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Abstract—Hard macros are completely placed/routed ele-
ments that are treated as primitives and that are relatively
placed as a single element. A system composed of such macros
consists of many fewer effective primitives and nets and as such
can be placed and routed much more quickly. Prior work in
this research area dealt with small, general-purpose macros
such as 16-bit registers, adders, etc., and demonstrated that
place/route time could be reduced by an order of magnitude
with a corresponding 3-4X reduction in clock rate. In this work,
much larger hard macros are developed such as mixers, soft-
core processors, FFTs, etc., and the use of these larger macros
is shown to further reduce place/route time by an additional
2.5-4X, for a total of a 30-40X reduction in compile time. Clock
rate is also improved, relative to earlier work, by an additional
60-70%.

I. INTRODUCTION

FPGA place and route cycles that consume hours or days
are a major impediment to in-system verification. The basic
FPGA design flow in use today was largely adopted from
the decades-old ASIC design flow consisting of HDL coding
followed by simulation. While this approach is entirely
appropriate for a non-existent, yet-to-be fabricated device,
it completely ignores the inherent advantage of the FPGA
as an available device that can be used to accelerate and
improve the verification process. Simulation is, of course,
an essential tool that provides observability and faster
compilation time (relative to place/route) though it runs
about 1,000,000 times slower than execution on the FPGA
device. However, simulation can never replace the process
of actually inserting an FPGA into a system and running it
with actual data in real-time. Actual insertion of the FPGA
into the operating environment is the only way to verify that
the design works as intended and lengthy compile cycles
make regular in-system verification very difficult or nearly
impossible.

A variety of methods have been proposed in the past
for accelerating hardware debug and verification times. One
such approach is to use pre-compiled circuit modules to
reduce the effort required for synthesis, placement, and
routing. For IC design, the use of pre-designed and compiled
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“cell libraries” is a common approach. These pre-compiled
modules can dramatically reduce build time by eliminating
repeated re-compilation of common building blocks.

HMFlow[1] is a FPGA design tool that employs pre-
built circuit modules to reduce implementation time. The
pre-compiled modules used by HMFlow are referred
to as “hard macros” and consist of previously synthe-
sized/mapped/placed/routed building blocks that are stored
in a library for later use during rapid design implemen-
tation and assembly. The hard macros initially used in
HMFlow were relatively small and consisted of simple
general-purpose computational elements such as adders, reg-
isters, multiplexers, etc. As reported, the HMFlow system[1]
achieved an order of magnitude reduction in compilation
time but resulted in circuits with clock rates often sig-
nificantly lower than those produced by vendor FPGA
implementation tools.

This work focuses primarily on improving clock rates
while preserving or further reducing compilation time. The
overall approach taken in this work is to increase the size
of the hard macros used in the flow. Rather than use small
general-purpose hard macros, this effort investigates the use
of much larger system-level sized hard macros such as FIR
filters, FFTs, DDS/mixers, micro-controllers and so forth.
The hypothesis is that larger hard macros may improve
clock rate and potentially further reduce implementation
time because: (1) large macros contain far more routing and
thus provide an opportunity to preserve the computing effort
used to achieve timing closure and, (2) designs will consist
of fewer hard macros and require correspondingly less effort
to place and route them.

This effort tests this hypothesis by answering the follow-
ing primary research questions:

1) What impact does the use of large hard macros have
on tool runtime? That is, how much does the resulting
reduction in number of objects to be placed and routed
help when assembling designs from pre-defined circuit
blocks?

2) Can large hard macros truly encapsulate sufficient
timing closure effort to significantly improve the final
clock rate of macro-based circuits?

3) What problems do large hard macros create for a CAD
978-1-4799-0004-6/13/$31.00 ©2013 IEEE



tool flow like HMFlow in terms of placement-based
performance variation of the final circuits or the place-
ability and route-ability of the final circuits?

The rest of the paper is outlined as follows: In Section II
we describe prior efforts to accelerate FPGA compilation
including that of HMFlow, which this work is based on. In
Section III we present and describe the new hard macros
and design approach employed in this work. In Section IV
a series of benchmark circuits and the resulting performance
achieved is presented and analyzed. In Section V we con-
clude and describe future work.

II. BACKGROUND AND RELATED WORK

A. HMFlow Background
This work is based on HMFlow, a custom-built CAD tool

flow based on the use pre-compiled circuit building blocks
called “hard macros” to rapidly assemble final circuits [1].
A block diagram of HMFlow is given in Figure 1.

The flow begins by processing designs created using
Xilinx System Generator (which generates .mdl files). In the
Design Parser & Mapper, each block in the design and its
corresponding hard macro are identified. If the hard macro
does not exist in the hard macro cache, the mapper invokes
the hard macro generator to create one and to store it in the
cache.

Once all of the hard macros have been created or retrieved
from the cache, they are given to the design stitcher, which
will “stitch” all of the hard macros together logically and
then insert I/O buffers and clock generation circuitry. The
design is then passed to the HMFlow hard macro placer
and router tools and ultimately exported as a final placed
and routed implementation.

HMFlow operates outside the normal Xilinx tool flow by
operating on XDL files rather than .ncd files. The XDL
language is an open design format provided by Xilinx in
the ISE tool suite and is a textual representation of much of
the information found in a .ncd file. Additionally, Xilinx also
provides detailed physical information on each of its FPGAs
in the form of XLDRC files. Converting designs from the
Xilinx proprietary .NCD file format to/from XDL files is
done using the ISE xdl command and can be done essentially
anywhere in the Xilinx tool chain — before placement,
before routing, or after both placement and routing as shown
in Figure 2.
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Fig. 1: Block Diagram of HMFlow
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Fig. 2: Illustration of where XDL interfaces with the Xilinx
tool flow and how RapidSmith interacts with XDL.

HMFlow is built on top of RapidSmith [2], an XDL
processing and manipulation CAD tool framework. Given
a design in XDL format and an XDLRC description of
an FPGA, RapidSmith provides a rich set of API calls for
creating, modifying, placing, and routing circuit elements in
the FPGA as well as for importing designs from XDL files
and for creating XDL files as output.

In HMFlow, a hard macro is originally created using the
conventional Xilinx tool flow. First, the logic for the hard
macro is synthesized and then placed and routed into a small
completed design, with constraints being used to restrict its
circuit elements to a small rectangular area in the FPGA.
Then it is converted to XDL, the IOB’s removed (which
were automatically inserted during the Xilinx implementa-
tion process), and the finished macro (represented as an XDL
module) placed into the HMFlow macro cache for later use.

As previously reported [1], each System Generator design
element was turned into a hard macro, a typical hard macro
being a 32-bit adder/subtracter, a 16-bit comparator, or even
something as simple as a 5-bit AND gate. A variety of
benchmarks were used to evaluate the approach; a represen-
tative design, a trellis decoder, consisted of 17,000 slices, 60
BRAMs and 50 DSP48 units and was implemented using
about 1,300 hard macros.

B. Related Work
The approach taken in this work is to use pre-compiled

blocks called hard macros, however, other techniques such
as bitstream cores, macroblocks, virtual fabrics and a tool
called ReCoBus also demonstrate ways in which intermedi-
ate design information can be reused to reduce compilation
time.

Horta and Lockwood [3] demonstrated the creation of
bitstream-based re-locatable cores that are quite similar in
nature to hard macros. Similar efforts are reported in [4]
where bitstream hard cores were used in a network-on-
chip to provide accelerated logic emulation and prototyping.
Unfortunately, bitstream hard cores must reside between
restrictive configuration boundaries, must be augmented
with matching bus-macro interfaces and can be difficult
to construct because bitstream formats are typically propri-
etary.

ReCoBus [5] can create bus-based systems that can be
loaded using partial reconfiguration. ReCoBus hard macros



consist of user logic and an interface to the ReCoBus
system bus and are converted to special partial bitstreams so
they can be swapped in and out of the FPGA at run-time.
Full systems can be rapidly constructed with the ReCoBus
bitstream linker.

Intermediate virtual fabrics[6] implement a domain-
specific fabric on top of a conventional FPGA. These fabrics
accommodate macroblocks which are placed and routed
quickly onto the fabric. This technique is effective if the
intermediate fabric has already been built for a particular
application and is a close match to the domain of interest.
Coole et al. [6] claim an average place and route speedup
of 554×. However, the technique is only effective to the
extent that the intermediate fabric is reused. If no available
intermediate fabric matches your application requirements,
you must design and implement a new fabric, a time-
consuming step that reduces the impact of fast compilation.

The prior work closest to this effort is Frontier[7], a
placement tool that utilized macroblocks and floorplanning
to accelerate placement. Macroblocks are similar to HM-
Flow macros; they were precompiled and some of them
could be relatively placed. Frontier decomposes the FPGA
into a set of placement bins of equal size; macroblocks are
grouped into clusters and are initially assigned to placement
bins. Placement quality is improved by swapping clusters
between bins and a low-temperature annealing process can
be employed to further improve the placement. Frontier
accelerated placement by 17×; this results in an overall
acceleration of 2.6× for the overall place and route process.

The major difference between HMFlow and Frontier
is that while HMFlow hard macros contain routing and
placement information, Frontier macroblocks only contain
placement information. Once the macrocells are placed by
Frontier, vendor tools must completely reroute all nets.
Because HMFlow hard-macros contain both internal hard-
macro routing, they reuse significantly more computational
effort. As such HMFlow can significantly reduce run-times
for both placement and routing. In addition, preserving
routing means that much of the computational effort to close
timing is also preserved and this can lead to a higher quality
result.

III. APPROACH

This effort seeks to measure the impact of larger hard
macros on both clock rate and compilation run-time. Larger
hard macros potentially benefit HMFlow in two major ways.
First, larger hard macros contain a much higher percentage
of the total routes in the design thereby preserving timing-
closure information in the form of routed nets that can be
re-used with each instantiation of the hard macro. Second,
designs composed of larger hard macros can be more rapidly
placed as they consist of significantly fewer blocks.

For example, the frequency estimator benchmark used
to demonstrate HMFlow with smaller hard macros[1] con-
tained 11,226 unrouted nets external to the hard macros.

This constitutes 66% of all nets in the design (nets inside and
outside the hard macros). These unrouted nets are those nets
that are not contained within the hard macro and are used to
connect the hard macros to each other and to system I/O. A
version of the frequency-estimate benchmark implemented
using much larger hard macros has only 854 unrouted
nets (only 5% of total nets) before the design reaches the
HMFlow router, resulting in a significant reduction in work
for the HMFlow router.

The large hard-macro version of the frequency-estimator
also consisted of many fewer macros than its small hard-
macro cousin. This same frequency-estimator benchmark
consisted of 757 small, general-purpose macros [1]. A
version employing large hard macros contains only 31 hard
macro instances to be placed, a 24× reduction that will
significantly reduce run-time for the placer.

A. Preliminary Work
Two major questions needed to be answered regarding the

feasibility of large hard macros. They include:
1) Are hard macros completely relocatable? If a large

hard macro is created and timing verified to run at
clock rate X at one location, will it be able to run
at the same or similar rate at another location on the
FPGA fabric?

2) What is the best size, shape and aspect ratio for hard
macros? As reported in prior work[1] the hard macros
were simple enough that their layouts were typically
vertical to take advantage of carry chains and the like.
For larger hard macros there is much more flexibility
for choosing different shapes and form factors when
creating the hard macros.

To answer these questions, a series of experiments were
conducted. The first set of experiments (named Experiment
#1) was performed to measure the timing variability of hard
macros as they are placed at different locations across the
FPGA fabric. To do this, two different hard macros contain-
ing a reasonable set of internal routes were created. The first
hard macro created was a 21×21 bit LUT-based multiplier
on a Virtex 4 SX35 FPGA. Relative to the FPGA fabric size,
the hard macro was small, but did contain several timing
sensitive routing paths that could be accurately measured
and variations in its timing behavior could easily be detected.

A separate implementation containing a unique placement
for each valid location of the hard macro was then created.
For each of the resulting 400 legal unique placements of
the hard macro, the implementation was completed and the
timing results were measured. Placement affected timing in
two different ways.

The first is shown in Figure 3 where the Z-axis represents
the amount of delay (in nanoseconds). The regular extra
delays that occur in the Y direction correlate very well
with the locations of the horizontal clock branches found in
the FPGA, suggesting that longer wire paths are required
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Fig. 3: Delay of a Path Within a 21×21 Bit LUT-multiplier
Hard Macro Placed in a Grid of 400 Locations on a Virtex
4 SX35 FPGA
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Fig. 4: A More Severely Impacted Path Caused by a Hard
Macro Straddling the Center Clock Tree Spine of the FPGA

as signals traverse those horizontal clock branches. The
deviations, however, are quite minimal (∼ 10 ps).

A second type of timing deviation (in the X direction)
was also found and is shown in Figure 4 (note the different
perspective compared to Figure 3). Here the timing deviation
is much more significant (∼ 250 ps) and is due to the hard
macro straddling the center clock distribution column of
the FPGA. If examined closely, the same ridges present in
Figure 3 can be seen, although they are dwarfed by the major
ridge down the center column of the FPGA. This delay
is more problematic but can easily be avoided by simply
disallowing hard macro placements that straddle the center
column of the chip.

A second hard macro (consisting of a PicoBlaze core)
was also created and similar experiments conducted but
for Virtex 5 devices (without allowing the hard macro to
ever straddle the center column). The results were almost
identical with timing deviations in the Y direction (∼ 10
ps) due to the horizontal clock branches.

A second set of experiments (named Experiment #2) was
performed to determine the impact of shape (aspect ratio)

and density on the performance of the resulting hard macros.
These experiments were detailed in [8] and [9] and only a
short summary given here.

The different hard macros used in those experiments
consisted of the following: a 1024 point FFT, an 18×18 bit
LUT-based multiplier, 128-tap 18-bit FIR filter, a double-
precision quadratic solver, a PicoBlaze and a MicroBlaze.
Two different characteristics of each hard macro was varied.
The first variable was the width to height (aspect ratio) of
the macro. The second was the density of the macro which
was the ratio of total area allocated versus the number of
slices and other resources required for the macro’s logic.
The candidate hard macros were then implemented using
a variety of clock constraints. The data indicate that most
macros are aspect-ratio agnostic and that about 20% extra
area should be allocated when determining the shape and
area for the hard macro.

From these experiments we concluded that hard macros
can be generated in a way that maximizes their place-ability
and should not be placed over the center column of the chip.
Thus, in the experiments of the next section the large macros
required were generated with roughly square shapes (with
variations from this dictated by the particular macro’s use
of DSP48 and BRAM blocks).

IV. EXPERIMENTAL RESULTS

To investigate the effects of using large hard macros,
six large benchmark designs were chosen and re-fashioned
from the benchmarks used in [1]. Those benchmarks were
originally created using Xilinx’s System Generator. For the
experiments here, the Subsystem construct found in System
Generator was used and whole subdesigns from the original
benchmarks were converted to large hard macros. This
had the benefit of guaranteeing that the resulting circuits
(small macro-based and large macro-based) were logically
identical so direct comparisons could be made, with any
differences attributable to the difference in macro size. A few
changes were made to HMFlow to facilitate the generation
of larger hard macros, mainly the processing of complete
subsystems as opposed to HMFlow’s original behavior of
flattening the design hierarchy. We call this new HMFlow
variant “HMFlow-Large” to distinguish it from the original
small-macro version of HMFlow of [1] which we will call
“HMFlow-Small” hereafter.

Of the six benchmark designs selected for demonstrating
HMFlow-Large, three were logically equivalent to three
of the original benchmarks used to demonstrate HMFlow-
Small [1], namely frequency estimator (f est), multi-
band correlator (mul cor) and trellis decoder (trel dec).
The other three benchmarks, brik1, brik2 and brik3 each
represent an entire design that occupied an entire FPGA in
the original telemetry receiver [10] selected as the source
for the benchmark circuits.

Large hard macros were created in each benchmark by en-
capsulating major components into subsystems, often while



TABLE I: Slice Counts for Large Hard Macro Benchmarks

Design Name Virtex 5 Slices
f est 3970

trel dec 5929
brik3 7505
brik2 7552

mul cor 8258
brik1 9598
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Fig. 5: Run-Time Comparisons of Three Benchmarks: Large
Versus Small Hard Macros

also inserting pipeline registers at their boundaries. After all
the subsystems were finalized, all six benchmarks were built
using HMFlow-Large targeting a Virtex 5 SX240T. The slice
count of the six benchmark designs is shown in Table I.

A. Comparisons of HMFlow-Small vs. HMFlow-Large
CAD tool run-times for the benchmarks and their maxi-

mum clock rates are graphed in Figures 5 and 6. As can
be seen in Figure 5, using larger hard macros over smaller
hard macros can reduce compilation times significantly, by
at least 2.5–4×. This is a very significant reduction in that
the smaller hard macro versions already compile at least 10×
faster than the fastest Xilinx compilations. This validates
our conjectures that large hard macros can speed up the
implementation process, by as much as 30-40× for these
benchmarks.

Figure 6 shows that using larger hard macros improves the
maximum achievable clock rate by 60–70%1. We attribute
this to the fact that more of the designs’ routes are being

1It is possible that a small amount of this improvement (10%-15%) may
have been due to the insertion of additional pipeline stages. However, these
benchmarks had already been heavily optimized and it is far more likely
that the majority of this improvement was due to the improved placement
of internal circuitry in the larger hard macro by the Xilinx software.
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Fig. 6: Clock Rate Comparisons for Three Benchmarks:
Large Versus Small Hard Macros
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Fig. 7: The Number of Existing Routed Connections in the
Large Hard Macro Benchmarks as a Percentage to Total
Connections

packed into the hard macros by the higher quality Xilinx
router as opposed to the lower quality HMFlow router which
is used for making the macro-to-macro connections.

Some of the benefit attributed to the larger hard macros
is the increased number of routed nets encapsulated within
the hard macros. The large hard macro benchmarks include
over 3.7× the routed connections as found on average
in the smaller hard macro benchmarks. This removes a
significant burden from off the HMFlow-Large router as
the large hard macro benchmarks have over 60% of their
connections already routed (not including clock, power and
ground nets) before arriving at the HMFlow routing stage.
The percentage of routed connections in each benchmark is



shown in Figure 7.

B. Large Hard Macro Compilation (Creation) Time

Large hard macros generally take longer to create initially
than small hard macros. Some compile times for larger hard
macros are found in Table II.

TABLE II: Coarse-grained Hard Macro Compile Times

Hard Macro Name Tiles Occupied Compile Time
digital gain amplifier 62 160s
new correlator fifo 110 168s

ad dynamic range calc 34 177s
Polyphase filter 610 200s

pd control 117 230s
Reindexer 645 260s

Aliasing DDC 491 320s
multi band correlator1 12672 1324s

Although large hard macros have longer compile times
than small hard macros, they are able to capture routing
configurations which meet difficult timing constraints and
which may have taken the Xilinx router hours to produce.
Each time the hard macro is reused, that timing closure
process does not need to be repeated, especially as bugs
are found and fixed in other parts of the design.

C. Comparisons of HMFlow-Large vs. Xilinx

With large hard macros making a positive impact in
performance and quality of HMFlow implementations, it
raises the question, how close is this combination to the
implementations produced by Xilinx? To answer this ques-
tion, the remaining three benchmark designs (brik1, brik2
and brik3) were also compiled using HMFlow-Large and
then all six benchmarks were also compiled with the Xilinx
tools. The average speedups for HMFlow-Large and large
hard macros over the Xilinx tools are shown in Table III
and is about 52×. This is substantially more speedup than
what was achieved using the smaller hard macros in [1].

Clock rates for HMFlow-Large circuits are 60–70% faster
than those of HMFlow-Small due to the use of larger
hard macros. This supports our conjecture that larger hard
macros should lead to higher performance circuits. That

TABLE III: Runtime Comparison of HMFlow-Large vs.
Xilinx

f est trel dec brik3 brik2 mul cor. brik1
Xilinx 392s 461s 605s 852s 498s 849s

HMFlow 7.0s 10.9s 12.9s 13.1s 11.8s 14.2s
Speedup 56× 42× 47× 65× 42× 60×

TABLE IV: Clock Rate Comparison of HMFlow-Large vs.
Xilinx (MHz)

f est trel dec brik3 brik2 mul cor. brik1
Xilinx 237 225 225 199 243 207

HMFlow 82 64 64 80 80 81
Slowdown 2.9× 3.5× 3.5× 2.5× 3.0× 2.5×

said, the clock rates for our HMFlow-Large circuits still
significantly lag those of the Xilinx-produced circuits as
shown in Table IV.

V. CONCLUSIONS AND FUTURE WORK

Until now, our goal for HMFlow has been to develop the
fastest prototyping flow possible without too much regard to
quality of results (as measured by circuit clock rate). But,
with these results we now have two data points showing
what is possible. For the small macros of [1] HMFlow run-
times are about 10× less than Xilinx. For the large hard
macros of this work, HMFlow run-times are about 50× less
than Xilinx with clock rates between 2.5-3.5× as slow.

Our ongoing and future work will focus on further explor-
ing the tradeoff between tool runtime and circuit quality with
the goal of providing an understanding of the range of trade-
offs possible. This, in turn, holds promise for understanding
how different design flows can be employed for different
FPGA use models such as rapid prototyping and debug,
high-performance computing, ASIC replacement, etc.
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