
XDL-Based Module Generators for Rapid FPGA
Design Implementation

Subhrashankha Ghosh, Brent Nelson
NSF Center for High-Performance Reconfigurable Computing (CHREC)

Dept. of Electrical and Computer Engineering
Brigham Young University

Provo, UT, 84602, USA
Email: brent nelson@byu.edu

Abstract—XDLCoreGen is described, a module generator
framework which directly generates placed and routed hard
macros in XDL. XDLCoreGen is intended to be used in a
rapid prototyping flow such as HMFlow, which achieves short
FPGA implementation times by bypassing the conventional Xilinx
tool flow and directly assembling designs from pre-built hard
macros. The structure of XDLCoreGen is described and its
unique cache-based router is highlighted as a key component to
achieving extremely fast module generation times. Testing results
are provided to demonstrate XDLCoreGen’s ability to generate
fully placed and routed hard macros in milliseconds.

I. INTRODUCTION

Over the years researchers have proposed two broad cate-
gories of methods for reducing FPGA design time. The first
focuses on front-end design entry — using high-level synthesis
(HLS) tools and/or predefined circuit building block libraries
to accelerate design entry and verification. One way they do so
is by hiding many low-level FPGA details from the designer.
However, advances in this area will never significantly reduce
design time unless we also make progress in a second area:
that of reducing design implementation time (synthesis, place,
and route). In fact, reducing implementation time may be
even more important than reducing front end design time
since the entire design debug process usually consists of many
repeated debug-modify-recompile iterations. Thus, reductions
in implementation time will be multiplied many times over
during the course of a design.

One method for accelerating design implementation is to
use hard macros (preplaced and routed circuit building blocks)
and quickly assemble them into finished circuit layouts, by-
passing the conventional synthesis, place, and route tool flow.
One tool based on this approach is HMFlow [1], [2] which
assembles finished FPGA designs from pre-compiled hard
macros. However, HMFlow relies on the conventional Xilinx
tool flow — a very time consuming process — to initially
create its hard macro building blocks. To fully harness the
power of hard macro implementation approaches, however,
will require a method for more rapidly creating hard macros. In
response, this paper introduces XDLCoreGen, an XDL-based

This work was supported by the I/UCRC Program of the National Science
Foundation under Grant No. 0801876.

module generator tool which directly generates placed and
routed XDL hard macros. As will be shown, XDLCoreGen can
generate placed and routed hard macros building blocks in a
few milliseconds, enabling rapid prototyping approaches based
on hard macros to implement FPGA designs in seconds or
minutes. In the balance of the paper we describe XDLCoreGen
and its structure and demonstrate its use in conjunction with
the HMFlow rapid prototyping flow.

II. BACKGROUND

The HMFlow environment, shown in Figure 1, processes
designs entered using System Generator [3]. HMFlow parses
the design’s .mdl file and consults its hard macro cache
(“HM Cache”) to determine which building blocks it already
has available and which must be generated. If any must be
generated, it creates them using its hard macro generation
tool (“Generic HMG” in the figure), which uses the Xilinx
implementation flow with specially-created constraints to syn-
thesize, place, and route each building block into a specified
rectangular area of the FPGA fabric. HMFlow then converts
that into a relocatable XDL hard macro. Once all the needed
blocks have been created, HMFlow places and routes them into
a final XDL design. A challenge with this flow is that creating
a required hard macro may take many minutes of CPU time.
XDLCoreGen is designed to reduce this hard macro generation
time to milliseconds.

.mdl
Design

Parser &
Mapper

Design
Stitcher

XDL
Hard

Macro
Placer

XDL
Router

.xdl

I D
COMPLETELY

HM
Cache

Generic
HMG

INPUT DESIGNS

HARD MACRO SOURCES

PLACED &
ROUTED XDLXILINX PAR EQUIVALENT

Fig. 1: The HMFlow Process

Others have recognized the value of XDL and hard macros

for circuit generation. References [4], [5], [6] describe gen-
erating circuits in XDL for producing specialized bus and
communications structures for partial reconfiguration architec-
tures. Additionally, Torc [7] is a tool which leverages XDL
and provides an open-source general design flow for Xilinx
FPGAs. Our work, while similar to these, is ultimately focused
on the creation of an extremely fast FPGA design prototyping
flow to reduce design development times. That said, there are
many similarities among these projects in that all use XDL
for design manipulation and have a notion of hard macros for
reducing design complexity.

A. The Xilinx Design Language (XDL)

XDLCoreGen generates its hard macros in the Xilinx De-
sign Language (XDL), which is a textual representation of a
Xilinx design and may represent it at any stage of implementa-
ton: mapped, placed, and/or routed. XDL explicitly represents
the Tiles, Wires, and PIPs (programmable interconnection
points) in a design and provides an alternative to Xilinx’s
native netlist format (NCD) which is proprietary. An XDL
example is shown in Figure 2.

===
The syntax for the design statement is:
design <design_name> <part> <ncd version>;
or
design <design_name> <device> <package> <speed> <ncd_version>
===
design "adder4bit" xc4vsx35ff668-10 v3.2 ,

 cfg "
_DESIGN_PROP::PK_NGMTIMESTAMP:1294258207
_DESIGN_PROP::PIN_INFO:Gateway_In(3):/adder4bit/PACKED/adder4bit/Gateway_In(3)/Gateway_In(3)/
PAD:INPUT:3:Gateway_In(3\:0)
_DESIGN_PROP::PIN_INFO:Gateway_In(2):/adder4bit/PACKED/adder4bit/Gateway_In(2)/Gateway_In(2)/
PAD:INPUT:2:Gateway_In(3\:0)
_DESIGN_PROP::PIN_INFO:Gateway_In(1):/adder4bit/PACKED/adder4bit/Gateway_In(1)/Gateway_In(1)/
PAD:INPUT:1:Gateway_In(3\:0) … "

===
The syntax for modules is:
module <name> <inst_name> ;
port <name> <inst_name> <inst_pin> ;
instance ... ;
net ... ;
endmodule <name> ;
===
===
MODULE of "adder_5_bits_56"
===
module "adder_5_bits_56" "adder_3" , cfg "";

 port "GLOBAL_LOGIC0_inport_BX" "adder_1" "BX";
 port "addsub1i_0_inport" "adder_1" "F3";
 port "addsub1i_1_inport" "adder_1" "G3";

…
inst "adder_1" "SLICEL",placed CLB_X1Y37 SLICE_X1Y74 ,

 cfg " BXINV::BX BYINV::#OFF CEINV::#OFF CLKINV::#OFF COUTUSED::0 CY0F::F3
CY0G::G3 CYINIT::BX DXMUX::#OFF DYMUX::#OFF F:LutEquation_3:#LUT:D=(A4@A3)
F5USED::#OFF FFX::#OFF FFX_INIT_ATTR::#OFF FFX_SR_ATTR::#OFF FFY::#OFF
FFY_INIT_ATTR::#OFF FFY_SR_ATTR::#OFF FXMUX::FXOR FXUSED::#OFF
G:LutEquation_2:#LUT:D=(A4@A3) GYMUX::GXOR REVUSED::#OFF SRINV::#OFF
SYNC_ATTR::#OFF XBUSED::#OFF XMUXUSED::0 XUSED::#OFF YBUSED::#OFF
YMUXUSED::0 YUSED::#OFF CYMUXF:CarryChain_CYMUXF_2:
CYMUXG:CarryChain_CYMUXG_3: XORF:CarryChain_XORF_2:
XORG:CarryChain_XORG_3: "

 ;
…
net "carryChain_net_3" ,

 inpin "adder_3" CIN ,
 outpin "adder_2" COUT ,
 pip CLB_X1Y37 COUT3 -> COUT_N3 ,
 ;

…
endmodule "adder_5_bits_56" ;

!

MODULE

INSTANCE

NET

DESIGN

Fig. 2: An Example XDL File

For purposes of this discussion, the key parts of the XDL
file in the figure are its Instance and Net declarations. The
Instance statement contains multiple attribute strings which
configure it. Each attribute has the format:

attributeName:logicalName:value
The attribute name specifies the part of the primitive being
configured; the value specifies a configuration value. The
instance in Figure 2 contains this attribute string:

F:LutEquation 3:#LUT:D=(A4@A3)
which describes the equation implemented by the slice’s F
LUT.

An XDL Net declaration represents a connection between
FPGA primitives. It always contains pins to represent the net’s
source and sink connections and specify its logical structure.
It may also, optionally, contain PIPs which represent how
it is physically routed through the FPGA fabric. As shown
in Figure 2, the single Net in that design contains a PIP
connecting a wire from the COUT pin on instance “adder 2”
to the CIN pin on instance “adder 3” (neither of these two
instances are shown in the figure due to space restrictions).

Finally, the XDL Module construct provides hierarchy in
a design by encapsulating a portion of that design. When
XDLCoreGen creates a hard macro, it does so as an XDL
Module.

XDLCoreGen is built on top of RapidSmith, a JAVA based
API previously developed to enable easy manipulation of XDL
files. More information can be found in [8], [9].

III. XDLCOREGEN OVERVIEW

XDLCoreGen is a Java library of module generators which
creates macros using a two step process: (1) creating and
configuring FPGA primitives and (2) placing and routing
them together into a finished hard macro. The class hierarchy
for XDLCoreGen is shown in Figure 3. Starting from the
left, XDLCoreGen provides classes to create and configure
individual FPGA primitives. The Logic class uses these classes
to create configured primitives needed by module generators.
The HardMacro class provides methods for placing and inter-
connecting these building blocks and the Router class routes
them. In the middle of the figure, the module generator classes
use the functionality of all these other classes to assemble
placed and routed hard macros into final designs.

Hard
Macro Router`

Low Level
Primitive

Configuration
Functions

Configured
Primitives

Hard Macros Using Configured Primitives
(Primitives Placed & Interconnected with Logical Nets)

Routed
Hard

Macros

AddSub

Delay

Multiplier

State Machine

Logical & MUX

Slicel

Slicem

RAMB16

DSP48

Logic

Memory

AccumCount

Fig. 3: XDLCoreGen JAVA package class hierarchy

A. Primitive Configuration

A primitive is configured by modifying its attribute strings.
Examples of attributes from the slice of Figure 2 include

“F:LutEquation 3:#LUT:D=(A4@A3)” (specifies the F LUT
equation) and “CYINIT::BX” (selects the source of the carry
in signal to be from the “BX” input pin). XDLCoreGen
includes a collection of such classes to help in the creation
and configuration of primitives. Examples include the SLICEL,
SLICEM, RAMB16 and DSP48 classes in Figure 3.

B. The Logic Class
Although the primitive configuration classes provide the

ability to create and configure FPGA primitives, using them to
create full hard macros is tedious. To address this, the Logic
class shields the module generator classes from the details of
primitive creation and configuration. When requested, Logic
creates useful pre-configured primitives required by the mod-
ule generator classes. Whenever Logic creates a configured
primitive it also caches a copy of it so that it can be quickly
cloned and returned when another copy is needed.

1) An Example — Configured Slices For Building Adders:
As an example, several configured SLICEL primitives are
needed to build a multi-bit adder macro. The adder starts with
a slice with its carry in coming from the BX pin, its carry out
turned on, and its LUTs programmed to do the add function.
The middle portion of the adder is made from multiple slices
with their carry in/carry out wires connected to neighboring
slices. Finally, the adder ends with a slice which terminates the
carry chain. An example of a middle slice, showing how the
various resources are configured (in bold), is shown in Figure
4. These and other building blocks are created by the Logic
class for building subtractors, adder/subtractors, multiplexors,
array multipliers, shift registers (delay lines), memories, and
basic logic gates.

C. The HardMacro Class
The HardMacro class provides methods to place and logi-

cally interconnect configured primitives. Its placement meth-
ods accept parameters so that the resulting hard macro can
be constrained into a specified rectangular region if desired.
Since carry chains go upward and shift chains go downward in
Xilinx FPGAs, the placer also accepts a parameter to control
the direction of placement (bottom-to-top or top-to-bottom).
Any time the next block would be placed outside the bounding
box’s Y boundaries, the macro is folded and continued in
the next column to ensure that the desired module shape is
produced. Figure 5 shows the placement of 11 SLICEMs
(which have downward pointing shift chains) into a bounding
box. If this were a placement of 11 SLICELs instead, they
would be ordered bottom-to-top and would use all four slice
locations in each CLB since SLICELs can use either SLICEM
or SLICEL sites.

Once the instances in a hard macro have been placed they
must be interconnected logically to specify to the downstream
router how they are to be routed. The HardMacro class
provides methods for doing this.

D. The Module Generator Classes
The actual module generator classes extend the HardMacro

class and use its and the Logic class’s methods to construct

INIT1

INIT0

SRHIGH

SRLOW

REV

FF

LATCHD

CE

CLK

-REVUSED

A4

A3

A2

A1

-DYMUX

YB

YMUX

Y

BY

-YBUSED

-FXUSED

-YMUXUSED

-YUSED

YB

FX

YMUX

Y

YQ

SR

-COUTUSED

COUT

-CYMUXG

-F6MUX

-GYMUX

-XORG

FXINA

-CY0G

G2

PROD

G3

1

0

D

FXINB

G4

G3

G2

G1

BY

-BYINV

BY

BY_B

-XBUSED

XB

-CYMUXF

-F5MUX

-FFY_INIT_ATTR

-FFY_SR_ATTR

0

1

-G

FFY

(A4@A3)

INIT1

INIT0

SRHIGH

SRLOW

REV

FF

LATCHD

CE

CLK

A4

A3

A2

A1

-DXMUX

XB

XMUX

X

BX

-F5USED

-XMUXUSED

-XUSED

F5

XMUX

X

XQ

SR

-F5MUX

-FXMUX

-XORF

-CY0F

F2

PROD

F3

1

0

D

1

F4

F3

F2

F1

BX

-BXINV

BX

BX_B

CE

-CEINV

CE

CE_B

CLK

CLK

CLK_B

-CLKINV

SR
SR

SR_B

-SRINV

-FFX_INIT_ATTR

-FFX_SR_ATTR

-F

FFX

CIN

-CYINIT

0

(A4@A3)

Fig. 4: SLICEL Configured As An Adder Mid Slice

1

2

5

6

9

Start Y location

Start X location

10

3

4

7

8

End Y location

Start X location

11

Fig. 5: Placement of 11 SLICEM primitives

and assemble configured primitives into a placed hard macro.
The current list of module generator classes provided in
XDLCoreGen includes:

• AddSub: creates adders and subtractors
• AccumCount: creates accumulators and counters
• Multiplier: creates both logic- and DSP-based multipliers
• Delay: creates shift registers (delay lines)
• Logical: creates wide logic gates and multiplexors
• FSM: creates state machines
• BlockRAM: creates memories
The hard macro generators accept an extensive set of

parameters, increasing their usefulness in a variety of designs.
These parameters allow for the specification of input and
output precision (bitwidths), radix point placement, shape

(bounding box), latency (registered or not), etc. The FSM
module generator takes as input the format accepted by JHDL
[10], a tabular PLA-like description format.

IV. CACHE-BASED ROUTING IN XDLCOREGEN

The final step in creating a hard macro is to physically
route its internal nets. Since the majority of XDLCoreGen’s
hard macros have a regular, replicated structure, we decided
(for speed reasons) to create our own template-based router
rather than rely on either Xilinx’s router or HMFlow’s maze
router. The approach chosen was to pre-generate a collection
of routes needed by XDLCoreGen’s hard macros and store
them in a cache for later use. Additionally, it was observed
that the majority of the routing fabric within Xilinx parts is
regular. This allowed for the use of relocatable routes within
the cache — routes which have relative endpoints and which
can be used anywhere within the FPGA fabric as needed. For
example, all of the vertical length-two connections using a
specific column wire in the entire fabric can be represented
using a single route entry in the cache.

Figure 6 shows an example route in a Xilinx FPGA.
With only a few exceptions (such as carry chains), all in-
terconnections between primitives go through a succession of
switchboxes. Within each switchbox, PIPs make connections
between the wires entering/exiting the switchbox. In the figure,
the illustrated net starts at the YB pin in the left CLB tile,
passes through two switchboxes, and terminates at the BX
input on a SLICEM in the right CLB tile in the figure. This
same routing path is replicated everywhere across the chip and
so only needs to be represented once in the cache.

YB

OMUX8 OMUX_E8 BYP_INT_B1 BYP_INT_B0 BYP_INT_B0_INT

TILE INT_X1Y37 TILE CLB_X1Y37 TILE INT_X2Y37 TILE CLB_X2Y37

Switch Box

BX

YB_PINWIRE3HALF_OMUX_TOP7_INTHALF_OMUX_TOP7 BYP_BOUNCE1 BX_PINWIRE0

Switch Box

Fig. 6: A Route in an FPGA

For hard macros with regular layouts, a list of the required
routes was created. The maze router of [8] was then used to
pre-create these routes and they were then placed into a routing
cache. To save space, the routes were pruned by removing their
end pins so they represent only switchbox to switchbox routes.
The advantage of this is that even though the endpoint pin
names are different for different primitives, all the switchboxes
are the same. Thus, many fewer routes are needed in the cache.
After a route is selected for use, the cache router finishes it by
simply adding the wires needed to go from the outpin to the
switch box on one end, and from the switch box to the inpin
on the other. The result was a drastic reduction in cache size.

For state machines, the needed routes cannot be prede-
termined since FSM routing is irregular. Thus, the approach
taken was to create a different routing cache for FSMs which
contains all the routes from a given point that reach a certain
number of switchboxes in all directions. This is shown for a
distance of two in Figure 7.

CLB CLB

CLBCLBCLBCLB

From

Switch

SBOX 7

SBOX 2

SBOX 12

SBOX 6

SBOX 1

SBOX 11

SBOX 9

SBOX 4

SBOX 13

SBOX 10

SBOX 5

SBOX 14

SBOX 3

SBOX 8

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

Switch

Box

(SBOX)

SBOX 17

SBOX 21SBOX 20 SBOX 23 SBOX 24SBOX 22

SBOX 16SBOX 15 SBOX 18 SBOX 19

Fig. 7: A Distance 2 Cache Of Routes

As shown in Table I, three different route caches were even-
tually created. For all cached routes, multiple alternate paths
were created and placed in the cache to provide additional
options for the cache router. During execution, XDLCoreGen
loads only the route cache needed by the called module
generator.

A representation of a typical route is shown in Figure 8.
Routes are indexed in the cache using the names of their
switchbox endpoints and the XY offset they traverse. When
a route is selected from the cache for use it is offset by
the coordinates of the location it is to be used at within
the FPGA fabric. Route selection during execution is done
by XDLCoreGen in a greedy fashion — the shortest route
between two points is selected by the router from the cache.
However, there may be cases where no route will be found.
This can happen if a hard macro is very large or if the
candidate routes have already been used. In these cases,
the router will simply leave that route unconnected, to be
connected later by the final design router when it routes the
hard macros together. This is a nice side benefit of the XDL
approach we have taken — the final design router, be it the
Xilinx router or another router, will complete any unrouted
hard macro internal nets as a part of its operation. However,
this has very rarely been required.

TABLE I: The Route Caches
Cache Size # Routes Load Time (ms))
CacheOfRoutesSimplest 2KB 32 0.3
CacheOfRoutesMultiplier 46KB 540 8.1
CacheOfRoutesFSM 299KB 12,804 59.3

Wire From Name: HALF_OMUX_TOP1
Wire To Name: IMUX_B1

Option #1

Start Wire (row, col), End Wire (row, col)

BOUCE1 (33,15), IMUX_B1 (33,15)

E2BEG4 (33,15), BOUNCE1 (33,15)

OMUX_E8 (33,15), E2BEG4 (33,15)

HALF_OMUX_TOP1 (33,13), OMUX8 (33,13)

Option #2

BYP_BOUCE7 (33,15), IMUX_B1 (33,15)

BYP_INT_B7 (33,15), BYP_BOUNCE7 (33,15)

OMUX_E13 (33,15), BYP_INT_B7 (33,15)
Wire To Name: IMUX_B1

X(tiles): +2
Y(tiles): 0

OMUX_E13 (33,15), BYP_INT_B7 (33,15)

HALF_OMUX_TOP1 (33,13), OMUX13 (33,13)

Option #3

BYP_BOUCE2 (33,15), IMUX_B1 (33,15)

BYP_INT_B2 (33,15), BYP_BOUNCE7 (33,15)

BYP_BOUNCE1 (33,15), BYP_INT_B2 (33,15)

BYP_INT_B1 (33,15), BYP_BOUNCE1 (33,15)

E2MID6 (33,15), BYP_INT_B1 (33,15)

OMUX9 (33,13), E2BEG6 (33,13)

HALF_OMUX_TOP1 (33,13), OMUX9 (33,13)

Fig. 8: A Typical Cache Entry

V. RESULTS

Several tests were conducted with XDLCoreGen targeting a
Xilinx Virtex-4 SX35 FPGA. The tests were run on a Windows
XP system with an Intel Core 2 Duo CPU running at 2.66 GHz
with 3.5 GB RAM. In all of our testing XDLCoreGen was used
in conjunction with HMFlow to produce complete placed and
routed designs. However, we emphasize that XDLCoreGen is
not limited to use with HMFlow — it provides a Java API for
the creation of hard macros and can return completed macros
in the form of either a Java data structure or an XDL file.

The first set of tests compared the time required by XDL-
CoreGen to create a variety of hard macros against the current
HMFlow method. Since HMFlow currently uses the Xilinx
tools to synthesize/place/route hard macros, these tests provide
a speed comparison between CoreGen’s and XDLCoreGen’s
hard macro generator processes.

These tests were done by creating a System Generator
design and then running HMFlow twice on the design. In
the first run HMFlow used System Generator and CoreGen to
synthesize, place, and route each required hard macro and then
it converted each to XDL. In the second run HMFlow instead
simply used the XDLCoreGen API to directly create each
required hard macro as needed. The results are shown in Table
II where it can be seen that the speedup for XDLCoreGen was
between about 1, 000 and 5, 000.

TABLE II: Hard Macro Generation Time Comparison
Type(bitwidth) System Generator (s) XDLCoreGen (s)
AddSub(4) 78.200 0.016
AddSub(16) 78.253 0.017
Accumulator(4)) 78.770 0.020
Accumulator(16) 78.781 0.021
Counter(4) 78.508 0.020
Counter(16) 78.533 0.022
Multiplier(4) 79.047 0.026
Multiplier(16) 79.015 0.072
Delay(8 × 64) 78.423 0.016
FSM (3 states) 76.547 0.073

Figure 9 shows where the time is spent by the accumulator
module generator. In this case, the single most time consuming
step was the creation and configuring of the primitives for
performing the accumulator logic. Somewhat surprisingly,
placement and routing of the hard macro was a small fraction

of the total time required, as was the time required to load
the routing cache. In these tests the cache router was able to
internally route all the hard macros shown in the table, even
the state machine which contained many Nets with multiple
sink pins (“rats nest” routes).

!"

!#

$"

$#

!"
#
$%
&#

"''
"(
$)
*+

,(
-

%&'()*+

,-(./0-1()&*.2)3-

4516-3-*(

75)6-.899)()&*.2)3-

"

#

!"

866'3'51(&0.:.
;)(

866'3'51(&0.<.
;)(

866'3'51(&0.!=.
;)(

!"
#
$%
&#

"''
"(
$)
*+

,(
-

./0,%1/)0*%!23$

75)6-.899)()&*.2)3-

/&*>)+'0-9.?&+)6

?&19./16@-.&>.%&'(-A

B(@-0A

Fig. 9: Accumulator Hard Macro Generator Time Distribution

In a second set of tests we measured the performance of
just the router portion of the XDLCoreGen tool for internally
routing hard macros. Its speed is compared to that of the
HMFlow maze router in Table III. These results suggest that
the template routing approach used is generally superior (for
hard macros)) to that of even a highly speed-optimized maze
router such as is found in HMFlow. However, for the largest
and most irregular hard macros it is inferior to HMFlow’s
router. For comparison, the speed of the Xilinx router was also
measured and, in each case, took about 3000ms to route each
hard macro’s internal nets, suggesting startup time dominates
its run time for small circuits like hard macros.

TABLE III: Routing Speed Comparison (all times are in ms)
Type(width) HMFlow Router Cache Router
Addsub(16) 18.1 2.3
Accum(16) 18.2 3.7
Counter(16) 18.1 4.0
Multiplier(16) 48.0 51.4
5-in NAND(16) 18.4 3.6
Delay(8) (depth=64) 18.1 2.3
FSM (3 states) 19.3 62.3

A. Application-Based Testing

This section will demonstrate the capabilities of XDLCore-
Gen by showing its use in the development of a 1K point
FFT design. This design was originally created using System
Generator, and thus relied on Xilinx’s CoreGen for the creation
of its building blocks (adders, multipliers, memories, etc).
Since the module generators in XDLCoreGen support the
CoreGen parameters used on the building blocks in this design,
it was thus a simple matter to use XDLCoreGen to generate the
macros in the FFT design instead of having System Generator
create them. The FFT design contained a total of 51 unique

hard macros, each of which was used multiple times for a total
of 335 hard macro instances in the design.

The experiment was based on four different processing
scenarios: (1) the conventional System Generator flow was
used, (2) HMFlow was used starting with its cache empty
(meaning it would need to generate all needed hard macros
using System Generator before it could place and route them),
(3) HMFlow was used starting with its cache full (meaning it
already had all the hard macros needed in its cache), and (4)
HMFlow was used starting with its cache empty but called on
XDLCoreGen to generate the needed hard macros.

The results of these experiments are summarized in Ta-
ble IV. The processing time of scenario 2 (HMFlow w/empty
cache) was dominated by the time for the Xilinx tools to
synthesize, place, and route each hard macro separately and
for HMFlow to convert each one to XDL. The processing time
of scenario 3 (HMFlow w/full cache) represents the best case
situation for HMFlow — creating a design wholly from pre-
existing hard macros. Scenario 4 is similar to Scenario 2 except
that XDLCoreGen was used to create the needed hard macros
rather than the Xilinx tools. The processing time for scenario
4, while not as short as scenario 3 was still much shorter
than either of the first two scenarios, illustrating the value of
XDLCoreGen as a viable module generator method for a rapid
prototyping environment. The implementation time difference
between scenarios 3 and 4 represents the time required to
create the 51 unique hard macros needed by the design.

TABLE IV: FFT Design Experimental Results
Scenario # Impl. Time (sec) Tclk(ns)
1 - Conventional flow 120.0 7.9
2 - HMFlow w/empty cache 3711.3 14.0
3 - HMFlow w/full cache 7.7 14.0
4 - HMFlow w/XDLCoreGen 8.2 12.1

As previously documented [2], the performance of hard
macro based circuits is less than those produced by the conven-
tional Xilinx flow, a tradeoff made to achieve short runtimes.
However, compare the clock periods for scenarios 2, 3, and 4.
Here, the only difference is that the Xilinx tools created the
macros in scenarios 2 and 3 while XDLCoreGen created the
macros in scenario 4. In either case, the same tool (HMFlow)
placed and routed them into a final design. The resulting clock
period was shorter for the XDLCoreGen designs, which is
counter-intuitive based on the simple algorithms it employs
for creating macro layouts.

An examination of the layouts created by XDLCoreGen
shows it generates hard macro layouts very similar to those
produced by the Xilinx tools in most cases. For adders,
counters, and accumulators, it stacks slices in columns and
connects them with fast carry logic. A closer comparison,
however, shows why scenario 4 produced faster circuits. In
scenarios 2 and 3, HMFlow uses blocks created by System
Generator, which it then converts to hard macros. To influence
the block’s internal placement and therefore the resulting hard
macro shape, HMFlow generates an area constraint for the
Xilinx tools to use. This area constraint generation process is

unaware of the natural organization that other modules might
possess (columnar organization with LSB at the bottom and
MSB at the top, for example). Indeed, this was the case with
this FFT design — the internal cells of the MUX blocks were
placed in a somewhat arbitrary fashion within the bounding
box by the Xilinx tools and thus resulted in longer routes
to neighboring arithmetic blocks. To test the hypothesis that
this was the cause of the clock rate difference, scenario 4
was rerun using scenario 2 and 3 MUX macros and scenario
4 hard macros for everything else. The resulting clock rate
was 13.8ns, suggesting the reason for the slower clock rate in
scenarios 2 and 3 was due simply to the MUX block layout.

VI. CONCLUSIONS AND FUTURE WORK

XDLCoreGen, an XDL module generator for rapid imple-
mentation of hard macros has been described. The results
given show that it can generate fully placed and routed hard
macros in milliseconds compared to the minutes required by
alternative approaches. While the use of XDLCoreGen was
demonstrated in conjunction with the HMFlow tool, it could
be used independently of that tool to very rapidly produce
XDL-based hard macros for other tool flows.

While we believe these first experiments demonstrate its
value, additional tasks can help increase its usefulness. The
first task would be to increase the number of module genera-
tors it contains and increase the parameterizations available for
each. A second task would be to investigate how to structure
it to simplify retargeting it to new FPGA families. Finally, we
believe its cache based routing approach can be adapted to
work in other CAD tool contexts.

REFERENCES

[1] C. Lavin, M. Padilla, S. Ghosh, B. Nelson, B. Hutchings, and M. Wirth-
lin, “Using Hard Macros to Reduce FPGA Compilation Time,” in
Proceedings of the 20th International Workshop on Field-Programmable
Logic and Applications (FPL’10), August 2010.

[2] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, and
B. Hutchings, “HMFlow: Accelerating FPGA Compilation with Hard
Macros for Rapid Prototyping,” in Field-Programmable Custom Com-
puting Machines (FCCM), 2011 19th IEEE Annual International Sym-
posium on, May 2011, accepted, to appear.

[3] Xilinx, “System Generator Getting Started Guide,”
http://www.xilinx.com/support/sw manuals/sysgen gs.pdf, March
2008.

[4] D. Koch, C. Beckhoff, and J. Teich, “ReCoBus-Builder A Novel
Tool and Technique to Build Statically and Dynamically Reconfigurable
Systems for FPGAS,” in Proceedings of the 18th International Workshop
on Field-Programmable Logic and Applications (FPL’08), September
2008.

[5] C. Claus, B. Zhang, M. Huebner, C. Schmutzler, J. Becker, and
W. Stechele, “An xdl-based busmacro generator for customizable com-
munication interfaces for dynamically and partially reconfigurable sys-
tems,” Workshop on Reconfigurable Computing Education at ISVLSI,
2007.

[6] A. Oetken, S. Wildermann, J. Teich, and D. Koch, “A Bus-Based
SoC Architecture for Flexible Module Placement on Reconfigurable
FPGAs,” in Field Programmable Logic and Applications (FPL), 2010
International Conference on, september 2010, pp. 234 –239.

[7] N. Steiner, A. Wood, H. Shojaei, J. Couch, P. Athanas, and M. French,
“Torc: Towards an Open-Source Tool Flow,” in Proceedings of the 19th
Annual ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, ser. FPGA ’11. New York, NY, USA: ACM, 2011.

[8] C. Lavin, M. Padilla, P. Lundrigan, B. Nelson, B. Hutchings, and
M. Wirthlin, “RapidSmith: A Library for Low-level Manipulation of
Partially Placed-and-Routed FPGA Designs,” Brigham Young Univer-
sity, http://rapidsmith.sourceforge.net, Tech. Rep., 2010-2011.

[9] C. Lavin, M. Padilla, P. Lundrigan, B. Nelson, and B. Hutchings,
“Rapid Prototyping Tools for FPGA Designs: RapidSmith,” in Field-
Programmable Technology (FPT’10). International Conference on, De-
cember 2010.

[10] BYU Reconfigurable Computing Laboratory, “State Machine Genera-
tors,” http://www.jhdl.org/documentation/users manual/fsm.html, 2003.

[11] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson,
B. Hutchings, and M. Wirthlin, “A Library for Low-level
Manipulation of Paritally Placed and Routed Designs,”
http://rapidsmith.svn.sourceforge.net/viewvc/rapidsmith/ trunk/-
doc/TechReportAndDocumentation.pdf, 2010.

