
Address translation optimization for Unified Parallel C multi-dimensional arrays

Olivier Serres, Ahmad Anbar, Saumil G. Merchant, Abdullah Kayi and Tarek El-Ghazawi
NSF Center for High-Performance Reconfigurable Computing (CHREC),

Department of Electrical and Computer Engineering,
The George Washington University

{serres, anbar, apokayi}@gwmail.gwu.edu, {smerchan, tarek}@gwu.edu

Abstract—
Partitioned Global Address Space (PGAS) languages of-

fer significant programmability advantages with its global
memory view abstraction, one-sided communication constructs
and data locality awareness. These attributes place PGAS
languages at the forefront of possible solutions to the exploding
programming complexity in the many-core architectures. To
enable the shared address space abstraction, PGAS languages
use an address translation mechanism while accessing shared
memory to convert shared addresses to physical addresses.
This mechanism is already expensive in terms of performance
in distributed memory environments, but it becomes a major
bottleneck in machines with shared memory support where
the access latencies are significantly lower. Multi- and many-
core processors exhibit even lower latencies for shared data
due to on-chip cache space utilization. Thus, efficient handling
of address translation becomes even more crucial as this
overhead may easily become the dominant factor in the
overall data access time for such architectures. To alleviate
address translation overhead, this paper introduces a new
mechanism targeting multi-dimensional arrays used in most
scientific and image processing applications. Relative costs and
the implementation details for UPC are evaluated with different
workloads (matrix multiplication, Random Access benchmark
and Sobel edge detection) on two different platforms: a many-
core system, the TILE64 (a 64 core processor) and a dual-
socket, quad-core Intel Nehalem system (up to 16 threads). Our
optimization provides substantial performance improvements,
up to 40x. In addition, the proposed mechanism can easily be
integrated into compilers abstracting it from the programmers.
Accordingly, this improves UPC productivity as it will reduce
manual optimization efforts required to minimize the address
translation overhead.

I. INTRODUCTION

The continuing quest for higher performance has initiated
a new focus, emphasizing thread- and task-level parallelism,
leading to the emergence of homogeneous multi- and many-
core processors. The shift towards using multiple cores on
the same die relies on thread-level parallelism (TLP) and
accordingly parallel programming to achieve performance
improvements. This programming paradigm shift puts the
responsibility of achieving higher performance on the shoul-
ders of the programmer. The programmer must now under-
stand and exploit parallelism explicitly by utilizing some
kind of parallel programming environment. To exploit the
full potential of these new multi-core processors, new design
methodologies and languages are needed that can abstract

low-level details, but at the same time enable the mainstream
programmer to extract fine-grained parallelism. HPC com-
munity has, over the last few decades, extensively researched
parallel programming languages and methods, results and
lessons from which form a strong foundation to develop new
methodologies amenable to the mainstream programming
community. A relatively newer design paradigm that has
influenced many new HPC languages is the Partitioned
Global Address Space (PGAS) model. PGAS offers a global,
logically shared memory space for all threads, with locality
awareness and one-sided communication constructs.

It offers advantages on two fronts: (i) performance, and
(ii) ease of use, significantly enhancing user productivity.
Data-locality awareness resulting from partitioned address
space and lower communication overheads offer high per-
formance. Global shared memory logical view and one-sided
communication constructs facilitate ease of use. Further-
more, PGAS languages are nearly ubiquitous, which helps
for code portability. Several programming languages such
as Unified Parallel C (UPC), Co-Array Fortran (CAF) and
Chapel follow the PGAS parallel programming paradigm.

The partitioned shared memory view adopted by UPC, as
other PGAS languages, uses an address translation mech-
anism while accessing shared memory to convert shared
addresses to local addresses. Already costly in terms of per-
formance in distributed memory systems, the address trans-
lation mechanism becomes the main bottleneck in machines
with shared memory support where the data access latencies
are significantly lower. Multi- and many-core processors
exhibit even lower latencies for shared data due to on-chip
cache space utilization. Earlier studies showed significant
performance issues that arise from mis-handling of cache
hierarchies in multi-core based systems [1]. Thus, efficient
handling of address translation becomes even more crucial
as this overhead may easily become the dominant factor in
the overall access time for such architectures.

In this paper, we present a novel optimization technique to
minimize the address translation overhead in the most com-
mon case of multi-dimensional arrays. Multi-dimensional
arrays are abundantly used in most scientific and image pro-
cessing applications. In addition, our proposed optimizations
can easily be integrated into compilers. This will further
improve the programmability of UPC as it will eliminate

Figure 1: The UPC memory model

Figure 2: Different layouts for a UPC shared array (6*4)
distributed among 4 threads. The number in each block
represent the thread affinity of the given block.

the manual optimization efforts required to offset the address
translation overhead. Furthermore, different implementation
alternatives of our proposed optimization mechanism are
studied. In addition, empirical results on two different
platforms making a strong case for an improved address
translation are presented.

The rest of this paper is organized as follows. UPC and
its shared memory model is presented in Section II. In
Section III, previous approaches to reduce the address trans-
lation overhead are discussed. Our proposed optimization is
described in detail in IV including cost analysis and im-
plementation trade-offs. Section V presents the benchmarks
used and the corresponding results. Finally, Section VI
concludes the paper.

II. PRESENTATION OF UPC AND ITS SHARED MEMORY
MODEL

UPC is an explicit parallel extension of the C language
supporting the PGAS programming paradigm [2], [3]. It
offers a C language syntax. This eases the learning curve and
provides a high productivity development environment [4].
The UPC execution model supports SPMD style parallel
programming where a specified number of threads execute
cooperatively in parallel on multiple processors. It provides
various synchronization mechanisms for the threads such as
barriers, locks, and memory consistency control statements.

The UPC memory model supports and extends the PGAS
memory model concepts. As in PGAS, the UPC memory
model provides a global shared memory space partitioned
to provide affinity for portions of the shared address space
resident locally. This provides a global view to the user,
effectively improving productivity [5]. In addition, each
thread is also given a private space that is not accessible
by other threads. Variable declarations can explicitly state
shared versus private storage space. A pointer-to-shared

Figure 3: Illustration of the memory distribution of array
and its associated row pointer array ptr_array. Dashed
arrows represent inter-thread accesses.

variable declaration can reference all locations in the shared
space. A private pointer can only reference the addresses
in the thread private address space or its local portion of
the shared space. Syntactically, both remote and private
memory accesses are simple variable assignment statements,
providing a standard logical abstraction for the one-sided
remote communications. Figure 1 shows the UPC memory
model.

In UPC, a blocking factor (or block-size) is utilized to
control the shared array distribution among the threads. If a
blocking factor of size n is specified, the array is distributed
by block of n elements. The blocking factor can only be
represented by a scalar, so it is not possible in UPC to have
more complex distributions, for example 2D block-cyclic
distribution [6] is not possible. Shared pointers can also be
defined with a blocking factor. The blocking factor size of
the pointer has to match the block-size of the array it is
pointing to in order to traverse the array in the correct order.

The address translation process consists of determining
the actual physical location of the data in the shared space.
First the location of the thread that owns the data is de-
termined, then the virtual address inside this thread address
space is computed.

III. RELATED WORK

The address translation overhead for remote accesses in
UPC, when not manually optimized, is important resulting
in programs that can be significantly slower in performance
as compared to their C counterparts. Experienced users typ-
ically use private pointers to close this performance gap and
manually optimize their codes. In such cases, particular care
has to be taken for the boundary conditions. Unfortunately,
this impedes the programmability advantages of UPC for
novice users due to the associated complexity and also
makes the code difficult to read.

According to the latest UPC specifications [2], private
pointers can only access the shared memory part of the local
thread. This greatly reduces the optimization possibilities
available to the users. Users cannot use private pointers
to access data of other threads even if those threads are
using the same physical memory. Only recently, HP UPC

group proposed to extend the specifications with an API
allowing to cast a shared pointer to a private pointer even
though the shared pointer does not point to the local space
of the thread [7]. This will only be possible for the physical
memory accessible by the thread.

Due to the difficulty for the user to manually optimize
the code, it is essential to provide fast address transla-
tion mechanisms. Some previous research studies targeted
the performance issues resulting from address translation
overhead. In [8], Cantonnet et al. took the approach of
pre-computing tables with address-translations. The address
translation code is reduced to the cost of a table look-up.
Unfortunately, storing the complete table is often unfeasible
due to its memory requirement. This is solved by introducing
reduced-tables which only includes the translation for the
first element of each block. Additional arithmetic operations
are required to translate other addresses, trading some com-
putation time for memory. Multi-dimensional arrays were
not considered in their work.

In [9], the authors highlight the inefficiencies of the UPC
address translation. The major bottleneck for performance
identified by the authors is the address translation and the as-
sociated complex arithmetic overheads involved. To remedy
this problem, the authors introduce the block-major layout.
In the block-major layout the arrays, on a physical shared
memory system, are stored contiguously as in C regardless
of their UPC block-size. This makes the cost associated with
shared references to the array to be comparable to that in
C. The limitation of that method is that it is not possible
anymore to derive a private pointer from the optimized
shared pointers (due to the incompatible arrays layout).
The optimization is automatically disabled for arrays using
private pointers.

To mitigate the address translation overhead, the Berkeley
UPC compiler performs two specific optimizations [10].
First, it uses “phaseless” pointers or pointers with a zero
phase. Since the phase is always zero, it doesn’t need to be
included in the address translation calculations. This happens
in two cases; (i) when the block-size is 1, and (ii) when
the block-size is infinity (represented as a block-size of
0). In the second optimization the Berkeley compiler offers
an 8 byte packed representation which has lower overhead
when compared to a “struct” representation. On the other
hand, the IBM XLUPC compiler and runtime system uses
a shared variable directory (SVD) to share the location
of shared variables. The runtime system employs a local
cache to reduce SVD accesses and allow RDMA accesses
[11]. This is designed for large scale system and does not
particularly address multi- and many-core systems that have
lower latency.

IV. PROPOSED OPTIMIZATION

The following UPC array declaration:
shared [b] int array[dn][dn−1]...[d1];

declares a shared array of type int, of dimension n, with
a block-size b. When n > 1, the array is a multidimensional
array.

The optimization targets arrays that are distributed row
by row among the UPC threads (see Figure 2) . This is
the case when block-size is a multiple of the number of
elements in a row of the array; i.e. when d1 ≡ 0 (mod b).
This type of arrays are commonly found in scientific and
image processing applications [12].

The address translation for this type of arrays can be
greatly optimized by generating extra arrays of pointers to
access those arrays.

Let’s consider the following array:
1 shared [3] i n t a r r a y [4] [3] = { 1 , 2 , 3 ,

4 , 5 , 6 ,
7 , 8 , 9 ,

10 , 11 , 12} ;

The block-size of this array is 3, so it will be distributed,
in a round-robin fashion, by block of 3 elements to the
UPC threads. If we have two threads, the distribution will
be as in Figure 3. Also, the elements 1, 2, 3, 7, 8, 9 will be
stored continuously in the local shared space of thread 0 and
4, 5, 6, 10, 11, 12 will be in the space of thread 1.

If the thread private spaces are directly accessible from
the other threads (as when the UPC threads are implemented
with pthreads, for example), it is possible to construct an
array of pointer pointing to the beginning of each row:
ptr_array in Figure 3.

Referencing an element using the array itself or
ptr_array is equivalent, for example:

1 a s s e r t (a r r a y [2] [1] == p t r a r r a y [2] [1]) ;

The advantage of using ptr_array is that it replaces
the expensive address translation with an array look-up. The
generation of ptr_array and the substitution of array
by ptr_array can easily be done by the compiler.

The optimization can also be extended to arrays blocked
by column; in that case, the array would be transposed by
the compiler, effectively transforming the problem to a row
blocked array. Some C and other compilers already transpose
arrays in order to ensure that the accesses are aligned with
the cache lines.

A. Locality of the pointer arrays

For better performance, each thread should have the
lowest latency when accessing its local space of the shared
array; this is why the generated pointer arrays locality should
as much as possible match the locality of the targeted array.
For example, if a row is local to a specific UPC thread,
the pointer to this row should also be local to the same
UPC thread, as it is very likely that this row will be mostly
accessed by that specific thread. To provide this locality, it
is important that the pointer array is arranged correctly in
memory.

Figure 4: Two steps lookup implementation

Figure 5: n−1 steps lookup implementation (2 steps in this
case)

Without duplicating this array, it is not always possible to
ensure that the locality of the pointers match the locality of
the array. Mainly, this is due to the fact that the memory is
managed by the system with unit size of a memory page. A
memory page (usually 4KB on x86 systems) tends to be big
compared to the pointer array size. For the Nehalem system
(see Figure 7), in order to obtain the same latency from
all the cores, the pointer arrays should be duplicated twice,
once for each memory controller. On the TILE64 system, the
pointer arrays have been duplicated once for each thread, so
that for each memory page a home cache is set and the
data of that page will only be cached in this specific cache.
To further reduce the memory usage, it is possible to mark
some pages as read only so that they can be cached anywhere
on the chip. The optimization cost in terms of memory is
analyzed in the next subsection.

B. Optimization cost

There are two alternatives to implement this optimization,
both shown in Figures 4 and 5 for 3D arrays. Figure 4 shows
a one level lookup, where the row pointers are stored in
an array which is one dimension less than the shared data
array. Figure 5 shows the n − 1 levels lookups, where an
array in one level is one dimension less than and contains
pointers to first elements in its rows of the array in the
array in the level that follows it. In terms of computation
power, to find the final address of an array element, the first
alternative will need an address calculation based on n− 1
index which involves both multiplication and addition. The
second alternative will need n − 1 table lookups. Dynamic
allocation of multi-dimensional arrays (through a library
or new language constructs) can also be implemented by
using n − 1 table lookups. In modern processors, a special
instruction is present to perform this type of operation,
making this a fast operation. Also, it is important to note
that, in most of the cases, some lookups can be optimized as
in the following code example. The table lookups to obtain
the beginning of each row (ppb_j) are done outside of the

Figure 6: TILE64 architecture diagram [13]

main loop. The main loop only has index computations to
perform and no table lookup.
f o r (i = n b l i n e s∗MYTHREAD; i<n b l i n e s ∗(MYTHREAD+ 1) ; i ++){

i n t ∗p p c i = pc [i] ;
f o r (j =0 ; j<MATRIX SIZE ; j ++){

4 i n t r = 0 , ∗ppb j = pb [j] ;
f o r (k =0; k<MATRIX SIZE ; k++)

r += pa [i ∗ MATRIX SIZE + k] ∗ ppb j [k] ;
p p c i [j] = r ;

}
9 }

1) Shared pointer arrays: The minimum memory cost to
build the pointer arrays cm1 is as follows:

cm1 =

n∑
j=2

(

n∏
i=j

di ∗ sizeof(void*)) (1)

= dn∗(1+dn−1∗(1+dn−2∗(...+d2)))∗sizeof(void*)
(2)

This is obtained by only having one copy for the whole
program. It can provide a good locality for system with a
common shared cache; e.g. a single socket Nehalem system.

2) Duplication of the pointer arrays: The maximum
memory cost for this optimization is obtained when the
pointer tables are duplicated on each thread (cmmax =
t ∗ cm1). This is the option that we have chosen for the
TILE64 processor, in order to have a correct locality.

3) Case of arrays with d ≥ 3: Based on equation 1, it is
possible to reduce the memory used by the pointer arrays.
This is done by sorting the dimension of the array from the
smallest to the biggest. Considering the following array:
shared [4] i n t a r r a y [1 6] [8] [4] ;

The pointer arrays can be built as if the array has the
following dimensions:
shared [4] i n t a r r a y [8] [1 6] [4] ;

Based on equation 1, the pointer arrays should occupy
16 ∗ (8 + 1) ∗ 8 = 1152 bytes. By sorting the array indices,
the look-up tables will only use 8 ∗ (16 + 1) ∗ 8 = 1088
bytes. For this particular example, the reduction is limited;
but for array of higher dimensions, such a reduction will be
more important.

Table I: UPC overhead over C code

TILE64 NEHALEM PLATFORM

Matrix mult. Sobel edge Random access Matrix mult. Sobel edge Random access
UPC Optimization No Yes No Yes No Yes No Yes No Yes No Yes

CC -O3 (time s) 12.40 0.76 36.57 0.43 0.0015 2.56
UPC 1 thread (time s) 649.12 16.35 6.81 0.78 88.37 39.90 9.91 1.37 0.104 0.0016 3.65 2.72

UPC overhead over C 52 x 32 % 9 x 3 % 142 % 9 % 23 x 3 x 69 x 1 % 43 % 6 %

Table II: Optimization memory cost. The overall optimization cost range is shown, depending on the number of running
threads.

TILE64 NEHALEM PLATFORM

Matrix mult. Sobel edge Random access Matrix mult. Sobel edge Random access
Data size 10242 ∗ 4 ∗ 3 10242 ∗ 2 10242 ∗ 4 10242 ∗ 4 ∗ 3 10242 ∗ 2 10242 ∗ 4

Pointer array size 1024 ∗ 4 ∗ 3 1024 ∗ 4 ∗ 2 1024 ∗ 4 1024 ∗ 8 ∗ 3 1024 ∗ 8 ∗ 2 1024 ∗ 8

Optimization cost 0.1− 3.1% 0.4− 12.5% 0.1− 3.1 % 0.2− 0.4 % 0.8− 1.6 % 0.2− 0.4 %

Figure 7: Architecture of our Nehalem system

V. EXPERIMENTAL SETUP AND RESULTS

A. Platforms

We tested our proposed optimization on two different
platforms:
• TILE64 system: A TILE64 board comes with 4 GB

of memory. The TILE64 processor features 64 identi-
cal 32-bits processor cores (tiles) interconnected with
Tilera’s iMesh on-chip network [14]. Each tile consists
of a complete, full-featured 3-way VLIW processor as
well as a 8KB of L1 data cache, 8 KB of L1 instruction
cache, a 64 KB private L2 cache and a non-blocking
switch that connect the tiles into the mesh. Due to the
small sizes of the caches, the data locality awareness
provided by PGAS languages is a crucial feature for
performance. Four on chip memory controllers connect
the tiles to on-board DDR2 memories. Figure 6 shows
the architecture diagram of the TILE64 processor. It is
also important to note, that some tiles are reserved to
control on-board devices (PCIe bus, 10Gb Ethernet, ...).
Thus, results from TILE64 system are reported at most
for 32 cores.

• Intel Nehalem system: The Nehalem system is a dual
Intel Xeon E5520 processor (quad core, 2.27 GHz) with
12 GB of memory (at 1066 MHz). Figure 7 details the
cache hierarchy. Hyper-threading is enabled, allowing

a total of 16 running threads.
The Berkeley UPC compiler version 2.8.0 with the

pthreads conduit was used to compile the code on both
platforms. The TILE64 platform is not a supported platform,
so we had to cross-compile and patch GASNet [15] and
the UPC runtime for Tilera’s C compiler (tile-cc version
2.0.1.78377). It should be considered as an experimental
platform. On the other hand, the Nehalem system is a more
mature platform which has a wide-spread adoption; a correct
level of address translation optimization is expected from the
compiler. The C compiler used in the Nehalem system is the
GNU C compiler (gcc version 4.4.3).

B. Benchmarks

We used three different benchmarks to test our approach:
• Matrix multiplication : Matrix multiplication is the

building block of many scientific applications. It com-
putes A = B ∗ C; A, B and C being integer matrices
of dimension 1024 * 1024. The ordinary row by col-
umn algorithm is used (complexity O(n3)). The non-
optimized matrix multiplication kernel is as follows:
u p c f o r a l l (i =0 ; i<MATRIX SIZE ; i ++; i / n b l i n e s){

f o r (j =0 ; j<MATRIX SIZE ; j ++){
i n t r = 0 ;

4 f o r (k =0; k<MATRIX SIZE ; k++)
r += a [i] [k] ∗ b t r a n s [j] [k] ;

c [i] [j] = r ;
}

}

It can be noted that the B matrix has been transposed
in order to align the accesses with the cache lines. The
privatization optimization is applied by making use of a
private pointer to access the matrix A. The inter-thread
privatization optimization is obtained by applying our
optimization to all the matrices A, B and C; this totally
replaces all the address translations by table look-ups.

• Sobel edge : The Sobel operator is a well known op-
erator that is used in digital image processing for edge

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

1 2 4 8 16

O
p
ti
m

iz
a
ti
o
n
 g

a
in

Number of threads

Non-optimized
Privatization
Inter-thread privitization

(a) Nehalem system

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 4 8 16 32

O
p
ti
m

iz
a
ti
o
n
 g

a
in

Number of threads

Non-optimized
Privatization
Inter-thread privitization

(b) TILE64 system

Figure 8: Matrix multiplication, optimization gain for different levels of optimization

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 4 8 16

O
p
ti
m

iz
a
ti
o
n
 g

a
in

Number of threads

Non-optimized
Privatization
Inter-thread privitization

(a) Nehalem system

 0

 10

 20

 30

 40

 50

 60

 70

1 2 4 8 16 32

O
p
ti
m

iz
a
ti
o
n
 g

a
in

Number of threads

Non-optimized
Privatization
Inter-thread privitization

(b) TILE64 system

Figure 9: Sobel edge image processing, optimization gain for different levels of optimization

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 4 8 16

O
p
ti
m

iz
a
ti
o
n
 g

a
in

Number of threads

Non-optimized
Inter-thread privitization

(a) Nehalem system

 0

 0.5

 1

 1.5

 2

 2.5

 3

1 2 4 8 16 32

O
p
ti
m

iz
a
ti
o
n
 g

a
in

Number of threads

Non-optimized
Inter-thread privitization

(b) TILE64 system

Figure 10: Random access benchmark, optimization gain for different levels of optimization

 0

 2

 4

 6

 8

 10

 12

 14

 16

64 128 256 512 1024

S
lo

w
d
o
w

n

Square root of matrix size

(a) On the Nehalem platform

 0

 10

 20

 30

 40

 50

 60

64 128 256 512 1024

S
lo

w
d
o
w

n

Square root of matrix size

(b) On the TILE64 platform

Figure 11: Dataset size sensitivity - Comparison of the sequential C version with single thread UPC

detection [16]. Mathematically, the operator convolves
two 3x3 kernels with an input 2D image to obtain an
approximation of the derivates of the input image.
The input image is distributed to the threads such that
each thread has a horizontal block assigned to it. Each
thread works on its own assigned block and produces an
equivalent part of the output image. By this distribution,
each thread has the locality to all the needed data except
for two rows of the input image. In the privatized
version, a private pointer is used except for the first
and the last row for which a shared pointer is used.

• Random access : This benchmark is very similar
to the DARPA High Productivity Computing Systems
(HPCS) Random Access benchmark [17]. This bench-
mark stresses the memory subsystem by doing random
accesses. This is a very interesting test case for our
optimization: it is not possible to predict where the next
access will be. Thus, the full address translation has to
be performed for each access. Typical optimizations are
relatively difficult to implement.

C. Methodology and Results

The benchmarks were run with different number of
threads on both platforms. Each run was conducted at least
5 times and the median was taken in order to reduce system
noise. Compiler optimizations were enabled for all runs;
only the level of manual optimization varies as stated in
the related figures. Privatization refers to an optimization in
which shared pointers are converted to normal C pointers for
the local part of the shared array. Inter-thread privatization
refers to our proposed optimization mechanism for address
translation.

Table I shows the overhead of using UPC over C. This is
obtained by comparing the execution of sequential C code
with both the non-optimized and the inter-thread privatized
UPC codes running with only one thread. Even though
one would expect to get similar performance between C

code and a UPC code with one thread, a dramatic slow-
down (up to 69x slower) is observed for the non-optimized
version, plain UPC code without manual optimizations.
Once optimized with inter-thread privatization, i.e. once the
address translation operation has been replaced by table
look-ups, single thread UPC results become comparable to
sequential C results. As it is expressed earlier, we observed
a higher address-translation overhead for the workloads that
better utilize the on-chip caches which have relatively lower
access latencies. As such, random access benchmark results
exhibit a lower overhead compared to Sobel edge and matrix
multiplication. This is also illustrated in Figure 11 in which
the overall UPC overhead with respect to C is plotted against
the varying workload sizes. The address translation is known
to be the dominant factor that causes this overhead.

Figure 8 through 10 show the results obtained for different
number of UPC threads in our testbeds while running the
aforementioned workloads. Corresponding extra memory
costs from our optimized mechanism are reported for each
workload and platform in Table II. All optimization gain
results are normalized to non-optimized UPC runs for the
same number of threads. Optimization gains are reported
along with the raw execution timing results to clarify any
issues that may arise because of the clock speed differences
between two platforms. The optimization cost in terms of
memory is low: in most of the cases it is inferior to 1%;
the cache pollution being proportional to the memory cost
is also being extremely low.

Matrix multiplication results can be found in Figure 8.
Results present up to 10x and 40x improvements in Nehalem
and TILE64 systems respectively. Since this kernel exhibits
a higher cache utilization, our optimization would be able
to provide large improvements. This supports our initial
statement that reflects the importance of address-translation
optimizations on multi- and many-core based systems which
tend to rely more on cache utilization for performance. The
Sobel edge benchmark has a working set larger than the

total of last level caches in both platforms. However, it still
presents a repetitive data access scheme which can be better
exploited by temporal and spatial locality. Corresponding
Sobel edge benchmark results can be found in Figure 9.
The privatization helps relatively a lot on this benchmark,
but our optimization further improves the performance over
the regular privatization optimization.

Random access benchmark presents a different scenario
in terms of memory subsystem utilization by thrashing the
cache and stressing only on memory accesses which are
all random. Thus, improvements through address-translation
optimizations are relatively limited for this benchmark.
However, as shown in Figure 10 we still manage to get ∼ 2x
performance improvements on both platforms.

It is also important to note that the UPC single thread
overhead over C counterpart for the random access bench-
mark is fairly low (less than 10%). This can be counter
intuitive at first as the number of loads is doubled due to
the lookup tables’ accesses. However, it should be noted that
the table will be fully cached and its accesses will cost the
fraction of an external memory fetch (on Tile 64: an L1-
cache hit takes 2 clock cycles whereas a DDR2 memory
fetch on an open page takes around 69 cycles).

VI. CONCLUSIONS AND FUTURE WORK

The transition to multi- and many-core processors pro-
vides new ways of reaching performance gains mainly
through Thread-Level Parallelism (TLP). PGAS program-
ming languages are a good candidate to solve the associated
programming productivity issues; unfortunately this comes
with some additional overheads. Mainly, address translation
overhead has shown to be a major bottleneck.

In this work, we demonstrated the importance of this
bottleneck for multi- and many-core systems and presented
a new mechanism to minimize this overhead for multi-
dimensional arrays. Experiments were conducted on a dual-
socket, quad-core Intel Nehalem system and a TILE64
system. Results from three different workloads have shown
promising performance improvements up to 40x for matrix
multiplication kernel. In addition, we have shown that our
optimization helps the scalability of UPC applications. Fur-
thermore, our proposed mechanism can easily be integrated
into compilers which would reduce manual optimization
efforts.

As a future work, we are planning to study the effects
of this optimization in a distributed memory environment
(clusters); reducing the address translation overhead for low
latency networks like Infiniband is expected to improve UPC
efficiency.

ACKNOWLEDGMENT

This work was supported in part by the I/UCRC Program
of the National Science Foundation under Grant No. IIP-
0706352.

REFERENCES

[1] A. Kayi, E. Kornkven, T. A. El-Ghazawi, and G. Newby,
“Application performance tuning for clusters with ccnuma
nodes.” in 11th IEEE International Conference on Compu-
tational Science and Engineering, 2008, pp. 245–252.

[2] The UPC Consortium, “UPC language specifications v1.2
(www.gwu.edu/˜upc/docs/upc_specs_1.2.pdf),”
2005.

[3] T. El-Ghazawi, W. Carlson, T. Sterling, and K. Yelick, UPC:
Distributed Shared Memory Programming, May 2005.

[4] F. Cantonnet, Y. Yao, M. Zahran, and T. El-Ghazawi, “Pro-
ductivity analysis of the UPC language,” in Proceeding of
the 18th International Parallel and Distributed Processing
Symposium., April 2004, pp. 254–.

[5] R. Nishtala, G. Almási, and C. Caşcaval, “Performance with-
out pain = productivity: data layout and collective communi-
cation in UPC,” in Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and practice of parallel program-
ming. ACM, 2008, pp. 99–110.

[6] L. Blackford, J. Choi, A. Cleary, J. Demmel, I. Dhillon,
J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley,
D. Walker, and R. Whaley, “Scalapack: A portable linear alge-
bra library for distributed memory computers - design issues
and performance,” in Proceedings of the 1996 ACM/IEEE
Conference on Supercomputing, 1996, pp. 5–5.

[7] B. Wibecan, “Specification extension proposal: Privatization
functions for UPC,” in UPC workshop at PGAS ’09:
the Third Conference on Partitioned Global Address
Space Programing Models, 2009. [Online]. Available:
http://www2.hpcl.gwu.edu/pgas09/HP UPC Proposal.pdf

[8] F. Cantonnet, T. El-Ghazawi, P. Lorenz, and J. Gaber, “Fast
address translation techniques for distributed shared memory
compilers,” in Proceedings of the 19th International Parallel
and Distributed Processing Symposium, 2005.

[9] W. Zhao and Z. Wang, “ScaleUPC: a UPC compiler for
multi-core systems,” in PGAS ’09: Proceedings of the Third
Conference on Partitioned Global Address Space Programing
Models. New York, NY, USA: ACM, 2009, pp. 1–8.

[10] W.-Y. Chen, D. Bonachea, and K. Yelick, “A Performance
Analysis of the Berkeley UPC Compiler,” in Conference pro-
ceedings: 2003 International Conference on Supercomputing:
June 23-26, 2003, San Francisco, California, USA, vol. 4.
Association for Computing Machinery, 2003, p. 63.

[11] M. Farreras, G. Almasi, C. Cascaval, and T. Cortes, “Scalable
RDMA performance in PGAS languages,” in IEEE Interna-
tional Symposium on Parallel Distributed Processing 2009,
May 2009, pp. 1 –12.

[12] A. Salah, O. Serres, J. Gaber, R. Outbib, and H. El-Sayed,
“Simulation of the fuel cell thermal behavior with Unified
Parallel C,” Nov. 2007, pp. 149–152.

[13] Tilera Corporation, “www.tilera.com.”
[14] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Ed-

wards, C. Ramey, M. Mattina, C.-C. Miao, J. Brown, and
A. Agarwal, “On-chip interconnection architecture of the Tile
processor,” Micro, IEEE, vol. 27, no. 5, pp. 15–31, Sept.-Oct.
2007.

[15] D. Bonachea, “Gasnet specification, v1.1,” Berkeley, CA,
USA, Tech. Rep., 2002.

[16] I.Sobel and G. Fledman, “A 3x3 isotropic gradient operator
for image processing,” presented at a talk at the Stanford
Artificial Project in 1968, unpublished but often cited.

[17] V. Aggarwal, Y. Sabharwal, R. Garg, and P. Heidelberger,
“HPCC RandomAccess benchmark for next generation su-
percomputers,” in IEEE International Symposium on Parallel
Distributed Processing - IPDPS 2009, 23-29 2009, pp. 1–11.

