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Abstract—SRAM-based FPGAs are frequently used for crit-
ical functions in space applications. Soft processors imple-
mented within these FPGAs are often needed to satisfy the mis-
sion requirements. The open ISA, RISC-V, has allowed for the
development of a wide range of open source processors. Like
all SRAM-based FPGA digital designs, these soft processors
are susceptible to SEUs. This paper presents an investigation
of the performances and relative SEU sensitivity of a selection
of newly available open source RISC-V processors. Utilizing
dynamic partial reconfiguration, this novel automatic test
equipment rapidly deployed different implementations and
evaluated SEU sensitivity through fault injection. Using BYU’s
new SpyDrNet tools, fine-grain TMR was also applied to each
processor with results ranging from a 20× to 500× reduction
in sensitivity.

Keywords-RISC-V; Fault tolerance; redundancy; Triple
Modular Redundancy (TMR); Single Event Upset (SEU); fault
injection; radiation testing; FPGA; soft processor

I. INTRODUCTION

Static random-access memory (SRAM)-based field pro-
grammable gate arrays (FPGAs) often implement soft pro-
cessors within the digital designs to perform critical func-
tions. These soft processors are implemented using the
FPGA’s reprogrammable resources such as lookup tables
(LUTs), flip-flops (FFs), digital signal processing (DSP)
units, and block RAM (BRAM). The configurable soft
processors provide a software platform coupled with the
hardware description language (HDL)-defined hardware so-
lution. Using an open source soft processor implementing
an open instruction set architecture (ISA), such as RISC-V,
allows for the integration of established software tools and
libraries. Implementing these soft processors in FPGAs can
be beneficial for applications in both terrestrial and space
environments.

To provide a sufficiently reliable system in a radiation
hazardous environment, mitigation may be required to im-
prove the functional reliability of the digital design [1].
Energized particles can cause single event upsets (SEUs)
that flip bits in configuration RAM (CRAM) and BRAM
[2]. These events can produce unpredictable and unwanted
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results, potentially leading to a critical failure of the system.
Single point failures caused by SEUs can be masked with
triple modular redundancy (TMR) [3]. The improvement
in reliability provided by TMR comes at a cost of greater
power consumption, higher resource utilization, and slower
maximum operational frequency.

Random CRAM fault injection can be used to observe the
reduction achieved by TMR mitigation in sensitive CRAM
bits causing critical failure. Fault injection emulates the
effects of an SEU and identifies which single bit upsets
result in a functional failure. While previous experiments
used JTAG fault injection [4]–[6], this paper utilizes the
internal configuration access port (ICAP) and dynamic par-
tial reconfiguration available on Xilinx FPGA devices to
rapidly collect fault injection data. Automatic test equipment
(ATE) is implemented in the static portion of the FPGA that
is capable of testing several designs under test (DUTs) in
different dynamic partial regions.

This paper reports the results achieved by this ATE design
injecting faults into five different soft processors. Unmiti-
gated and TMR versions of the processors are implemented
for a total of ten designs. Each device contained three partial
regions that could contain any of the ten DUTs. Utilizing
dynamic partial reconfiguration, this novel ATE was capable
of rapidly switching out the different DUTs and collecting
fault injection data.

This paper compares the utilization and performance of
newly available RISC-V processors running a Dhrystone
benchmark. The results of this paper report on the CRAM
sensitivity of each design and the reduction achieved by
TMR mitigation. While previous fault injection experiments
of TMR RISC-V soft processors achieved a 10× [6] to
32× [4], [5] reduction in CRAM sensitivity, this paper uses
BYU’s new SpyDrNet tools to apply TMR [7] and observed
a range in improved CRAM sensitivity from 20× to 500×.

The remainder of this paper is organized as follows.
Section II presents background information on fault tolerant
RISC-V soft processors, TMR, and fault injection. Section
III describes the test hardware, including the ATE and DUTs.
The fault injection testing and results are detailed in Section
IV. Section V concludes the paper.
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II. FAULT TOLERANT RISC-V SOFT PROCESSORS

RISC-V is an open ISA that is freely used in academia,
research, and industry. There are many open source RISC-
V processors available for implementation within FPGAs
ranging widely in features, performance, and utilization of
FPGA resources. One study has shown the difference of
a small selection of RISC-V soft processors in performance
and maximum frequency achieved with SRAM-based FPGA
implementations [8]. These results showed the Taiga [9]
and VexRiscv [10] among the best performing processors
for SRAM-based FPGAs. Space applications have tight
constraints that require the best performance for the FPGA
resources utilized and power consumed.

Related works have investigated the fault tolerance of
RISC-V processors. Some studies have used the Rocket
Chip implementation, officially supported by RISC-V [11],
to study the fault tolerance of the RISC-V architecture.
One study characterized this processor against SEUs using
fault injection with Xilinx’s SEM IP [12] showing that the
RocketChip was more sensitive than other soft processors
explored in previous works. Another study applied Razer,
a timing fault detection and recovery tool, to the Rocket
Chip [13]. Using a different RISC-V implementation, other
related work showed that implementing Linux OS on the
LowRISC processor did not significantly impact the proces-
sor’s reliability [14]

Previous work has performed fault injection on the Taiga
[9] and VexRiscv [10] processors. This paper uses these
RISC-V implementations in addition to the PicoRV32 [15]
and Kronos [16] implementations. This paper presents an
ATE platform to compare the CRAM sensitivity of these
different soft processors with identical interfaces and place-
ment constraints.

Figure 1: TMR with triplicated voters.

A. Triple Modular Redundancy

FPGA-implemented RISC-V soft-cores can be mitigated
against SEUs by using TMR techniques to provide redun-
dancy to the design. The TMR soft processor includes three

redundant domains and triplicated voters capable of masking
a failure of a single redundant domain (see Figure 1). The
triplicated majority voters mask erroneous output and use
the majority output of the other two domains [17]. Feedback
loops can be introduced to use the voted upon value as next
state logic for any flip-flops. TMR mitigation can be applied
to the top block level (coarse-grain) or distributed within the
design down to the FPGA primitives (fine-grain). Whether
implementing TMR mitigation on the full or partial digital
design, a repair mechanism (such as CRAM scrubbing) is
essential in preventing multiple TMR domain failure and
drastically improving the effectiveness of TMR [18].

Many different soft-core processors implementing TMR
have been investigated for space application. Several studies
have modified the LEON2 and LEON3 processors for im-
proved reliability with different mitigation schemes includ-
ing TMR [19]–[23]. Other work has applied TMR to the
Picoblaze [24], [25], a free 8-bit soft processor provided by
Xilinx. Newer works have targeted RISC-V processors such
as the Rocket Chip. One work used the Mentor Precision
Hi-Rel tool to apply fine-grain TMR and performed fault
injection with Xilinx’s SEM IP and observed a reduction
in sensitive bits of up to 11.5× [26]. Another work used
Cadence’s EDA [27] flow to apply fine-grain TMR and used
custom HDL to inject faults through ICAP and achieved a
3× reduction in the cross section during heavy-ion testing
[28]. Other work has also targeted the VexRiscv processor
using Synplify’s TMR tools and observed a 1.5× improve-
ment in the mean time to failure (MTTF) with JTAG fault
injection [29].

This paper uses SpyDrNet, a new Python-based netlist tool
developed at BYU, to generate the TMR designs [7]. This
tool is discussed in greater detail within subsection III-C.
The tool generated netlists for four different RISC-V TMR
designs and a TMR MicroBlaze design, the Xilinx provided
soft processor [30]. These netlists are then placed and routed
within each of the partial regions used for DUT testing. The
results in this paper showed this TMR tool achieved a 20× to
500 × reduction in CRAM sensitivity for complex processor
designs.

B. Fault Injection with Partial Regions

Fault injection is used to emulate CRAM upsets within
an SRAM-based FPGA [31]. By interfacing with the Xilinx
FPGA configuration manager, CRAM frames can be read,
modified, and written back to the device during operation.
After the emulated upset, the DUT can be tested to verify
operation. This approach can be used to understand how
mitigation techniques such as TMR would behave under
the effects of radiation-induced faults before committing
to expensive and limited radiation testing. Fault injection
is only capable of emulating the CRAM SEU subset of
the possible single event effects (SEEs) and does not take
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into account any non-CRAM SEUs, single event transients
(SETs), or single event functional interrupts (SEFIs).

ICAP-based fault injection into partial regions has been
used to perform rapid injections up to an 8× speedup [32]
and precise injections into sensitive bits identified by Xilinx
Tools [33]. Dynamic partial reconfiguration has been used to
inject faults within the FFs [34]. Performing fault injection
within partial regions has been also used to validate imple-
mented mitigation methods [35] such as forward temporal
redundancy [36].

This paper used dynamic partial reconfiguration to place
multiple isolated DUTs on the same FPGA. Utilizing the
ICAP, faults are injected into each DUT and testing is
performed simultaneously. Taking advantage of partial re-
configuration, different DUTs are loaded into the partial
regions to compare different implementations and mitigation
techniques. The static ATE acts a constant testing platform
able to configure, inject, and test the different DUTs.

III. TEST HARDWARE

The test hardware was implemented on M.2 PCIe capable
SQRL Acron CLE 215+ FPGA accelerator cards [37]. This
device’s schematic is identical to the open-source Nitefury
and Litefury devices [38]. The FPGA is a Xilinx Series 7 Ar-
tix device with the xc7a200tfbg484-3 part. The experimental
design utilizes dynamic partial reconfiguration to define ATE
within the static portion and to be able to swap out different
DUTs in the dynamic regions. This section will describe
these different parts of the experimental design.

Figure 2: A block diagram for static ATE design.

A. Static Automatic Test Equipment

The ATE takes advantage of a high speed ICAP (over
100× faster than JTAG) and can rapidly test different
DUTs without any change to the static design, allowing for
rapid and versatile fault injection. The ATE performs these
three main tasks: performs partial reconfiguration to load in
different DUTs into the partial regions, injects random faults
into the partial regions, and verifies the output of each DUT.
The main components of the static ATE are a PCIe interface,
MicroBlaze, debug bridge, ICAP, and DDR controller.

Figure 3: The floorplan for static ATE design.

Figure 2 shows the connections between these various
components. The PCIe connection allows for a host to
initiate a warm boot over ICAP, load test data into DDR,
operate the static MicroBlaze, and retrieve test results. The
MicroBlaze runs testing software that resets the DUTs,
performs partial reconfiguration and fault injection through
the ICAP, and has full access to the DDR address space.
The debug bridge loads the testing software into the static
MicroBlaze. The DDR is one gigabyte, with 256 megabytes
allocated to the MicroBlaze and each DUT. Figure 3 shows
the floor plan for the FPGA design with the static ATE
region highlighted in orange. The static region’s location
was dependent on the PCIe, ICAP, and DDR locations.

Multiple ATE platforms can be hosted from the same
computer. Additional software is executed on the the host
machine to perform the fault injection tests. The setup used
for this experiment connected 20 ATE platforms to the same
host machine, Figure 4. With this setup, multiple instances
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Figure 4: The host machine with 20 FPGAs.

could be executed simultaneously to rapidly collect more
data.

Table I: Pblock Sizes

Pblock LUTs LUTRAM FF BRAM Total CRAM
Frame Bits

Device 133800 46200 267600 365 59145600
PB0 19.7% 20.6% 19.7% 22% 9321088 (15.8%)
PB1 19.1% 20.6% 19.1% 16.4% 8532480 (14.4%)
PB2 19.1% 20.6% 19.1% 16.4% 8532480 (14.4%)

B. Dynamic Designs Under Test

Three dynamic regions were chosen to host the various
DUTs used. Each dynamic region used two clock regions
in the FPGA to provide clear boundaries during placement
and routing. These regions as shown in Figure 3 are named
after the Xilinx term pblock, PB0 (bottom left), PB1 (bottom
right), and PB2 (top right). These pblocks each use about
20% of the FPGAs resources, see Table I, to allow for the
implementation of the unmitigated and TMR verions of each
DUT.

1) MicroBlaze: The MicroBlaze is a 64-bit capable RISC,
not RISC-V, soft processor optimized by Xilinx for its
products [30]. Xilinx reports a maximum frequency (Fmax)
of 212 MHz and a Dhrystone million of instructions per
second (DMIPs)/MHz of 1.04 for the default configuration
implemented on the targeted Artix FPGA. The MicroBlaze
processor includes optional features for floating point, cache,
and a memory management unit. The default configuration
was used for comparison to the following open source
solutions used in this experimental design.

2) PicoRV32: The PicoRV32 is a small RISC-V proces-
sor that can achieve a high Fmax when implemented in
FPGAs [15]. This processor can achieve a Fmax of 454 MHz
on Xilinx Series 7 devices with a DMIPs/MHz of 0.516. This
processor has been formally verified by Symbiotic EDA’s
RISC-V formal verification framework [39]. The regular
configuration was used for testing with the addition of an
AXI4Lite interface.

3) Kronos: Kronos is a 3-stage in-order RISC-V proces-
sor optimized for FPGA implementation [16]. This proces-
sor’s performance is reported at achieving a DMIPS/MHz of
0.7105. The dual Wishbone buses were adapted to perform
AXI4Lite transactions.

4) Taiga: Taiga, a 32-bit RISC-V processor, was chosen
for its optimized performance for Intel and Xilinx SRAM-
based FPGAs [40]. The pipelined processor implements
multiple independent execution units, allowing for variable
execution latencies. The Taiga has shown have better per-
formance when implemented in FPGAs when compared to
other open source solutions [8]. The Taiga examples include
an AXI4 bus for cached transactions and an AXI4Lite bus
for peripheral devices.

5) VexRiscv: The VexRiscv is a pipelined 32-bit proces-
sor developed with the high-level language SpinalHDL [10].
This processor was chosen for its support of a Buildroot
Linux image and performance of 1.21 DMIPS/MHz and 2.27
Coremark/MHz. The processor also takes advantage of a
large ecosystem of open source IP for the quick integration
of SoCs within FPGA digital designs [41]. The VexRiscv
was configured with AXI4 buses in this experimental design.

C. Utilization and Performance

Each processor used local memory within the DUT to
execute identical Dhrystone test software and an AXI4
bus to access the DDR memory. The configurations of
the processors used within the DUTs did not optimize
utilization or performance, but were required to conform to
the expected interfaces of the static ATE. The utilizations
and performances listed in this paper are specific to this
implementation and do not reflect what each processor is
ultimately capable of.

Table II: Processor DUT Utilization

Design LUT LUTRAM FF BRAM
MicroBlaze 2122(1.6%) 747(1.6%) 2019(0.8%) 8(2.2%)

TMR 8619(6.4%) 2241 (4.9%) 6057(2.3%) 24(6.6%)
Cost Ratio 4.05× 3× 3× 3×
PicoRV32 985(0.7%) 49(0.1%) 586(0.2%) 16(4.4%)

TMR 4089(3.0%) 147 (0.3%) 1758(0.7%) 48(13%)
Cost Ratio 4.15× 3× 3× 3×

Kronos 1612(1.2%) 49(0.1%) 913(0.3%) 8(2.2%)
TMR 6663(5.0%) 147 (0.3%) 2739(1.0%) 24(6.6%)

Cost Ratio 4.13× 3× 3× 3×
Taiga 2896(2.2%) 482(1.0%) 1626(0.6%) 16(4.4%)
TMR 11532(8.6%) 1446 (3.1%) 4878(1.8%) 48(13%)

Cost Ratio 3.98× 3× 3× 3×
VexRiscv 3095(2.3%) 54(0.1%) 2789(1.0%) 13(3.6%)

TMR 12363(9.2%) 162 (0.4%) 8367(3.1%) 39(11%)
Cost Ratio 4× 3× 3× 3×

The SpyDrNet tools automated the process of triplicating
the design and inserting triplicated voters [7]. It performs
fine-grained TMR on the FPGA primitives by triplicating
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all FFs, LUTs, BRAMs, and DSPs, and inserting triplicated
voters between these primitives. The tool’s input is a vendor-
independent Electronic Design Interchange Format (EDIF)
file that can be exported from Xilinx Vivado. The generated
TMR EDIF file can be imported back into Xilinx Vivado
as a post-synthesis file, and placed and routed in the final
design.

Table II lists the utilization of the unmitigated and TMR
versions of each DUT. The TMR tools were used to triplicate
the netlists, and insert triplicated voters and feedback loops.
This resulted in an increase of 3× for the LUTRAM, FF, and
BRAM resources with an average of 4× increase of LUT
resources, accounting for the additional triplicated voters.

Table III: Processors Results

Processor Execution Performance per LUT
(cycles) (Normalized)

MicroBlaze 898116 0.99×
PicoRV32 2423212 0.80×

Kronos 1182181 1.0×
Taiga 790199 0.83×

VexRISC 1060932 0.58×

Each processor ran identical test software consisting of
3000 iterations of a Dhrystone benchmark. The execution
cycle counts achieved with a 100 MHz clock are listed in
Table III. The Fmax is not reported in this paper due to
the constraints enforced by the locked routing of the static
ATE region. To measure the utilization efficiency of the
processor implementations, the performance per LUT was
also computed and normalized against the max value as
shown in equation 1 where c = number of execution cycles
and n = number of LUTs.

Performance per LUT =
1

c× n
(1)

The Taiga attained the shortest execution cycle count, while
the Kronos and MicroBlaze achieved the best performance
per LUT.

IV. FAULT INJECTION CAMPAIGN

Random CRAM fault injection was performed on each
DUT to collect the necessary data in order to calculate the
expected percentage of sensitive CRAM bits that result in
a DUT failure. This fault injection process consists of four
stages as shown in Figure 5. First, partial reconfiguration
is used to bring the DUT to a known working state. The
DUT performs the test software, the Dhyrstone benchmark,
to verify the known state. Though Dhrystone is used to
measure DMIPs (a common processor performance metric),
the older benchmark does not fully verify the functionality
of the processor. Next, a random fault is injected into the
partial region using the region’s location to determine the
appropriate CRAM frames. The DUT performs the test
software again to test if the injected fault resulted in a failure.

Figure 5: Flow of Fault Injection

This process is repeated until the end of the test or until the
ATE is unresponsive. If the ATE is unresponsive, a warm
boot is initiated over PCIe or if necessary, the host system
is power cycled.

A. Results

Though, theoretically, TMR eliminates all single point
failures, due to the FPGA architecture, single CRAM upsets
can cause multiple TMR domains to fail and thus a system
failure. The results for these single-point failures were col-
lected from the fault injection logs from each FPGA device,
see Table IV. Only unique fault locations based on CRAM
frame, word, and bit values, were included in the final
results. If any injection recorded both passing and failing
results, the location was considered a sensitive CRAM bit
and counted as a failure. The sensitivity r was computed as
the ratio of total injections to the failures observed as shown
in equation 2 where k equals the number of failures and n
equals the number of faults injected.

r = k/n. (2)

The standard deviation of the CRAM sensitivity is calculated
with equation 3.

σ =

√
k

n2

(
1− k

n

)
(3)

The coefficient of variance of the TMR results demonstrates
the variance in the available data in relation to the population
mean, as shown in equation 4.

Coefficient of variance =
σ

r
(4)
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Table IV: Fault Injection Results

Design Unmitigated Unmitigated Unmitigated TMR TMR TMR Coefficient of ReductionInjections Failures CRAM Sensitivity Injections Failures CRAM Sensitivity Variance
MicroBlaze 1088938 8026 0.737% 1926230 187 0.0097% 0.073 76 ×

PB0 363359 2363 0.650% 643409 68 0.011% 0.121 59 ×
PB1 362806 2846 0.784% 641448 103 0.016% 0.152 49 ×
PB2 362773 2817 0.777% 641373 16 0.0025% 0.250 311 ×

PicoRV32 940060 5275 0.561% 2021337 133 0.0066% 0.087 85 ×
PB0 313553 1572 0.501% 675427 39 0.0058% 0.160 86 ×
PB1 313202 1853 0.591% 672836 73 0.011% 0.117 54 ×
PB2 313305 1850 0.590% 673074 21 0.0031% 0.218 190 ×

Kronos 944840 6298 0.667% 1902011 388 0.020% 0.051 33 ×
PB0 315308 1863 0.591% 635224 70 0.011% 0.120 54 ×
PB1 314720 2062 0.655% 633331 76 0.012% 0.114 55 ×
PB2 314812 2373 0.754% 633456 242 0.038% 0.064 20 ×
Taiga 1050770 9576 0.911% 2636047 285 0.011% 0.059 83 ×
PB0 350769 2984 0.851% 881062 95 0.011% 0.103 77 ×
PB1 350080 3270 0.934% 877374 173 0.020% 0.076 47 ×
PB2 349921 3322 0.949% 877611 17 0.0019% 0.243 500 ×

VexRiscv 955561 10064 1.053% 1943079 213 0.011% 0.068 96 ×
PB0 318886 2974 0.933% 648881 66 0.010% 0.123 93 ×
PB1 318348 3591 1.128% 647132 126 0.019% 0.089 59 ×
PB2 318327 3499 1.100% 647066 21 0.0032% 0.218 344 ×

This metric is used to quantify the confidence in a data set
[42]. As the CRAM sensitivity decreases, more injections are
required to meet the same level of confidence. The reduction
in CRAM sensitivity shows the improvement achieved by
the TMR mitigation.

In this testing, the reduction in CRAM sensitivity was
greater than expected as seen from previous experiments
ranging from 10× [6] to 32× [4]. Excluding the Kronos
results, TMR processor designs achieved an improvement of
80× or greater. The results for each pblock are included in
Table IV. For the unmitigated designs, each pblock achieved
similar CRAM sensitivity, but for the TMR designs, the
pblocks achieved different results. Excluding the Kronos
results, PB1 produced the lowest results while PB2 out-
performed the other pblocks. The Kronos TMR results did
not fit the pattern of the other processors. While achieving
expected TMR results, the TMR Kronos PB2 results greatly
under performed compared to the other TMR DUTs. The
following subsection will provide an analysis of the results.

B. Analysis

This fault injection experiment differs in three ways from
previous experiments. First, dynamic partial regions were
used to implement the DUTs and thus constrained the place-
ment and routing (PAR) to fit within the chosen locations
and selected interface pins to the static region. Second, a
newer Python-based TMR netlist tool was used to generate
the TMR designs for testing. Third, partial reconfiguration
was used between every fault injection, thus resetting all
flip-flop and BRAM values.

The CRAM sensitivity observed across the unmitigated
designs scales with their utilization seen in Table II. This

expected due to the greater cross-section generated with the
use of more FPGA resources. There was no dramatic change
in CRAM sensitivity caused by a difference in architecture
implementation.

These results show a greater reduction in CRAM sensi-
tivity achieved by the TMR than previous experiments [4],
[6]. The new TMR tools and PAR constraints could account
for this greater improvement. This could also be caused by
the partial reconfiguration fixing any flip-flop and BRAM
bits not normally fixed by CRAM scrubbing or the TMR
feedback loops.

While the different pblocks using the unmitigated designs
attained similar results, the pblocks for the TMR designs
achieved very different results from each other. This suggests
how greatly PAR can affect the usefulness of TMR mitiga-
tion. The PAR for the TMR Kronos PB2 design may have
been limited due to some constraint enforced by the static
ATE region. Future work will investigate these different
possible reasons for the greater improvement of TMR in
this experimental design.

V. CONCLUSION

This novel ATE was successful in utilizing dynamic
partial reconfiguration to rapidly deploy and test differ-
ent DUTs. The FPGA platform was split into one static
ATE region and three dynamic regions allocated for DUT
implementation. These DUTs consist of unmitigated and
TMR versions of five different processors including newly
available open source RISC-V processors. While the host
system of 20 ATEs was able to perform 15 million fault
injections over 10 days across 10 different DUTs, this only
covered 5.84% of the possible injections across all the
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DUTS. The high-speed ICAP fault injection observed the
reduction in CRAM sensitivity achieved by the SpyDrNet
TMR tools ranging from 20× to 500× improvements in
reliability.

Future work will utilize this powerful platform to further
investigate the improvement achieved with mitigation tech-
niques such as TMR. It will explore and compare different
PAR strategies, fault injection methods, and recovery meth-
ods to build confidence in mitigation techniques chosen for
further radiation testing. Additional processors will be added
as DUTs with more complex benchmarks for testing and
verification to provide sufficient data to aid in the selection
of fault tolerant processors for critical applications.
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