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Abstract—Adding heterogeneity to high-performance systems
has the potential to meet the increasing performance demands
of applications beyond the era of Moore’s Law speedup. In this
paper we design and evaluate an FPGA pipeline to accelerate
the CMT-bone-BE physics application, which is highly scalable,
but performance bound by compute-heavy fluid-flow kernels. For
the targeted kernels, a single instance of our FPGA pipeline
shows a speedup of up to 9.4x over a CPU core. For the
entire application workload, this kernel acceleration provides an
average 1.5x speedup over a CPU core, while also outperforming
a GPU. With even mid-range FPGAs providing enough resources
to replicate our pipeline over 8 times, we project that the FPGA
accelerator can add and/or replace 12 equivalent cores with a
low-power alternative, with additional time-sharing optimizations
potentially increasing that amount significantly.

Index Terms—FPGA, Heterogeneous Computing, High-
performance Computing, Hardware Accelerators

I. INTRODUCTION

As we approach the end of Moore’s Law and the “free”
speedup associated with smaller and more plentiful transistors,
computer architectures require more efficient and creative
use of available resources to meet increasing performance
demands. High-performance computing (HPC) initially ad-
dressed this need by increasing the number of available CPUs
and CPU cores. However, the general-purpose nature of these
cores results in prohibitive performance for many applications,
or requires a number of CPUs that has prohibitive power,
energy, and/or cost.

To address the limitations of general-purpose cores, HPC
has started a rapidly increasing trend towards heterogeneous
systems, with specialized hardware accelerators alongside
CPUs. The most common hardware accelerator is the GPU, as
evidenced by many of the Top 500 supercomputers adopting
a heterogeneous CPU-GPU architecture [1]. Yet the GPU is
not the only, or final, solution to hardware acceleration.

The anticipated trend in future HPC system development is
towards that of extreme heterogeneity, where many different
types of hardware accelerators will exist alongside CPUs and
GPUs [2]. This trend will allow different tasks to run on
hardware best suited for its needs in the interest of optimal per-
formance and efficiency of the overall system and workload. A
potentially major stepping stone in this path toward increasing
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heterogeneity is the field-programmable gate array (FPGA),
which has been shown to have performance and especially
energy advantages over GPUs for some applications [3], [4],
[5]. FPGAs consist of a reconfigurable hardware fabric, which
allows for the creation of computational circuitry customized
to a given application. Parallelization can be achieved by
deeply pipelining operations, as well as by replicating circuitry
to increase computational bandwidth.

In this paper we evaluate the potential for FPGAs as
hardware accelerators of fluid-flow kernels by comparing
performance with a CPU and GPU to better understand the
design-space options for these kernels. Fluid-flow kernels are
an important part of many scientific applications studying
physical phenomena in a volume [6], [7], [8]. To evaluate
these kernels, we accelerate the CMT-bone-BE application,
which serves as a proxy representation of CMT-nek: a sci-
entific physics code under development at the Center for
Compressible Multiphase Turbulence (CCMT) [9]. CMT-nek
is an expansion of NEK5000, a well-established code in the
field of fluid-flow physics [6], which was designed to perform
incompressible fluid flows based on Navier-Stokes equations.

We show that FPGAs are an attractive option to accelerate
performance of these fluid-flow kernels beyond CPU scaling
due to both wide and deep parallelism that we can achieve
with a custom compute pipeline. Specifically, with parallel
circuitry we are able to reduce an O(n4) computational kernel
to O(n3) while decreasing memory intensity. Additionally, our
pipeline enables streaming data that overlaps computation with
communication; by the time computation is done, most of the
results are already back in the host CPU’s memory.

We show that our FPGA pipeline accelerates partial-
derivative computations by up to a 9.4x speedup over a CPU
core, which for the the entire fluid-flow timestep, referred
to as the software workload for simplicity, results in over
2x speedup (as limited by Amdahl’s Law [10]). Although
a 2x overall speedup is not sufficient to replace multi-core
execution with a single FPGA pipeline, the pipeline can
complement existing multi-cores. For example, one FPGA
pipeline provides on average about 1.5 cores of performance,
or can reduce power by using fewer total cores. Furthermore,
modern FPGAs can fit multiple copies of our pipeline, with
up to 8 replications potentially fitting on the targeted Arria 10
FPGA. For 8 replicated pipelines, the FPGA could potentially
replace and/or add 12 cores to existing systems. Additionally,
time sharing of the FPGA accelerator by multiple CPU cores



could allow for each pipeline to accelerate an average of 5
cores, rather than just one. So on average, 8 pipelines with
time sharing could allow a single FPGA to accelerate 40 CPU
cores for a total compute power of 60 core equivalents.

Despite having a lower peak computational throughput
than the GPU, the average speedup of the FPGA-accelerated
core was 8% better than the GPU-accelerated core for larger
element sizes of 16–32, while offering lower power consump-
tion. Meanwhile for smaller sizes, the FPGA significantly
outperforms the GPU by an average 17.7x speedup for element
sizes of 5–10. This performance benefit, when multiplied with
lower power consumption, can yield massive energy savings
over the GPU.

The remainder of this paper is organized as follows: Section
II discusses related research. Section III gives an overview
of our CMT-bone-BE case-study application. Section IV de-
scribes the custom FPGA pipeline. Section V compares appli-
cation performance of the FPGA pipeline with the CPU and
GPU baselines. Section VI concludes the paper.

II. RELATED RESEARCH

The prevalence of spectral-element methods for solving
computational fluid dynamics and other scientific applications
has lead to many corresponding acceleration studies. Here we
present some of the efforts made in the context of scaling up
to large homogeneous CPU systems, as well as the adaption
of GPU and FPGA accelerators.

A. Homogeneous Parallelization

Fischer et al. presented theoretical analysis for strong scal-
ing of particle-based flow simulations (including NEK5000) up
to very large numbers of CPU cores [11]. While dividing large
workloads among parallel compute nodes can significantly
cut run time, eventually inefficiencies at very large processor
counts set scaling limits. These theoretical strong-scaling lim-
its were tested for NEK5000 by Offermans et al., where high
latency and noise across networks can further reduce scaling
limits by an order of magnitude or more [12].

Hutchinson et al. studied the tradeoff between computa-
tional cost and simulation accuracy for the spectral-element
code NekBox on large-scale CPU systems [13]. They inte-
grated the use of the LIBXSMM library to offer optimized
performance on small matrix-multiplication operations on
modern Intel CPUs, and showed improved performance and
peak memory bandwidth of Nek codes.

B. Hardware Acceleration with GPU

Fischer et al. also considered the GPU in their scaling
analysis, noting the extra layer of parallelism that can be
obtained from within the GPU itself [11].

Otten et al. studied the performance benefits of using
multiple GPUs for similar spectral-element solvers [14], but
their use of GPUDirect storage allowed them to bypass much
communication with the CPU. Such communication is com-
mon in acceleration environments, which we evaluate in this
paper.

Markidis et al. ported NekBone, a skeleton app of
NEK5000, to a multi-GPU system using OpenACC compiler
directives [15]. They showed marginal performance improve-
ment with an unoptimized initial version, but roughly double
this performance by flattening the loops of the compute-heavy
matrix-matrix multiplication kernel.

CCMT researchers Gadou et al. explored performance and
energy tradeoffs of various workload distributions of another
proxy-app for CMT-nek on CPU/GPU systems [16], [17].
They showed improved performance with multiple GPUs at
the cost of increased power consumption.

C. Hardware Acceleration with FPGA

Grigoras et al. considered the performance benefits of FP-
GAs in the context of similar spectral finite-element methods,
but they focused on the sparse matrix-vector multiplication
kernel [18]. While our target operations involve 3-D by 2-D
matrix multiplication, which can be conceptualized as an array
of matrix-vector multiplications, the matrices in CMT-Bone-
BE are very dense and cannot make use of sparsity techniques.

While FPGA implementations of spectral element and fluid
flow kernels are not common, there has been work on more
general matrix multiply based operations on FPGAs. Kestur
et al. tested Basic Linear Algebra Subroutines (BLAS), and
found performance similar to CPUs and GPUs for smaller
matrix sizes with considerable energy efficiency benefits [19].

III. APPLICATION OVERVIEW

In this study we investigate speeding up CMT-bone-BE
using hardware accelerators. CMT-bone-BE is representative
of the computational requirements and scaling trends of its
parent application, CMT-nek, but at a more coarse-grained
level, which allows us to study its behavior with less com-
plexity [20]. CMT-nek adds three important characteristics to
the Navier-Stokes-based incompressible fluid flows performed
by NEK5000, namely Compressibility of flows, Multiphase
states of matter (e.g., simulation of solid particles in addition
to gaseous fluid flows), and Turbulence related to high pressure
disturbances, such as explosions in particular.

A. Algorithm Summary

CMT-nek performs calculations of fluid flow on a large 3-
D volume over small timesteps, and divides the space into a
grid of many small 3-D elements. The bulk of execution time
comes from partial-derivative calculations on each of these 3-
D elements and communication of flow between neighboring
elements. CMT-bone-BE captures this behavior as the basis
for its coarse-grained abstraction of the parent application.
Each simulation timestep involves the calculation of the partial
derivative fluid-flow kernels in three directions for five dif-
ferent physical parameters and three Runge-Kutta stages for
every element in the physical volume under simulation. These
derivative calculations, outlined in Algorithm 1, are essentially
a specialized matrix multiplication between 3-D matrices (or
ternices) representing the element data, and 2-D matrices
representing the corresponding derivative operations. From



Algorithm 1 Partial Derivative Compute Kernel
1: for derivative = dr, ds, dt do
2: for i = 1, . . . , N do
3: for j = 1, . . . , N do
4: for k = 1, . . . , N do
5: for g = 1, . . . , N do
6: if dr then
7: Cr[i][j][k]+ = A[i][g] ∗B[g][j][k]
8: end if
9: if ds then

10: Cs[i][j][k]+ = A[j][g] ∗B[i][g][k]
11: end if
12: if dt then
13: Ct[i][j][k]+ = A[k][g] ∗B[i][j][g]
14: end if
15: end for
16: end for
17: end for
18: end for
19: end for

NEK5000 down to CMT-bone-BE these derivative calculations
operate on the order of N4 with storage requirements on the
order of N3, where N refers to the grid size of each element,
which is stored as a NxNxN matrix.

B. Target Kernel Operations

The specialized matrix multiplication for partial derivatives
is the focus of our acceleration efforts due to its computational
complexity, as well as its ability to be decomposed into
many discrete operations. An example visualization of our
3-D matrix multiply operations can be seen in Fig. 1. Here
the 2-D NxN matrix has fixed contents for each derivative
operation kernel; we will refer to this matrix as A. The input
3-D NxNxN matrix (right side) holds the data associated with
the fluid volume of the current element and is multiplied by
the kernel matrix A; we will refer to this matrix as B. The
output 3-D NxNxN matrix (left side) holds the results of the
accumulated matrix multiplications between A and B; we will
refer to this matrix as C.

There are three different outputs (shown by different colors)
corresponding to the three directions of flow (dr, ds, dt) for
which each input element has a derivative calculated. As
shown in the figure, each element of the output matrix C
(represented by a single dot) is the sum of an entire N-
length vector row of A multiplied element wise with an N-
length vector of B and accumulated into a single output.
Since there are N3 items in the output matrix, and it takes
N multiplications to produce each output, it is easy to see that
the entire matrix multiplication is of the order N4 operations.
The main difference between the three directions of flow of
the derivative operations (dr, ds, dt) is the order in which the
input matrix B is traversed and the corresponding items it is
multiplied with in A. This presents a challenge for our custom

Fig. 1. Example 3-D by 2-D matrix multiply showing calculation of one
output item for each partial derivative operation (dr, ds, dt), which traverse
the input ternix in different directions.

pipeline to be able to handle processing the same input data
in three different orders to produce three different results.

Serial execution of a full partial derivative kernel, as shown
in Algorithm 1, involves a four-way nested loop, in which
the innermost loop iterates through index g to perform the N
multiply-accumulates required for each output point in C. The
loops then iterate through i, j and k to calculate the results for
every point in each output matrix C. Since each output point
is calculated independently of every other output point, there
are no output dependencies and the computations can be done
in parallel. Hence, it is within these operations that we will
attempt to extract speedup from a fine-grained parallelization.

C. Parallelization Strategies

NEK5000 has been shown to scale well across a large
number of parallel processes in an MPI-based environment
[12]. By extension, CMT-nek and CMT-bone-BE also scale
well. However, this parallelization is achieved splitting the
entire large 3-D volume space into many small 3-D elements
distributed across MPI ranks. By constrast, we are interested
in extracting more fine-grained parallelism from within the
work distributed to each core, in order to supplement the
existing scalability. By comparing an FPGA, GPU, and single
CPU core, we are finding the most effective way to perform
the underlying calculations of CMT-bone-BE—a fundamental
principle in striving towards extreme heterogeneity.

Of course, the performance of the accelerators in the context
of a many-core CPU environment is still important, which we
evaluate with projections of the equivalent number of cores
that can be added and/or replaced by each accelerator. In other
words, we do not intend for the accelerators to replace the
multi-core, and instead evaluate how they complement each
other in different potential system architectures.
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Fig. 2. High-level block diagram of FPGA partial-derivative accelerator with
input and output reorder buffer.

IV. FPGA ACCELERATION ARCHITECTURE

A high-level overview of the FPGA accelerator architec-
ture for the partial-derivation computations of CMT-bone-BE
(Algorithm 1) is shown in Fig. 2.

In trying to accelerate these special matrix-multiply kernels
on an FPGA, we seek to take advantage of replicating multiply
and accumulate circuitry to perform multiple operations in
parallel, as well as using a deep pipeline to allow us to stream
inputs and produce outputs on every clock cycle once the
pipeline is filled. A major bottleneck of hardware accelerators
is communication bandwidth, so we would like to minimize
how much data has to be sent to the FPGA. In order to
minimize data streaming, we need to rearrange the operations
of the kernel to make it more efficient on the FPGA.

Looking at the execution of this kernel we see that there
are N3 inputs and outputs, with N4 multiplies and accumu-
lates. This implies that each input element is needed for
N calculations of N different outputs, which means a naive
implementation on the FPGA would have to stream each input
N times. Rather, if we perform all calculations with a given
input element at the same time, then we only have to stream
each input once, thus reducing the memory intensity of the
workload. This concept is illustrated in Fig. 3, where each
input element is multiplied by N different items in the 2-D
kernel matrix, which then accumulate into N different partial
sums of the output ternix. If we stream the input elements
in the correct order for each derivative, the N partial sums
will fully accumulate after N inputs, and then move on to the
next set of partial sums, thus producing an average of one
complete output every clock cycle. This streaming order is
important, and also different for each direction of the derivative
calculations, which we will address shortly.

The data pipeline design implements N parallel datapaths
which each correspond to one row of the NxN kernel matrix.
During initialization, the NxN kernel is loaded into small block

Fig. 3. Example reorder of matrix multiply for FPGA. One input simulta-
neously multiplied by N kernel items to accumulate into N different partial
sums in different orders for each derivative direction.

RAMs in each datapath; only the N items within each row of
the NxN kernel are stored in a given datapath. Then input
data is streamed one item per cycle into every datapath and
is multiplied by N different items of the kernel RAMs, one
on each path. These accumulate into N different partial sums,
and after every N accumulations a full sum is completed in
each datapath. These N concurrent results are collected and
shifted out in sequential order while the next N partial sums
are accumulating. Overall, this strategy allows for one result
to be produced every clock cycle after the pipeline is filled.

As mentioned, the streaming order of the input data dis-
tinguishes the three different derivative directions. All three
derivative directions use the same input data for a given
element, but they use the data in a different order to capture the
directional flow. Only one of these three derivatives can stream
the data through the given pipeline in order of memory storage,
based on C-wise row-major array ordering. The other two
derivative directions require column and depth-wise streaming
of the 3-D input array data. This streaming is handled by
a reorder buffer wrapped around the multiply accumulate
pipeline. This reorder buffer stores input items in a block
RAM and sends the data in the necessary order into the
pipeline by first stepping through it with a step size of 1
for derivative direction dt (e.g., the natural storage/streaming
order coming from memory), followed by a step size of N
for derivative direction ds, and finally a step size of N2 for
derivative direction dr. Accumulated results stream out from
the pipeline in the same order that they stream in, but are stored
into another block RAM in the original row-major memory
order by another reorder buffer. These outputs can then be
streamed in order back to the CPU host memory.



TABLE I
EXECUTION TIME AND SPEEDUP OF TARGET KERNEL

Fig. 4. Speedup for GPU and FPGA relative to a CPU core for the targeted
compute kernel.

V. RESULTS

A. Experimental Methodology and Setup

In this study we are investigating methods to go beyond
the performance gain of CPU scaling by extracting additional
fine-grained parallelism that is inherent within the tasks of the
workload. In order to show this, we need to look specifically
at the work that each individual CPU core would perform. In
our case, with CMT-bone-BE, each CPU core will perform
all of the tasks of the application for each simulated timestep,
but only for a subsection of elements in the overall problem
volume. Of these tasks, the major computational bottleneck is
in performing the special matrix-multiplication kernels used in
calculating the derivatives of flow. While there is significant
parallelism within these individual matrix multiplications, the
CPU core is not able to fully expose it. This is due to the
fact that the overall workload has already been distributed
amongst all of the available cores, so there are no cores left to
further divide these calculations. Further, even if we had more
cores available, spreading these fine-grained operations among
non-specialized CPU cores could only achieve linear speedup
at best, although realistically the increased communication

TABLE II
EXECUTION TIME AND SPEEDUP OF TOTAL TIMESTEP

Fig. 5. FPGA and GPU accelerated core speedup relative to non-accelrated
CPU core for an entire CMT-bone-BE timestep including initialization and
cleanup.

and memory overheads would negate a significant portion of
the benefit. Therefore, it makes sense for our methodology
to measure a single CPU core executing its workload as a
baseline reference, as this is the expected behavior of each
core in a system. We can then project how the FPGA and GPU
can complement a multi-core system in terms of numbers of
equivalent cores added or replaced.

To get the CPU core baseline, CMT-bone-BE was modified
to run on a single CPU core, as opposed to its normal operation
of being distributed among MPI ranks. For the GPU baseline,
the same code was run on the CPU host, except that the
targeted matrix-multiply kernels were offloaded to execute on
the GPU accelerator. This is the same use case for the FPGA
accelerator, where only the targeted kernels are executed by
the FPGA, and everything else runs on the CPU host.

Performance was measured by software timers in the CPU
code which captured time spent on the matrix-multiply kernels
and the total timestep, as well as memory initialization and
cleanup. The total timestep measurements included many
iterations of the partial derivative kernels, as well as several
other less expensive operations which make up the rest of the



application behavior. By looking at the performance of the
total timestep, we were able to see how accelerating the partial
derivatives improved the overall application performance.

We collected results for CMT-bone-BE execution times for
CPU and GPU on the HiPerGator supercomputer at the Uni-
versity of Florida [21]. The CPU used to measure performance
for all non-accelerated tasks was the Intel Xeon E5-2698v3
processor. The GPU accelerator used was the NVIDIA Tesla
K80. The GPU implementation used CUDA to offload the
targeted compute kernel across the GPU’s parallel compute
cores. Both the CPU and GPU codes were compiled with
the nvcc compiler with O2 level optimizations. The FPGA
implementation was run on the Intel DevCloud [22], which
used an Intel Arria 10 GX FPGA 10AX115N2F40E2LG. The
custom compute pipeline was implemented in RTL with a
combination of VHDL and SystemVerilog. This was synthe-
sized on the DevCloud with Quartus Prime Pro version 19.2.0.
In the interest of maintaining a single CPU baseline metric,
and due to the lack of a common system with both an FPGA
and GPU, the total timestep results for the FPGA use the CPU
measurements from HiPerGator, with measured run time of the
FPGA kernel (including communication costs of transferring
the input kernel, data and output results) from the DevCloud
substituted in place of the CPU kernel time. As future work,
we are looking into finding an HPC system with both an FPGA
and GPU.

The primary parameter which we are varying in this study is
the element size, which corresponds to N of our NxNxN data
matrices. Typical operation of the parent application CMT-
nek uses element sizes in the range of 5–25. In order to
accommodate this, the FPGA implementation was developed
to support up to an element size of 32, and we measured
performance for our three implementations for element sizes
from 5–32. This range scales the total workload over 250x,
which allows us to see potential tradeoffs for the hardware
accelerators on large and small input sizes.

B. Accelerator Comparison

The targeted compute kernel experienced significant
speedup over a single core from both the FPGA and GPU
accelerators. As seen in Fig. 4 and Table I, both the FPGA
and GPU see a large increase in speedup of the targeted kernel
execution times as the element size increases. The nature of
the FPGA in producing an output every clock cycle once its
pipeline is filled allows it to take advantage of this increasing
element size, as it deepens the pipeline and increases its
operation-level parallelism. Similarly, the GPU can utilize
more of its compute cores in parallel when there is more data
available to operate on at a given time.

Interestingly, the GPU actually sees a slowdown compared
to the CPU in the cases of element size 5–10. Looking at
the target kernel operation time in Table I, we can see that
the GPU time for a kernel of element size 5 is greater than
that of size 25, while element sizes of 8 and 10 are both
larger than that of size 32. We also see an order of magnitude
reduction in time going from size 10 to 12. It is unsure why

TABLE III
TIME MEASUREMENTS FOR CPU

the magnitude of these performance differences is so large and
sudden for the smaller element sizes, although in general the
trend may be attributed to overhead associated with tiling and
shared memory in the GPU far outweighing the benefits of
parallelization for such small problem sizes.

The FPGA also experienced a slowdown versus the CPU,
but only for element size 5. Here, the latency associated
with accessing the host CPU’s shared memory over PCIe
was costlier than the amount of parallelism which could
be extracted from such a small problem size. Despite this,
the FPGA significantly outperforms the GPU accelerator for
this size, and actually averages over a 27x speedup versus
the GPU for element sizes 5–10. An advantage the FPGA
had over the GPU was overlapping the overhead of data
transfer with computation, which is especially important for
smaller problems with less computation available to amortize
communication costs. The FPGA could begin processing (and
even return results) as the input data was still being streamed
in. Conversely, the GPU had to wait until all of the input
data was finished transferring before it could begin operation.
However, the GPU does provide a higher peak computational
throughput than the FPGA, which is evidenced by the higher
performance on larger target kernel sizes.

The acceleration of the target kernel also resulted in speedup
of the overall application, as shown in Table II and Fig. 5.
However, the overall speedups are limited to more modest
numbers by Amdahl’s Law, due to the remaining CPU ex-
ecution of the code which was not accelerated. The FPGA
showed steady increases in speedup with increasing element
size up to over a 2x speedup of the overall workload, and an
average speedup of 1.4x. This limit around 2x speedup makes
sense when looking at the breakdown of execution times for
the CPU operation in Table III. Here the time spent on the
targeted compute kernel takes up roughly 40–60% of the total
workload time. This leaves about half of the total execution
time still needing to be run by the CPU, even if the accelerators
were able to reduce the targeted kernel time down to nothing.

Fig. 5 shows the speedup of FPGA and GPU accelerated
cores versus non-accelerated cores on the overall workload.
The FPGA and GPU accelerators produce roughly the same



performance benefit at the largest sizes, despite the GPU’s
clear advantage on the target kernel. This is due to a larger
cost of allocating GPU memory. The FPGA-accelerated core
outperforms the GPU accelerated core for all other test cases,
and by a wide margin for sizes 5–10, where on average
performance is nearly 18x better. This discrepancy at small
sizes is more so due to the GPU’s poor performance than
the FPGA’s dominance, as the FPGA also sees its worst
performance relative to the CPU for these sizes. Still, this
contrast in the two accelerators’ performance is important. It
would not make sense to deploy a hardware accelerator that
slows down performance of what it is supposed to be speeding
up. The GPU results in a slow-down versus the CPU for half
of our test cases, and produces a 0.94x speedup across all
sizes, meaning less performance than a non-accelerated core
on average. Therefore, the GPU is not a very viable accelerator
for this problem. Meanwhile, although the FPGA does not
demonstrate its best performance at small sizes, it still shows
speedup over the CPU in all but one test case, and provides
an average speedup of 1.4x over a non-accelerated core.
This speedup makes the FPGA a viable hardware accelerator
for most use cases of this application, and demonstrates its
versatility as an accelerator compared to the GPU.

Another important consideration for hardware accelerators
is energy efficiency. While we have not yet explicitly measured
power consumption for the accelerators running CMT-bone-
BE, other studies have shown that FPGAs can operate with
significantly lower power consumption than GPUs [3]. With
that general trend in mind, if the FPGA is roughly equivalent
to the GPU in terms of performance on the larger element
sizes, then it would be more energy efficient as an accelerator
at these sizes. For smaller sizes, where the FPGA outperforms
the GPU by up to 30x, less power consumption would stack
with reduced run time (E = P*t) to potentially see massive
energy savings for the FPGA compared to the GPU.

C. Projected Acceleration Scaling

Now that we have seen the FPGA can serve as an effective
and efficient accelerator of a single CPU core for this appli-
cation, we will consider the potential benefits for an FPGA
accelerator deployed in a multi-core system, and project how
this acceleration could scale up to heterogeneous HPC. As
future work, we plan to validate these projections with actual
implementations on the Intel DevCloud. Such implementations
were not available at the time of publication due to the
significant complexities of interfacing a single FPGA with
numerous CPU cores simultaneously.

We have shown that by offloading the computationally
heavy portion of the workload to an FPGA accelerator, an
FPGA-accelerated CPU core is able to execute its software
workload up to over 2x faster, and 1.5x faster on average for
cases when using an accelerator makes sense. This means that
an FPGA-accelerated CPU core could perform on average 1.5x
the work of a non-accelerated core in the same amount of time.

All discussion thus far has been under the premise of a
single copy of our compute pipeline residing on the FPGA

Fig. 6. Percent of total execution time taken by accelerated kernel on FPGA,
and corresponding number of CPU cores that could share FPGA availability
without competition.

accelerator. However, with modern FPGA devices we can fit
multiple copies of this pipeline on a single FPGA, thereby
extending the possible compute power that an FPGA ac-
celerator could supply. Initial resource requirements of our
compute pipeline are roughly 27k ALM, 4 Mb of Memory
and 100 DSP blocks. The Arria 10 GX 1150 offers up to
427k ALM, 67 Mb of Memory and 1518 DSP blocks [23],
which is roughly 15x more resources than our pipeline in each
category. We only have access to about 75% of these resources
in the partial reconfiguration (PR) region of the FPGA that our
accelerator design is confined to operating in, which lowers
available resources to roughly 11x that of a single compute
pipeline. Considering additional resource overheads of adding
parallel pipelines, it appears reasonable that we could fit 8
copies of our compute pipeline onto a single Arria 10 FPGA,
which we will evaluate in future work. In theory, this would
produce an FPGA accelerator with an average of 12 CPU cores
worth of performance, with a lower power requirement than
an equivalent 12 core system.

The scaling limits of our FPGA accelerator are actually
more constrained by the communication bandwidth to the
device, than by available resources within the configurable
device. For full performance, each compute pipeline requires
an average of 64 bits (one floating point double data type) of
input and output communication bandwidth every clock cycle
of its operation. While we may not currently be able to fully
supply 8 compute pipelines on the FPGA with this amount of
data simultaneously, future developments in this area, such as
the emerging PCIe5, will significantly increase communication
bandwidths.

Fortunately, we may be able to have more CPU cores use the
accelerator without increasing the communication bandwidth.
Since the CPU only uses the FPGA to accelerate the targeted
compute kernel, and because there is a non-neglible amount
of software workload remaining for the CPU core (i.e., around
50% of the original non-accelerated execution time), the FPGA
actually spends much of its time idle if only accelerating a
single core. If we are able to effectively stagger requests to the



FPGA, we could have more cores make use of the accelerator
by sharing it at different times. For element size of 32, the
FPGA is in use calculating partial derivatives only 12.9% of
the total run time. This means that 87% of the time, the FPGA
could be used by other cores. If all the CPU cores are able to
stagger their use of the FPGA, and perform their remaining
software workload when not using it, then a single FPGA
compute pipeline could support up to 7 different CPU cores
without competition for FPGA availability.

Fig. 6 shows the number of CPU cores that could be acceler-
ated by sharing the availability of the FPGA, based on the per-
centage of total run time that the FPGA requires to complete
each compute kernel. On average across our viable test cases,
5 CPU cores could share an FPGA pipeline cooperatively.
With 5 cores being accelerated to 1.5x average performance,
our FPGA accelerator could now facilitate roughly 7.5 CPU
cores worth of computational power with a single compute
pipeline. In theory, if communication bandwidth is increased
to be able to supply 8 compute pipelines simultaneously, and
time sharing of each of these pipelines is employed, then a
single Arria 10 FPGA could on average accelerate 40 CPU
cores to achieve the computational power of 60 cores. For the
best case element size of 32, this could be 56 cores accelerated,
producing approximately 116 cores worth of compute power
(i.e., 60 low-power core equivalents added) with a single
FPGA accelerator. While this is may not be fully attainable
with today’s systems, we believe it showcases the potential for
FPGA accelerators in future heterogeneous HPC systems.

VI. CONCLUSION

In this paper we evaluated the viability and versatility of
FPGAs as hardware accelerators in future HPC systems as we
trend towards extreme heterogeneity. To do so, we performed
a case study on the fluid-flow kernels of the spectral-element
solver CMT-nek. By focusing on the portion of work that is
performed by each individual core of a large system running
a highly scalable application, we were able to test whether
hardware accelerators can extract a finer level of parallelism
from the workload than coarse-grained CPU scaling alone.

We designed and implemented a custom compute pipeline
for the fluid-flow kernels on an FPGA, and measured its
performance relative to both a CPU and a GPU baseline. Our
experiments show that the FPGA is able to run the targeted
compute kernel 3.6x faster than a CPU core on average. By
accelerating these computationally heavy fluid-flow kernels,
the FPGA can speed up the overall workload over 2x of
a CPU core, with an average improvement for viable cases
of 1.5x. Our results show the FPGA as a sensible hardware
accelerator for this application, as it is able to speed up the
overall workload in all but one use case size. The GPU shows
comparable performance to the FPGA at larger input sizes,
but suffers significant slowdown versus the FPGA and even
the CPU at smaller sizes, making it unusable as a hardware
accelerator for those problem sizes.

We will seek to show the capabilities of our FPGA design in
the context of accelerating a multi-core CPU system in future

work. In a notional heterogeneous HPC system, if we are given
one FPGA accelerator per X number of CPU cores, we would
like to study ways to potentially optimize the configuration of
this accelerator. This will involve adding multiple copies of the
compute pipeline on the FPGA, communicating to the FPGA
with multiple CPU cores, and time sharing of the compute
pipelines by multiple cores.

While we have not yet measured power consumption for
these devices running this application, we do outline a case for
the FPGA being a significantly more energy efficient hardware
accelerator compared to the GPU for this application. Properly
demonstrating this advantage in energy efficiency of the FPGA
accelerator will be part of our future work on this problem.
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