florida, Gainesville, FL 32611
∗kirchgessner@chrec.org †delatorre@chrec.org ‡george@chrec.org

Vitaliy Gleyzer
Lincoln Laboratory

Massachusetts Institute of Technology

vgleyzer@ll.mit.edu

Abstract—The need to analyze increasingly larger graph
datasets has driven the exploration of new methods and unique
system architectures for graph processing. One such method
moves away from the typical edge- and vertex-centric approaches
and describes graph algorithms using linear-algebra operations,
bringing the added benefits of predictable data-access patterns
and ease of implementation. The performance of this approach
is limited by the sparse nature of graph adjacency matrices,
which leads to inefficient use of memory bandwidth, and reduced
scalability in distributed systems. In order to maximize the
scalability and performance of these linear-algebra systems, we
require new sparse-matrix storage formats capable of maximizing
memory throughput and minimizing latency, while maintaining
low storage overhead. In this paper, we present an overview of a
novel sparse-matrix storage format called Hashed-Index Sparse-
Column/Row (HISC/R) which guarantees constant-time row or
column access complexity at low storage overhead, while also
supporting online non-zero element insertions and deletions. We
evaluate the performance of HISC/R using randomly generated
Kronecker graphs, demonstrating a 19% reduction in memory
footprint, and 40% reduction in memory reads, for sparse
matrix/matrix multiplication compared to competing formats.

I. INTRODUCTION

Large-scale graph processing is a key component in modern

scientific computing and data analytics, with many commercial

and defense applications [1, 2]. Graph-processing applications,

however, do not map well to conventional system architec-

tures. Whereas conventional systems focus on maximizing

computational throughput and data locality and reuse, graph-

processing problems are typically memory-bounded and data-

driven, with highly irregular datasets [3]. These problems

are further compounded in distributed systems, where the

unstructured nature of graph datasets leads to inefficient data

partitioning and load imbalances. The need to analyze increas-

ingly larger graph datasets has driven the exploration of new

methods, algorithms, and distributed system architectures for

graph processing.

This material is based upon work supported by the Assistant Secretary of
Defense for Research and Engineering under Air Force Contract No. FA8721-
05-C-0002 and/or FA8702-15-D-0001. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the Assistant Secretary of Defense for
Research and Engineering.

One such method moves away from the typical edge- and

vertex-centric approaches and describes graph algorithms in

terms of linear-algebra primitives operating on graph adja-

cency matrices [4]. This approach brings with it the benefits

of the predictable access patterns of linear-algebra operations,

and a higher level of abstraction simplifying the implementa-

tion and parallelization of many graph algorithms [4]. In order

to maximize the scalability and performance of this approach,

however, low-overhead storage formats capable of providing

scalable, low-latency access to data are critical [5].

Many storage formats have been developed which are

optimized for different non-zero distributions and platform

architectures. The most commonly used sparse-matrix stor-

age formats for graph processing are Compressed Sparse-

Column/Row (CSC/R) and Doubly Compressed Sparse-

Column/Row (DCSC/R) [6]. These formats, however, trade-

off between storage and lookup complexity, providing either

fast lookups at the expense of increased storage overhead, or

low storage overhead at the expense of increased access time

for unfavorable non-zero distributions.

In order to overcome these limitations, we propose a novel

sparse-matrix storage format called Hashed-Index Sparse Col-

umn/Row (HISC/R). HISC/R uses a hashed pointer vector

and segmented-storage vector which provides constant-time

accesses to row or columns of a matrix with low storage

overhead, and enables online non-zero insertions and deletions.

Additionally, HISC/R optimizes the storage of hypersparse

matrices by allowing non-zero elements to be stored directly

in the hashed pointer vector. In this paper, we provide an

overview of HISC/R, and demonstrate the storage and lookup

performance of HISC/R compared to CSC/R and DCSC/R

using randomly generated Kronecker graphs. We also show

that HISC/R requires up to 40% less memory reads compared

to DCSC/R when performing SpGEMM, and uses up to 19%

less storage for hypersparse datasets.

The remainder of this paper is organized as follows. Sec-

tion II overviews competing sparse-matrix storage formats

for graph processing. Section III presents and overview of

the Hashed-Index Sparse-Column/Row format. Section IV

presents our experimental results comparing the storage and

lookup performance of HISC/R against competing formats.

Finally, Section V presents our conclusions.

2016 6th Workshop on Irregular Applications: Architecture and Algorithms

978-1-5090-3867-1/16 $31.00 © 2016 IEEE

DOI 10.1109/IA3.2016.18

70

2016 6th Workshop on Irregular Applications: Architecture and Algorithms

978-1-5090-3867-1/16 $31.00 © 2016 IEEE

DOI 10.1109/IA3.2016.18

70

value

col_idx

V02 V05 V07V06V00 V10 V14 V27 V43 V46 V51 V54 V67 V72

0 2 5 6 7 0 4 7 3 6 1 4 7 2

Storage Vector

ptr

index

aux

Compressed Sparse-Row
Row Lookup: O(1) Storage: O(N)

row(1)

0 5 7 8 10 12 13

0 1 2 4 6 7

0 2 43

5

0 5 7 8 8 10 12 13 14ptr

Doubly-Compressed Sparse-Row
Lookup: O(lg nzr)Storage: O(nnz)row(1)

Fig. 1. Comparison of indexing techniques used by CSC/R and DCSC/R.

II. SPARSE-MATRIX FORMAT OVERVIEW

Various sparse-matrix storage formats [7, 8, 9, 10] have

been developed to maximize algorithmic performance for

different non-zero distributions and hardware architectures.

We define an optimal format as one that enables constant-

time lookup complexity for row or column elements while

maintaining O(nnz) storage, where nnz is the number of
non-zero elements in the matrix. In practice, however, sparse-

matrix storage formats must compromise between maximizing

lookup performance or minimizing storage overhead.

Compressed Sparse-Column/Row (CSC/R) is the most com-

monly used sparse-matrix storage format for graph processing

due to its simplicity and good performance [11]. CSC/R

encodes matrices using three vectors: the pointer, index, and

value vectors, as shown in Figure 1. The value and index

vectors are sparse vectors which store the corresponding values

and non-major indices of the non-zero elements of CSC/R in

column/row-major order. The pointer vector is a dense vector

which contains an offset into the index and value vectors for

the start of each column/row for CSC/R. The dense pointer

vector enables constant-time indexing into the start of rows

and columns at the expense of significant storage overhead

when dealing with distributed sparse or hypersparse matrices.

To overcome this storage limitation, the Doubly Compressed

Sparse-Column/Row format [6] replaces the dense pointer

vector with a sparse pointer vector, only storing entries for

non-zero rows or columns as shown in Figure 1. Since the

pointer vector is sparse, another index vector is used to

store the row/column index associated with each pointer. By

using a sparse pointer vector, we must now search for each

row/column, increasing the lookup complexity to O(nzc/r),
where nzc/r is the number of non-zero columns/rows. In order
to minimize the search overhead, DCSC/R introduces an AUX

array which breaks the non-zero rows/columns into blocks and

stores a pointer to the first non-zero of each block. Although

DCSC/R solves the scalability issues of CSC/R by eliminating

the dense pointer vector, the introduction of a sparse vector

requires a search on lookup and may significantly increase the

lookup overhead and limit performance.

V00 V020 2 V05 V06 V075 6 7 �0 0

L0

kL0

V51 V541 4 �V43 V463 6 �V10 V140 4 �

Segmented-Storage Vector

row(1)

key
ptr
size

ptr 2
7

V27

7
2

V72

6
7

V67

0
0
5

1
14
2

4
19
2

5
24
2

Extended Bit

Hashed-Index Sparse-Row (Segmented)
Row Lookup: O(1) Storage: O(nnz)

Fig. 2. Overview of HISC/R using segmented storage.

III. HASHED-INDEX SPARSE-COLUMN/ROW

Hashed-Index Sparse-Column/Row (HISC/R) uses a hashed

pointer vector rather than the dense pointer vector used in

CSC/R, or the sparse pointer vector used in DCSC/R, as

illustrated in Figure 2. When looking up the non-zero values

of a column or row, we use a hash function to generate

an offset into the hashed pointer vector, verify the key, and

use the pointer and size entries to iterate over the non-zero

elements. The hash-table type and load factor, α, determines
the achievable storage and lookup performance of HISC/R.

A. Hashed pointer vector

Each bucket in the hashed pointer vector consists of three

entries: the key (column/row index for HISC/R respectively),

a pointer into the non-zero value/index vectors, and the size

of the current column or row. In order for HISC/R to achieve

high performance, we need a function h : M → {0, ..., B −
1} for a hash table with B buckets, that provides sufficient

uniformity regardless of the non-zero distribution. We select

the initial number of buckets, B, targeting a load factor of 0.75
based on the expected number of non-zero rows or columns

in the matrix. HISC/R uses tabulation hashing [12], a strongly

universal3 family of hash functions [13] which provides good

uniformity guarantees regardless of the non-zero row/column

distribution with low computational complexity.

Although simple collision-resolution techniques such as

linear or quadratic probing, and double hashing, provided

good lookup performance when α < 0.6, we must turn
to more complex hash-table designs to achieve higher load

factors. Hopscotch hashing [14] combines various techniques

from multiple-choice and relocation hashing, linear probing,

and chaining to provide a compromise between lookup per-

formance and load factor. Our experiments indicates that

hopscotch hashing outperforms the other explored hash-table

types for HISC/R by achieving a load factor of up to 83%,

with an average of 1.4 probes per lookup.

B. Segmented-storage vector

Although HISC/R can use a single index/value array similar

to CSC/R and DCSC/R, we instead use a segmented-storage

vector which enables online insertions and deletions. The

segmented-storage vector breaks rows or columns with more

than one non-zero element into variable-sized sublists with

initial size L0. Each sublist contains either null or a pointer

to the next sublist of size kdL0, where k is a customizable
multiplier, and d is the current sublist depth. Unused elements

7171

●

●

●

●

●

● ● ● ● ● ●

Hypersparse Region Sparse Region

 α = 0.714286

0.0

0.5

1.0

1.5

10−3 10−2 10−1 100 101 102 103

Average Row/Column Density

S
to

ra
ge

 R
at

io
 (H

IS
C

/R
 v

s.
 C

S
C

/R
)

●

HISC/R
HISC/R (Unsegmented)

Fig. 3. Comparison of HISC/R and CSC/R storage performance for randomly
generated scale-30 Kronecker matrices.

of each sublist are initialized to zero to indicate that they can

be inserted into, as shown in Figure 2. The parameters L0

and k provide a method to tune the segmented-storage vector,
allowing users to minimize the storage overhead and number

of segments for a particular dataset. The optimal values for

these parameters depend on the properties of the matrix being

stored, and can be determined experimentally.

In cases where there is only one non-zero in a row or

column, as is the common case for hypersparse matrices,

we store the non-zero value directly in the hash table. The

extended bits shown in Figure 2 are used to indicate whether

we are storing a non-zero value or the start of a segmented

vector in the hash table. When storing a non-zero directly in

the hash table, we place the major index in the key, the minor

index in the pointer position, and the value in the size position.

IV. RESULTS

In this section we compare the storage and lookup perfor-

mance of HISC/R with CSC/R and DCSC/R. Our experiments

use randomly generated scale-30 Kronecker matrices [15]

(adjacency matrix of size 230 by 230) with edge factors varying
from 10−3 to 103. We use HISC/R with hopscotch hashing and
segmented storage with the parameter values L0 = k = 2.
Unsegmented HISC/R uses a single value and index array

similar to CSC/R and DCSC/R, and does not store non-zero

elements in the hashed pointer vector. The figures are divided

into hypersparse and sparse regions in order to illustrate the

storage format behavior for different levels of sparsity.

A. Storage comparison

We compare storage performance by calculating the ratio of

the number of bytes to store matrices using HISC/R to CSC/R

and DCSC/R. Figure 3 compares the storage performance

of HISC/R with CSC/R. HISC/R and unsegmented HISC/R

greatly outperforms CSC/R in the hypersparse region, as

● ● ●

●

●

● ● ● ● ● ●

Hypersparse Region Sparse Region

0.4 + 0.6 α−1

0.6 α−1

 α = 0.714286

0.0

0.5

1.0

1.5

10−3 10−2 10−1 100 101 102 103

Average Row/Column Density

S
to

ra
ge

 R
at

io
 (H

IS
C

/R
 v

s.
 D

C
S

C
/R

)

●

HISC/R
HISC/R (Unsegmented)

Fig. 4. Comparison of HISC/R and DCSC/R storage performance for
randomly generated scale-30 Kronecker matrices.

indicated by the storage ratio approaching zero asymptotically.

As the matrix density approaches an average of one non-zero

per row/column, the overhead from the dense pointer vector

of CSC/R decreases, causing the storage ratio to increase. The

storage ratio of HISC/R peaks around 1.4 at an average of 10

non-zero elements per row/column and then asymptotically

approaches 1.25 as the matrix becomes denser.

Figure 4 compares the storage performance of HISC/R with

DCSC/R. HISC/R achieves a storage ratio of 0.85 in the

hypersparse region by storing non-zero elements directly in

the hashed pointer vector. Unsegmented HISC/R approaches

a storage ratio of 1.25 in the hypersparse region due to the

unused buckets in the hashed pointer vector. As the matrix

becomes denser, the number of rows and columns with more

than one non-zero element increases, increasing the number

of storage segments. Due to the unused elements in the

segmented-storage vectors, the storage ratio peaks around 1.35

in the sparse region at 10 non-zero elements per row/column,

and then approaches 1.25 asymptotically as the matrix be-

comes denser. Optimizing the parameters L0 and k for the
dataset being stored would minimize this overhead, and will

be explored in our future work.

B. Performance comparison

We evaluate the lookup performance of HISC/R using

sparse generalized matrix-matrix multiplication (SpGEMM).

SpGEMM is a key kernel used for many graph-processing

applications including all-nodes shortest paths, and between-

ness centrality. We measure the total memory read operations

required for SpGEMM when using CSC/R, DCSC/R, and

HISC/R, for varying degrees of sparsity. We measure only

the total memory reads needed to perform SpGEMM, and do

not assume a particular hardware architecture. We compare the

percent improvement of HISC/R over CSC/R and DCSC/R in

7272

● ● ●

●

●

●

●

●

●

●

●● ● ●●

●

●●●●●

●

●●

Hypersparse Region Sparse Region
−20%

0%

20%

40%

10−3 10−2 10−1 100 101 102

Average Row/Column Density

To
ta

l M
em

or
y

R
ea

d
A

cc
es

se
s

(P
er

ce
nt

 Im
pr

ov
em

en
t) DCSC/R

CSC/R

Fig. 5. Comparison of total reads required to perform sparse matrix/matrix
multiplication using HISC/R compared with CSC/R and DCSC/R.

terms of the reduction in total memory accesses required to

perform the computation.

Figure 5 presents the percent improvement in the total

number of memory reads required by HISC/R compared to

CSC/R and DCSC/R. HISC/R provides an improvement of

up to 40% and 14%, compared to DCSC/R and CSC/R

for hypersparse datasets, respectively. The improvement of

HISC/R in the hypersparse region is a result of storing non-

zero elements directly in the hashed pointer vector, reducing

the number of indirect memory accesses compared to CSC/R

and DCSC/R. In the sparse region, HISC/R requires up to

16% more memory accesses than CSC/R due to having to

decode additional pointers for the segmented-storage vectors.

As the matrices become denser, this overhead decreases as the

additional segment lookups are amortized by the increasing

segment size.

V. CONCLUSIONS

In this paper, we present an overview of Hashed-Index

Sparse-Column/Row (HISC/R), a novel sparse-matrix storage

format optimized for graph-processing applications. HISC/R

provides O(1) lookup complexity and O(nnz) storage com-
plexity while also enabling runtime insert and delete op-

erations, enabling matrices to be constructed directly with-

out using expensive intermediate storage formats. We show

that HISC/R requires significantly less storage than CSC/R

and up to 19% less than DCSC/R for hypersparse datasets

when maintaining an average hash-table load-factor of 71%.

Additionally, we show HISC/R provides up to a 14% and

40% improvement in terms of memory reads compared to

CSC/R and DCSC/R, respectively, when performing matrix

multiplication with hypersparse datasets. The reduction in

the total number of memory accesses and favorable storage

performance for hypersparse datasets make HISC/R uniquely

suited for scalable graph processing.

ACKNOWLEDGEMENT

This work was supported by CHREC members and the

I/UCRC Program of the National Science Foundation under

Grant No. IIP-1161022. We gratefully acknowledge tools and

devices provided by Altera.

REFERENCES

[1] F. Riaz and K. M. Ali. “Applications of Graph Theory

in Computer Science”. In: Computational Intelligence,
Communication Systems and Networks (CICSyN), 2011
Third International Conference on. 2011, pp. 142–145.

[2] L. Ball. “Automating social network analysis: A power

tool for counter-terrorism”. In: Security Journal 29.2
(2016), pp. 147–168.

[3] A. Lumsdaine et al. “Challenges in Parallel Graph Pro-

cessing”. In: Parallel Processing Letters 17.01 (2007).
[4] J. Kepner and J. Gilbert. Graph Algorithms in the

Language of Linear Algebra. Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics, 2011.

[5] A. Eisenman et al. “Parallel Graph Processing: Prej-

udice and State of the Art”. In: Proceedings of the
7th ACM/SPEC on International Conference on Perfor-
mance Engineering. ICPE ’16. New York, NY, USA:

ACM, 2016, pp. 85–90.

[6] A. Buluc and J. R. Gilbert. “On the representation and

multiplication of hypersparse matrices”. In: 2008 IEEE
International Symposium on Parallel and Distributed
Processing (2008), pp. 1–11.

[7] W. Armstrong and A. P. Rendell. “Runtime sparse ma-

trix format selection”. In: Procedia Computer Science
(2010), pp. 135 –144.

[8] N. Bell and M. Garland. “Efficient Sparse Matrix-Vector

Multiplication on CUDA”. In: Nvidia Technical Report
(2008), pp. 1–32.

[9] E. Montagne and A. Ekambaram. “An optimal storage

format for sparse matrices”. In: Information Processing
Letters 90.2 (2004), pp. 87–92.

[10] I. Imecek, D. Langr, and P. Tvrdik. “Minimal Quadtree

Format for Compression of Sparse Matrices Storage”.

In: 2012 14th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing (2012).

[11] Y. Saad. Iterative methods for sparse linear systems.
SIAM, 2003.

[12] M. Patrascu and M. Thorup. “The Power of Simple

Tabulation Hashing”. In: (2011), pp. 1–48.

[13] M. N. Wegman and J. L. Carter. “New hash functions

and their use in authentication and set equality”. In:

Journal of Computer and System Sciences 22.3 (1981).
[14] M. Herlihy, N. Shavit, and M. Tzafrir. “Hopscotch

Hashing”. In: Distributed Computing: 22nd Interna-
tional Symposium, DISC 2008, Arcachon, France,
September 22-24. 2008, pp. 350–364.

[15] J. Leskovec. “Kronecker Graphs : An Approach to

Modeling Networks”. In: 11 (2010), pp. 985–1042.

7373

