
Improving Clock-Rate of Hard-Macro Designs
Christopher Lavin and Brent Nelson and Brad Hutchings

NSF Center for High-Performance Reconfigurable Computing (CHREC)
Department of Electrical and Computer Engineering

Brigham Young University, Provo, UT 84602
Email: nelson@ee.byu.edu, hutch@ee.byu.edu, chrislavin@byu.net

Abstract—HMFlow reuses precompiled circuit modules
(hard macros) and other techniques to rapidly compile large
designs in a few seconds - many times faster than standard
Xilinx flows. However, the clock rates of designs rapidly
compiled by HMFlow are often significantly lower than those
compiled by the Xilinx flow. To improve clock rates, HMFlow
algorithms were modified as follows: (1) the router was
modified to take advantage of longer routing wires in the FPGA
devices, (2) the original greedy placer was replaced with an
annealing-based placer, and (3) certain registers were removed
from the hard-macro and moved into the fabric to reduce
critical-path delays. Benchmark circuits compiled with these
modifications can achieve clock rates that are about 75% as
fast as those achieved by Xilinx, on average. Fast run-times are
also preserved; the improved algorithms only increase HMFlow
run-times by about 50% across the benchmark suite so that
HMFlow remains more than 30⇥ faster than the standard
Xilinx flow for the benchmarks tested in this paper.

I. INTRODUCTION

FPGA devices are able to implement designs which
often run orders of magnitude faster than software imple-
mentations of the same algorithms and thus provide an
attractive alternative for a variety of computations. However,
when FPGA development flows are compared to software
development flows, the most glaring shortcoming FPGA’s
exhibit is their long development times. One reason for the
long development times for FPGA designs is due simply
to the very long compilation times required — sometimes
requiring many hours to compile a single design iteration.
Needless to say, such long compilation times are incompat-
ible with interactive development flows such as are found in
the world of software programming.

Commercial FPGA implementation tools typically flatten
the entire design and reuse little, if anything, from previous
runs. Further, the notion of precompiled libraries of pre-
defined FPGA functions is largely absent in FPGA devel-
opment flows. The net result however, is that commercial
FPGA tools are able to produce very high quality designs
(as measured by the density and clock rate of the final
circuit), the major downside being the long compilation
times required.

One approach to address FPGA compilation times is to
use a building block approach — to construct an FPGA

This work was supported in part by the I/UCRC Program of the
National Science Foundation within the NSF Center for High-Performance
Reconfigurable Computing (CHREC), Grant No. 0801876.

.mdl .mdl

Hard Macro
Cache

Hard Macro
Cache

Hard
Macro

Generator

Hard
Macro

Generator

Design
Parser &
Mapper

Design
Parser &
Mapper

Design
Stitcher
Design
Stitcher

Hard
Macro
Placer

Hard
Macro
Placer

Design
Router
Design
Router

.xdl .xdl

SYSTEM GENERATOR
INPUT DESIGN

HARD MACRO SOURCES

PLACED & ROUTED
IMPLEMENTATION

Fig. 1: HMFlow Block Diagram
design as much as possible out of pre-built building blocks
called hard macros. Hard macros are fully placed and routed
circuit modules containing many logic elements and wires,
but which can be placed as a unit onto the FPGA fabric.
The motivation for this approach is that placing and routing
a relatively small number of pre-built hard macros should
be much faster than flattening and then placing and routing
10,000’s of circuit elements (as the current commercial
approaches do). An interesting research question with this
focuses on the tradeoff between compilation time and circuit
quality achievable with such an approach.

The HMFlow system [1] uses such a hard macro-based
approach to rapidly assemble FPGA designs. A block di-
agram of HMFlow is shown in Figure 1. Design entry
is accomplished using the Xilinx SystemGenerator tool.
HMFlow then parses the SystemGenerator Simulink design
representation and, for each building block required either
finds a corresponding hard macro in its cache or creates
one. Ideally, all needed hard macros are found in the cache
and the tool need only place and route the macros together
to form a finished circuit. When needed, however, HMFlow
calls on the Xilinx tools to generate new hard macro building
blocks and places them into its cache for later use.

The goal of HMFlow, to date, has been to create the fastest
synthesis/place/route tool chain possible without regard to
the clock rate of the compiled circuit. The earliest version
of HMFlow demonstrated speedups of over 10x compared to
the Xilinx flow for synthesis/placement/routing but produced
circuits that ran at only a fraction of the clock rate. In
that work, the hard macros were relatively fine grained
and consisted of blocks such as adders, muxes, registers,
comparators, etc. Later work [2] investigated the use of
much coarser hard macros (FIR filters, FFT blocks, . . .) and
demonstrated speedups of 40-60⇥ over the Xilinx tool flow
while producing designs that were 2.5x to 3.5x slower than
achieved by Xilinx.

This paper reports on improvements to the HMFlow algo-
rithms that improve clock rates of the finished design while
still preserving reduced compilation times. Specifically, this
paper demonstrates that benchmark circuits compiled by
HMFlow with these improved algorithms can achieve clock
rates that are about 75% of those achieved by the standard
Xilinx flow, on average. Fast run-times are also preserved;
the improved algorithms only increase HMFlow run-times
by about 50% across the benchmark suite so that HMFlow
remains more than 30⇥ faster than the standard Xilinx flow
for the benchmarks tested in this paper.

Three major changes were made to HMFlow to improve
clock rates: (1) the router was modified to take advantage of
longer routing wires in the FPGA devices, (2) the original
greedy placer was replaced with an annealing-based placer,
and (3) where advantageous, registers were removed from
the hard-macro and moved into the fabric (a form of retim-
ing) to reduce the delay for some critical paths. The balance
of this paper is as follows: after first reviewing related work,
the next three major sections of the paper (Placer Improve-
ments, Router Improvements, Register Replacement) discuss
these modifications in detail. The Analysis Section then
analyzes the impact of these modifications both separately
and in combination.

II. RELATED WORK

The approach taken in this work is to use pre-compiled
blocks called hard macros, however, other techniques such
as bitstream cores, macroblocks, virtual fabrics and a tool
called ReCoBus also demonstrate ways in which intermedi-
ate design information can be reused to reduce compilation
time.

Horta and Lockwood [3] demonstrated the creation of
bitstream-based re-locatable cores that are quite similar in
nature to hard macros. Similar efforts are reported in [4]
where bitstream hard cores were used in a network-on-
chip to provide accelerated logic emulation and prototyping.
Unfortunately, bitstream hard cores must reside between
restrictive configuration boundaries, must be augmented
with matching bus-macro interfaces and can be difficult
to construct because bitstream formats are typically propri-
etary.

ReCoBus [5] can create bus-based systems that can be
loaded using partial reconfiguration. ReCoBus hard macros
consist of user logic and an interface to the ReCoBus
system bus and are converted to special partial bitstreams so
they can be swapped in and out of the FPGA at run-time.
Full systems can be rapidly constructed with the ReCoBus
bitstream linker.

Intermediate virtual fabrics[6] implement a domain-
specific fabric on top of a conventional FPGA. These fabrics
accommodate macroblocks which are placed and routed
quickly onto the fabric. This technique is effective if the
intermediate fabric has already been built for a particular
application and is a close match to the domain of interest.

Coole et al. [6] claim an average place and route speedup
of 554⇥. However, the technique is only effective to the
extent that the intermediate fabric is reused. If no available
intermediate fabric matches your application requirements,
you must design and implement a new fabric, a time-
consuming step that reduces the impact of fast compilation.

The prior work closest to this effort is Frontier[7], a
placement tool that utilized macroblocks and floorplanning
to accelerate placement. Macroblocks are similar to HM-
Flow macros; they were precompiled and some of them
could be relatively placed. Frontier decomposes the FPGA
into a set of placement bins of equal size; macroblocks are
grouped into clusters and are initially assigned to placement
bins. Placement quality is improved by swapping clusters
between bins and a low-temperature annealing process can
be employed to further improve the placement. Frontier
accelerated placement by 17⇥; this results in an overall
acceleration of 2.6⇥ for the overall place and route process.

The major difference between HMFlow and Frontier
is that while HMFlow hard macros contain routing and
placement information, Frontier macroblocks only contain
placement information. Once the macrocells are placed by
Frontier, vendor tools must completely reroute all nets.
Because HMFlow hard-macros contain internal hard-macro
routing, they reuse significantly more computational effort.
As such, HMFlow can significantly reduce run-times for
both placement and routing. In addition, preserving routing
means that much of the computational effort to close timing
is also preserved and this can lead to a higher quality result.

III. PLACER IMPROVEMENTS

The original HMFlow placer was based upon greedy
heuristics and was designed to achieve minimal run-time but
still achieve reasonable results. Unlike conventional FPGA
placers, the HMFlow placer deals with many fewer placeable
objects (perhaps only 30 - 40 objects) and it was assumed
that suitable placement could be achieved with much less
computational effort than that required for a conventional
FPGA placer. Previously-reported results validated this as-
sumption though lowered placement quality generated by
greedy heuristics was likely one of the primary factors that
limited the clock frequencies initially achieved by HMFlow
to be 2.5 to 3.5⇥ less than that achieved by the longer Xilinx
compilations.

To determine how much quality was being lost due to
the simple greedy algorithms used in the original HM-
Flow placer, a much slower annealing-based placer was
implemented in this work and compared against the earlier
greedy placer. The annealing-based placer achieved much
higher clock frequencies at a cost of much longer run-times
(minutes versus seconds) and demonstrated that placement
of hard macros could be further improved to increase clock
rates. Through experimentation, it was determined that ac-
celerating the schedule of the simulated-annealing placer so
it finished much sooner had very little impact on the overall

quality of the resulting implementation. This, combined with
a bounding box optimization (to detect overlap) for the hard
macros created a modified simulated annealing placer which
produced significantly better results compared to the earlier
HMFlow placer while requiring only a modest increase in
runtime. That placer is the subject of the remainder of this
section.

A. Basic Algorithm Details

Simulated annealing begins by creating some initial place-
ment, S, as a starting point for the algorithm (see Algorithm
1). A starting temperature, t, is chosen or calculated and t is
generally a large value that allows the algorithm to explore
many inferior solutions during the early stages of the search.
The algorithm then repetitively repeats the following steps:

1) The placement is modified, usually by swapping
placements between primitives.

2) After each modification, the current placement is
evaluated by computing some global statistic, e.g.,
total wirelength, that serves as a proxy for overall
placement quality.

3) If the move improves placement, it is accepted, oth-
erwise it is accepted with some probability that is a
function of the current temperature.

4) a new temperature is computed according to the
cooling schedule.

After movesPerTemperatureStep moves has been
made, the temperature is decreased by some percentage,
temperatureReduceRate. This process repeats over and
over until some stopping criteria is met which is often when
the system cost does not change after several moves (see
Algorithm 1).

1: S createInitialP lacedSolution()
2: t initialStartingTemp

3: while not reachedStoppingCriteria() do
4: for i = 0 to movesPerTemperatureStep do
5: S

i

 generateRandomMove()
6: if Cost(S) � Cost(S

i

) then
7: S S

i

8: else if e(Cost(S)�Cost(Si))/t � random[0, 1) then
9: S S

i

10: end if
11: end for
12: t t ⇤ temperatureReduceRate

13: end while
14: return S

Algorithm 1: Basic Simulated Annealing-Based Placement

B. Customization of Simulated Annealing for Hard Macros

The algorithm for the simulated annealing placer for HM-
Flow and its hard macros deviated from the basic algorithm
shown in Algorithm 1. The customizations are listed below:

1) The number of moves per temperature step varies
based on the acceptance rate of the moves being
generated. The number of moves per temperature step

�D�� �E��

Fig. 2: (a) Representation of a Set of Hard Macros Drawn
with a Tight Bounding Box (b) An Approximated Bound-
ing Box for the Same Hard Macros for Accelerating the
Simulated Annealing Hard Macro Placer

increases when the acceptance rate is near a more
productive acceptance rate which was determined to
be approximately 44% [8].

2) The inner for loop was replaced with a while loop
as the moves per temperature step were only counted
when they were accepted moves rather than counting
total moves.

3) The initial starting temperature was set to a value
equal to 1.5 times the initial system cost.

4) The process stopped if either the move acceptance rate
fell below 2%, or, the temperature had dropped below
a value of 0.01.

5) The cost function used was the sum total measure of
Manhattan distances between all port connections in
between hard macros.

C. Challenges of Hard Macros in a Simulated Annealing
Placer

Computing the legal placement of hard macros is one of
the challenges of placing hard macros. Typical non-hard-
macro FPGA designs are composed primarily of primitive
instances. Instances are placed on compatible primitive sites
and the check required to see if the placement is valid
simply requires a comparison to make sure the primitive
site is compatible and that it is unoccupied. However, when
a hard macro is moved, it may contain dozens or even
hundreds of primitive instances in addition to many routed
nets. In a potential move, each instance must be checked for
a compatible site which is unoccupied, and each PIP within
each routed net must also be verified to make sure the move
is valid.

Two techniques were used to reduce HMFlow placer run-
time. First, during the creation of each hard macro, all of its
valid placement locations were pre-computed off-line and
stored with the hard macro in the hard macro cache. This
saved runtime when initializing the placer and allowed the
move-generator to choose from a set of a valid placement
locations rather than randomly choosing locations that often
would not support the hard macro.

Fig. 3: An Illustration of the Problem of an Approximating
Bounding Box Where the Box Changes Size Based on
Location

Second, rather than using a tight bounding box around
each hard macro as shown in Figure 2a, each hard macro
had an approximating bounding box calculated around all of
its logic and routing as shown in Figure 2b. The bounding
boxes accelerated move validation in that only the bounding
box needed to be moved and tested for overlap with other
bounding boxes in the design rather than each primitive
instance and PIP in the hard macro. The bounding box ap-
proximation did restrict to some degree the flexibility of how
hard macros could be placed—the bounding boxes contained
some empty space making for some inefficiencies—but the
trade-off reduced runtime to make it a feasible placement
technique.

Another challenge that arose from using the approxi-
mating bounding box was that the Xilinx FPGA fabric is
not always uniform and can skew the bounding box sizes
based on where it was originally calculated. To illustrate
this concept, consider Figure 3. On the left of the figure is
the outline of a hard macro that consumes two horizontally
adjacent CLB tiles with a switchbox tile between them. This
would create a bounding box of 1 tile high and 3 tiles wide.
However, now consider the same hard macro placed at a
different location as shown on the right side of Figure 3.
An extra column of configuration tiles is found in between
the two columns of CLBs. This creates a bounding box of
1 tile high and 4 tiles wide.

The problem occurs when a hard macro with the smaller
1x3 bounding box is calculated and then moved to a spot
where it should have a 1x4 bounding box. When hard
macros are big enough, they can span multiple columns
and rows of tiles that ultimately cause the bounding box
to be too small for a specific placement. This problem, on
rare occasion, can lead to overlap of hard-macro placements
which results in placement failure.

In trying to remedy this issue, it was determined that com-
pensating for the placement-varying bounding box would
eliminate much of the runtime savings it created, thus an
alternative solution was chosen. The solution implemented
was that all hard macros are checked for valid placements
at the end of the simulated annealing process. If any hard
macros are part of an invalid placement (overlap) the smaller

of the two hard macros is replaced at the closest valid
location to its final placer-decided location. The situation
occurs quite infrequently (once or twice in approximately 10
placement runs) and does not significantly impact placement
quality but does allow the preservation of the bounding box
runtime acceleration optimization.

IV. ROUTER IMPROVEMENTS

One of the major inefficiencies found in the original
HMFlow router was the fact that it often did not use long
line routing resources efficiently when connections had to
be made over a long distance. This resulted in long distance
connections being routed with several shorter hops of less
efficient resources that ultimately added up to a significant
amount of propagation delay for the net. This behavior was
mostly a side effect of the driving force behind the router’s
original implementation which was “route as quickly as
possible.”

1) Long Lines: A long line in Xilinx FPGAs is the
longest routing wire available. In the Virtex 4 architecture,
long lines spanned 24 switch boxes, however, they were
reduced in length to 18 switch boxes in the Virtex 5
architecture. They are available in both the horizontal and
vertical directions. A long line is also capable of connecting
to every 6th switch box in its path as illustrated in Figure 4.

By using long lines, routing connections that are very far
apart can be connected with relatively few long lines. In
Virtex 4, the next longest wire is the hex line providing a
connection distance of 6 switch boxes. In Virtex 5, the next
longest routing resource is the pent line which provides a
connection distance of 5 switch boxes.

Unfortunately, timing information for the wires found in
Xilinx FPGAs is not available publicly and therefore, wire
delay cannot be used for evaluating the quality of different
routes. However, it is clear that the number of wire segments
used in routing a connection can often have a bigger impact
on delay rather than a connection’s length. Thus if the use of
a long line can significantly reduce the number of total wire
segments in the routed connection, it will also significantly
reduce delay.

2) Long Line Router: To overcome the long distance
routing inefficiency of the router, a specialized long line
router was developed to specifically route long distance
connections during the routing process. This long line router

1

9LUWH[���+RUL]RQWDO�/RQJ�/LQH�

9LUWH[���+RUL]RQWDO�/RQJ�/LQH�

Fig. 4: Representation of Virtex 4 and Virtex 5 Long Line
Routing Resources

finds very good routes using as many long lines as possible
to get close to the sink of the connection. Once the route
has used as many long lines as possible, the routing is then
finished by the main routing algorithm.

The long line router is essentially a maze router that only
uses long line resources. It is invoked by the main router
when it encounters a connection to be routed that has a
Manhattan distance of 12 switch boxes or more between
source and sink. Through preliminary testing on a handful
of designs and routes, it was determined that the minimum
distance for which the long line router provided benefit was
to invoke it for distances of 12 switch boxes or more. Long
lines can only be used in discrete hops of 6, 12 and 18
hops as previously shown in Figure 4 and if a route is only
using 6 hops worth of routing, it still incurs the delay of
18 hops. Therefore, setting a threshold of 12 would reduce
the likelihood of the long line router utilizing a long line
for a distance of only 6 hops. The goal of the threshold
was simply to invoke the long line router when it would be
likely to provide benefit and avoid situations where it could
introduce unnecessary delay into a route.

Once the long line router is invoked, the first task is to
find the closest and most efficient entry point to a nearby
long line. If no available long line resource is available, the
long line router fails and returns the routing task to the main
router to complete the net without long line optimization.
This occurs quite infrequently, but it does happen when
congestion is high around the source of the connection.

Once an efficient path to a long line is found, the long line
router will change modes to only search out a path using
long line resources. Again, the algorithm is based on a maze
router and will end prematurely if too much congestion is
encountered. However, if only a partial route using long lines
is found, the long line router will still provide the partial
route to the main router to use as its starting point.

When the long line router exhausts the options to find
the closest long line exit to the sink, it returns the partially
routed path back to the main router to finish the final
connection. Regardless of whether the long line router
succeeds in finding a partial or complete long line path, the
main router’s parameters change to try and obtain a higher
quality path as the longest paths are more likely to become
a critical path in the final implementation. These changes
do increase router runtime by about 15-20% on average.

V. REGISTER REPLACEMENT

One of the biggest problems of large hard macro place-
ment is the inherent presence of long distance connections
between hard macros that often become critical paths in
design implementation. The placer can reduce these paths
to some extent, however, because of the rigid nature of hard
macros, the placement of individual logic elements (and
therefore net connection points) is not nearly as fluid and
malleable as in conventional design compilation flows.

To try to reduce the effects of this problem a form
of retiming, called register re-placement, is used. Register

B

C

D

A

A B

C

D

Fig. 5: A Simple Example of a Register (A) Being Re-placed
at the Centroid of the Original Site of Register A and Sinks
B, C and D

re-placement occurs after the placement phase but before
routing in HMFlow and consists of moving registers at the
boundaries of hard macros out into the FPGA fabric to break
up long wires, reducing their delay. The basic process for
register re-placement is given in Algorithm 2.

1: C identifyHardMacroPortConnections()
2: T 10
3: S {}
4: for each Connection c in C do
5: if c.getTotalLength() � T then
6: rs c.getSourceRegister()
7: rd c.getDestinationRegister()
8: if rs 6= null and not rs ✓ S then
9: P getAllP inLocations(c)

10: MoveRegister(rs, findCentroid(P))
11: S.add(rs)
12: else if rd 6= null and not rd ✓ S then
13: P getAllP inLocations(c)
14: MoveRegister(rd, findCentroid(P))
15: S.add(rd)
16: end if
17: end if
18: end for

Algorithm 2: Optimal Register Re-placement

The process begins by identifying all external hard macro
nets (those nets connected exclusively to hard macro ports).

From the nets, all connections (a connection being a single
source pin to a single sink pin) can be extracted and then
for all connections that are longer than a certain length
(Manhattan distance from source pin to sink pin) of 10
tiles, register re-placement is considered for evaluation. If
a connection has a register at its source pin, the register is
moved to the centroid of all the net’s source and sink pins.

To illustrate the centroid of a net and how it is used to
move a register, consider Figure 5 where the top picture
represents a portion of the FPGA fabric after a hard macro
design has been placed. The output of register A in the large
hard macro on the left, is driving three separate sinks B, C
and D in three other hard macros. Due to the placement,
the connections are very far apart, especially from register
A to sink B. In the bottom picture of Figure 5 it shows
register A moved to the centroid (the center of the smallest
circle that still includes the 4 points). This re-placement of
the register significantly decreases the longest path the router
would have to route in this particular case, ultimately paving
the way for a higher quality implementation.

VI. ANALYSIS

Once all three of the HMFlow improvements were com-
plete, it was necessary to analyze their impact on quality
of result. The ultimate goal of these improvements was
to improve implementation clock rate while limiting CAD
tool runtime increase. In order to accurately and fairly
measure quality of result of each improvement, a variety
of configurations were created and run with all 6 of the
large hard macro benchmark designs from [2].

A. Methods Used to Compare Results
Because of the random variation implicit in simulated

annealing, each benchmark configuration is evaluated and
compared using three different methods. First, each config-
uration is compared using the results from a single default
seed for both Xilinx and HMFlow. Second, results are
compared using the arithmetic mean from 100 distinct runs
with different seeds used for each run. Finally, the results
are compared using the implementations that achieved the
highest clock rate from the previous 100 distinct runs of
place/route for both Xilinx and HMFlow.

One of the major reasons for providing all three metrics
is that some designers may have a cluster of computers
suitable for farming out the 100 jobs to run in parallel.
In this scenario, the best of 100 results could be obtained
rather quickly and would be the metric of interest. However,
other designers may not have such a luxury and would be
more interested in the average (or expected) result. To aid
decision making to both groups of designers, both metrics
are included in addition to the single run result when
relevant.

B. Results of Three HMFlow Improvements
To get a sense of the impact of each improvement

added to HMFlow, all 8 possible configurations of the three

TABLE I: HMFlow Improvement Configurations

Placer Router
Config. Orig. Annealer Register Orig. Long
Name Replace Line

C0 (baseline) X X
C1 X X
C2 X X X
C3 X X
C4 X X X
C5 X X X
C6 X X

C7 (Best) X X X

improvements within the flow were tested separately on
all 6 benchmarks. The first configuration (Configuration 0)
is the absence of all three improvements. This configura-
tion is considered the baseline against which all 7 other
configurations are compared. All of the configurations are
summarized in Table I.

As can be seen from Table I, there are two placers (the
original heuristic hard macro placer and the new simulated
annealing hard macro placer introduced in this paper),
an optional register re-placement step, and two routers
(the original router and the new long line-enabled router
discussed in this paper). All 8 configurations were tested
with the 6 large hard macro benchmark circuits. Those
configurations that did not use the simulated annealing hard
macro placer (C0, C2, C3, and C5) were not run 100 times
as the heuristic placer was not dependent on a random seed
as its input.

C. Results of Optimizing Improvements
The results of the eight configurations of HMFlow im-

provements are shown in Tables II, III, and IV. Each table
includes results from the Xilinx tools compiling the bench-
marks to provide a comparison. The Xilinx tools were run
in ‘Performance Evaluation Mode’ that attempts to obtain
good results in a reasonable amount of time without a timing
constraint. This mode was chosen because it most closely
matched the goals of HMFlow.

Table II represents clock rates obtained for each of the
benchmarks when executing a single default compilation run
of the tools. The six benchmarks used were taken from a
large MIMO communications design, and range in size from
4,000 to 9,600 Virtex-5 slices. See [2] for more details.

Table III shows the average clock rates obtained by com-
piling each benchmark 100 times, each compilation using a
different seed or table cost entry. For those configurations
where a seed does not have an effect (heuristic placer
configurations, C0, C2, C3, and C5), the values are the same
as those in Table II. Interestingly, the single run and average
of 100 run results are very similar in their average clock rates
and average improvement in clock rates over the baseline,
C0. This observation holds true also for the Xilinx tool’s
results.

Table IV represents the clock rates obtained from the best
of 100 compilation runs. These results could be obtained

very quickly if all 100 compilation runs could be run in par-
allel such as on a supercomputer or cluster. When compared
with averages of the single and average of 100 runs, the
best of 100 runs results are approximately 50% better. This
provides a significant advantage to those with easy access
to parallel computing power. However, the advantage is less
if the designer is using the Xilinx tools which only produce
approximately 25–30% better clock rates.

D. Impact of Improvements
The simulated annealing hard macro placer had the single

greatest impact on performance of the three improvements
described. Compared to baseline (C0) implementations, re-
placing the heuristic placer with the simulated annealing
version (C1) increased clock rates on average by 50%. The
next most impactful improvement was the addition of the
register re-placement step (C2) that improved clock rates by
43%. The improvement of the long line optimized router
(C3) had the smallest impact when measured in isolation,
providing improved clock rates of only 22%. These results
illustrate the impact a good or bad placement can have on
the overall implementation clock rate. Ultimately, however,
the HMFlow router is limited by the lack of detailed device
timing information.

Dual combinations of the improvements (C4, C5, and
C6) were closely additive in their improvement of clock
rate showing how each improvement approach was mostly
independent of the others. C7, the configuration which
combined all three of the improvement techniques, gave the
best clock rate improvement of 2⇥ or 2.5⇥ in the best of
100 runs case.

E. Runtime Results
Table V shows the runtime for each of the 6 benchmarks

as compiled with the major HMFlow revisions presented in
this chapter. Runtime is measured in seconds and is defined
as the total time to compile a design starting from the time
taken to read in a design’s source files and ending after
creating a placed and routed implementation file (XDL or
NCD respectively).

As can be seen from Table V, the baseline C0 has
the fastest runtime performance of any tool configuration.
This is largely due to its usage of the lower quality but
faster placer and router algorithms present in the earlier
unoptimized version of HMFlow. When the newer simulated
annealing, register re-placement and long-line optimized
router are introduced (C7), runtimes increase by a little less
than 50%.

Further analysis (not shown due to length restrictions)
showed that the variability of quality of results achieved
with HMFlow was much higher than that achieved by the
Xilinx tools. Though this variability is not a concern when
selecting the best compilation from 100 runs of HMFlow,
it is a problem if the designer only wants to run HMFlow
once. The T3 variation of HMFlow was created in response
to this.

TABLE V: HMFlow Run-Time vs. Xilinx Run-Time

Benchmark C0 C7 T3 Xilinx
frequency estimator 6.82s 10.01s 10.91s 392.06s

trellis decoder 11.81s 18.2s 18.57s 461.34s
brik3 13.81s 28.56s 27.81s 605.16s
brik2 15.26s 20.94s 19.98s 851.61s

multiband correlator 12.45s 18.82s 18.8s 497.91s
brik1 15.98s 15.56s 15.66s 848.79s

Average Runtime 12.69s 18.68s 18.62s 609.48s
Speedup (over Xilinx) 48.0⇥ 32.6⇥ 32.7⇥ -

TABLE VI: Clock Rate Summary: HMFlow versus Xilinx

Benchmark C0 C7 HMFlow(T3) Xilinx
frequency estimator 116 194 182 227

trellis decoder 62 128 166 251
brik3 66 122 131 241
brik2 82 153 173 203

multiband correlator 67 146 196 250
brik1 65 189 199 200

Average Clock Rate (MHz) 76 155 175 229

T3 is essentially the same as the C7 version of HMFlow
but has an additional term in the placer cost function. This
additional cost function term takes into account the length
of the single longest wire in the design, in addition to total
wire length (as in the C7 cost function). This addition did
not appreciably affect the runtime of T3 compared to C7 as
shown in Table V. However, it did significantly improve
the quality of result as shown in Table VI, which is an
abbreviated version of Table II but also including T3 results.
T3 (175 MHz) did not achieve as high a clock rate as the
best of 100 runs (196 MHz, from Table IV), but did much
better for a single run (155 MHz, from Table II) .

Overall, the results can be viewed as a positive outcome
for HMFlow. The final configuration of HMFlow (T3) can
produce implementations over 30⇥ faster than the Xilinx
tools and still obtain clock rates that are 75% of the imple-
mentations produced by the best Xilinx efforts. Put another
way, HMFlow produces a placed and routed implementation
that runs 175 MHz on average and can be obtained in less
than 20 seconds. This is in contrast to Xilinx which will
take over 10 minutes to produce a design that will only
run about 30% faster. This is a good result for HMFlow as
it demonstrates that rapid compilation is very feasible for
FPGA CAD.

VII. CONCLUSIONS

HMFlow with the new optimized versions of the router,
placer and the addition of register-replacement, improved
average clock rates by almost 3⇥ over the earlier version of
HMFlow. This was accomplished while delivering compila-
tion times that are still over 30⇥ faster than the conventional
Xilinx flow. Given these performance numbers, HMFlow
offers an attractive alternative to conventional FPGA com-
pilation techniques and has the potential to increase designer
productivity with its rapid compilation benefits.

TABLE II: HMFlow Benchmark Clock Rates of Single (Default) Run (in MHz)

Benchmark C0 C1 C2 C3 C4 C5 C6 C7 Xilinx
frequency est. 116 146 156 128 189 165 177 194 227
trellis decoder 62 88 88 74 111 114 123 128 251

brik3 66 118 77 84 115 81 132 122 241
brik2 82 99 122 101 139 141 113 153 203

multiband corr. 67 83 87 94 127 109 114 146 250
brik1 65 153 127 80 167 144 171 189 200

Average 76 115 109 93 141 126 138 155 229
Improvement - 1.5⇥ 1.43⇥ 1.22⇥ 1.85⇥ 1.65⇥ 1.81⇥ 2.04⇥ 2.99⇥

TABLE III: HMFlow Benchmark Clock Rates of Average of 100 Runs (in MHz)

Benchmark C0 C1 C2 C3 C4 C5 C6 C7 Xilinx
frequency est. 116 144 156 128 170 165 167 186 220
trellis decoder 62 100 88 74 124 114 123 139 247

brik3 66 108 77 84 116 81 119 123 238
brik2 82 91 122 101 131 141 115 153 198

multiband corr. 67 101 87 94 151 109 124 177 253
brik1 65 144 127 80 169 144 169 168 203

Average 76 115 109 93 143 126 136 158 226
Improvement - 1.5⇥ 1.43⇥ 1.22⇥ 1.88⇥ 1.65⇥ 1.78⇥ 2.06⇥ 2.97⇥

TABLE IV: HMFlow Benchmark Clock Rates of Best of 100 Runs (in MHz)

Benchmark C0 C1 C2 C3 C4 C5 C6 C7 Xilinx
frequency est. 116 194 156 128 208 165 217 228 264
trellis decoder 62 124 88 74 157 114 157 176 280

brik3 66 139 77 84 146 81 146 157 260
brik2 82 134 122 101 167 141 160 180 205

multiband corr. 67 148 87 94 207 109 172 223 270
brik1 65 191 127 80 214 144 205 212 214

Average 76 155 109 93 183 126 176 196 249
Improvement - 2.03⇥ 1.43⇥ 1.22⇥ 2.4⇥ 1.65⇥ 2.31⇥ 2.57⇥ 3.26⇥

REFERENCES

[1] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, and
B. Hutchings, “HMFlow: Accelerating FPGA Compilation with Hard
Macros for Rapid Prototyping,” in Field-Programmable Custom Com-
puting Machines (FCCM), 2011 IEEE 19th Annual International
Symposium on, pp. 117–124, May 2011.

[2] C. Lavin, B. Nelson, and B. Hutchings, “The Impact of Hard
Macro Size on FPGA Clock Rate and Place/Route Time,” in Field-
Programmable Logic and Applications, 23rd international Conference
on, p. to appear, Sep 2013. Removed for blind review.

[3] E. L. Horta and J. W. Lockwood, “Automated Method to Generate
Bitstream Intellectual Property Cores for Virtex FPGAs,” in Proc. Field
Programmable Logic.2004, 2004.

[4] Y. E. Krasteva, F. Criado, E. d. l. Torre, and T. Riesgo, “A Fast
Emulation-Based NoC Prototyping Framework,” in RECONFIG ’08:
Proceedings of the 2008 International Conference on Reconfigurable
Computing and FPGAs, (Washington, DC, USA), pp. 211–216, IEEE
Computer Society, 2008.

[5] D. Koch, C. Beckhoff, and J. Teich, “ReCoBus-Builder A Novel Tool
and Technique to Build Statically and Dynamically Reconfigurable
Systems for FPGAs,” in Field Programmable Logic and Applications,
2008. FPL 2008. International Conference on, pp. 119–124, September
2008.

[6] J. Coole and G. Stitt, “Intermediate Fabrics: Virtual Architectures for
Circuit Portability and Fast Placement and Routing,” in Proceedings
of the Eighth IEEE/ACM/IFIP International Conference on Hard-
ware/software Codesign and System Synthesis, CODES/ISSS ’10, (New
York, NY, USA), pp. 13–22, ACM, 2010.

[7] R. Tessier, “Fast Placement Approaches for FPGAs,” ACM Trans. Des.
Autom. Electron. Syst., vol. 7, no. 2, pp. 284–305, 2002.

[8] J. Lam and D. Jean-Marc, “Performance of a new annealing schedule,”
in Proceedings of the 25th ACM/IEEE Design Automation Conference,
DAC ’88, (Los Alamitos, CA, USA), pp. 306–311, IEEE Computer
Society Press, 1988.

