
OpenCL Based Design Pattern for Line Rate Packet
Processing

Jehandad Khan, Peter Athanas
NSF Center for High-Performance Reconfigurable Computing (CHREC)

Virginia Tech
Blacksburg, Virginia

Email: {jehandad, athanas}@vt.edu

Skip Booth, John Marshall
Cisco Systems Inc.

RTP, North Carolina
Email: {ebooth, jwm}@cisco.com

Abstract—The ever changing nature of network technology
requires a flexible platform that can change as the technology
evolves. In this work, a complete networking switch designed
in OpenCL is presented, identifying several high-level constructs
that form the building blocks of any network application target-
ing FPGAs. These include the notion of an on-chip global memory
and kernels constantly processing data without the intervention of
the host. The use of OpenCL is motivated by the ability to rapidly
change designs and to be maintainable by a wider developer
community. Pieces of the design that cannot be realized using
current OpenCL technology are also identified and a solution to
the problem is presented.

I. INTRODUCTION

Technologies like OpenFlow, Software Defined Networks,
and Network Function Virtualization (NFV) are constantly
changing the network computing landscape. Rapidly chang-
ing protocols,requirement for extensibility, demand for higher
bandwidths, and increased cost sensitivity have forced both
network designers and hardware vendors to rethink design
methodologies. Coupled with machine virtualization, NFV
adds another dimension of flexibility and complexity to the
picture by using virtualized servers for network functions.

NFV attempts to address many of these problems by vir-
tualizing many of the packet forwarding functions on stan-
dard server hardware; however, this flexibility comes at the
cost of dedicated CPU cores for packet switching, higher
power consumption, and other infrastructure costs required to
maintain additional hardware. In contrast, dedicated switching
hardware is not faced with these challenges since typical
network appliances employ ASIC-based designs to achieve
competitive throughput. The aforementioned challenges have
put pressure on ASIC architectures to adapt, resulting in flex-
ible architectural frameworks such as Reconfigurable Match
Tables (RMT) [1] and Intel FlexPipe [2], these architectures
can be configured at runtime to process different types of
protocols. With the aid of Domain Specific Languages (DSLs)
such as P4 [3], these architectures might be the answer to the
ever changing requirements of the networking world. While
such ASICs promise data rates on the order of tera-bits per
second, high development costs of ASIC design coupled with

This work was supported in part by the I/UCRC Program of the National
Science Foundation within the NSF Center for High-Performance Reconfig-
urable Computing (CHREC), Grant No. IIP-1266245.

lengthy design cycles make them a poor development choice
for most applications. Not only do these devices require
multiple years to design and develop, but once they reach
maturity the requirement has moved on.

Between general purpose CPUs and fixed function ASICs,
FPGAs provide the middle ground in terms of performance,
cost and flexibility. FPGAs are gradually making their way into
data centers as co-processors [4] assisting CPUs in complex
computations. Compared to GPUs, they offer lower power
consumption, wide data paths enabling high throughput and a
higher level of parallelism at a finer level of granularity. These
traits make FPGAs an attractive choice for diverse applications
such as machine learning [5], genome sequencing [6], high
frequency trading.

The classical impediment to using FPGAs for a wider
variety of applications is that they follow an ASIC-like design
flow, which requires expertise in logic design, understand-
ing of architectural design, and familiarity with place-and-
route techniques for FPGA designs. Traditional FPGA design
methodology also requires the use of RTL, requiring ample
forethought, debugging difficulty, and long compile times,
which may span multiple hours. Using a High Level Synthesis
(HLS) design language such as OpenCL to target FPGAs
ameliorates some of these problems by raising the level of
abstraction for the designer, enabling them to express designs
in a more software-friendly space. This abstraction also pro-
vides an easier debugging environment and more concise and
comprehensible code. Thus, before committing to a multi-hour
compile, the designer is able to verify functional correctness,
potentially identifying mistakes earlier in the design cycle.

Modern OpenCL tools [7] efficiently generate RTL from
a HLS specification, leaving little room for improvement in
terms of area and performance as compared to the produc-
tivity advantages being gained. This trait makes OpenCL
a viable design methodology for quickly creating efficient
FPGA designs. However, there are certain caveats associated
with this approach, such as portability issues, dependence
of performance on coding style, and efficient utilization of
memory resources.

In this work, design patterns are identified that enable high-
performance packet processing applications on FPGA targets.
A simple router/switch design is used for this exploration and



the Altera Arria 10AX115S2F45I2SGES device is used as the
reference platform. The key design philosophy for this en-
deavor is described, drawing similarities and contrasts between
ASIC-based architecture and how the flexibility afforded by
FPGAs may be leveraged in this space.

The organization of this paper is as follows: In Section II
the switching problem is presented, along with the switch
abstraction employed and some explanation for the basis of
this approach. In Section III, the building blocks for the switch
architecture are introduced, in Section IV the overall switch
architecture is described using the primitives introduced in the
previous section, and some related work is reviewed. Section V
presents some results with conclusions and recommendations
at the end.

II. ABSTRACT SWITCH ARCHITECTURE

Fig 1 shows the abstract switch model implemented in
this paper. This is a standard architecture followed by many
switching ASICs, such as Reconfigurable Match Tables (RMT)
[1], and the Intel FlexPipe [2]. The same general approach has
been adopted by OpenFlow [8], P4 [3], and PX [9] in a more
abstract model.

Fig 1 describes three building blocks of the switch data
plane. The parser, matching tables, and control (ingress /
egress). First, the parser parses the incoming packets into
different headers, depending upon the requirements this might
be a fixed parser with known protocols, or a configurable one.
A general parser might be able to handle arbitrarily complex
header stacks as well as recursion. Such features are more
readily implemented in software as compared to hardware.
Next, fields from the parsed representation are matched against
tables for update decisions about either the meta-data or
pieces of the packet data itself. For example, a longest prefix
match may enable a forwarding information base lookup using
a matching stage on the source/destination IP address, and
updating either the egress port in the meta-data or some other
field. Finally, the ingress and egress control fields determine
the order of operations along with other features such as
recirculation, quality of service, and buffer management.

Experiments in this paper are based upon the minimal real-
ization of this architecture in the form of a Layer 3 router. It
consists of a parser that parses the Ethernet and IPv4 headers,
followed by two matching and update stages for the ingress
control and one for the egress. For the sake of simplicity,
buffer management, queuing, and other infrastructure are not
implemented in this design. Apart from these stages, the switch
is also equipped with an IPv4 checksum verify and update
stage at the ingress and egress respectively. In a more complex
scenario, there may be many matching stages forming a graph
of packet flow. Typically, such a graph is scheduled to a
fixed pipeline [2] whereas in the case of an FPGA, this is
not a limitation due to the flexible nature of the device. An
FPGA-based design is only constrained by device area and
the increase in latency due to the depth of the pipeline. In the
context of packet processing, this fact enables an HLS-based

Fig. 1. Architectural Overview of a P4 Program

FPGA design to approximate CPU-based design paradigm
only limited by the physical characteristics of the device.

After laying down the conceptual ground work, the next
section identifies the architectural building blocks necessary
for realizing this design on an FPGA.

III. HLS FRAMEWORK FOR PACKET PROCESSING

In this study, Altera’s OpenCL tool chain [10] is used to
target an Arria 10 device. Lessons learned here, however,
may easily be extended to other FPGA tool vendors. OpenCL
enables the use of a single code base on multiple heteroge-
neous targets, such as GPUs and CPUs. While the syntax
and code may be portable from one platform to another,
performance varies widely when the same code is run on
different architectures, particularly from an FPGA perspective.
Not only is performance portability a myth between different
device architectures, but even within the FPGA world, per-
formance and utilization results vary widely when the same
code is compiled using tool chains from different vendors.
This variability may be attributed to the major differences in
device architectures and to the many ways in which the same
OpenCL code may be mapped to an FPGA target.

Motivated by this variability, OpenCL-based design patterns
are identified that would give a high degree of parallelism at a
moderate cost of device resources. Much like software design
patterns and other benchmarks [11], these building blocks
can be combined to build larger and more complex systems.
Moreover, lessons learned here may also be incorporated into
an automated system to generate efficient code.

The current OpenCL standard assumes that a kernel is
invoked with a pointer to a work load, and the kernel operates
on the given workload until it is finished. Once the work
is done, results are copied back to the host. The paradigm
is unsuitable for any low-latency, high-bandwidth streaming
application such as packet processing. In addition, many
streaming applications effectively run forever on these streams
of data, and breaks the mold of traditional CPU-driven kernel
launches. For example, the target platform is equipped with
an on-board Ethernet interface that might be feeding data in
to the design. This problem is exacerbated by the fact that
the memory controllers in the device might optimize writes
centered around the kernel completion event; therefore, an
attempt to read data back from a kernel before it has terminated
might either give inconsistent results or fail in some other way.



Fig. 2. A persistent Kernel

To solve this problem, a construct called persistent kernels is
introduced, as described in the next section.

A. Persistent Kernels

A kernel that does not terminate once launched by the host
is a persistent kernel. Data items are fed to this kernel using
OpenCL pipes, it consists of an infinite loop, and each iteration
of the loop waits on the input channel. Once a valid data item
is available, the kernel code operates on the data item and
writes the result to the output channel. Since Altera OpenCL
(AOCL) does not support OpenCL pipes in simulation, Altera
Channels have been used throughout this study to realize this
functionality. Fig 2 depicts the structure of a persistent kernel.
The arrows indicate incoming and outgoing channels carrying
data, and the box in the center represents the kernel with an
infinite loop. If a particular kernel needs input from more than
one kernel, the persistent kernel might poll multiple channels
in a non-blocking manner and act upon data whenever it is
available. Channels are implemented in hardware as FIFOs
making them relatively inexpensive and abundantly available.
This construct enables designers to express a greater degree
of parallelism. For example, in OpenCL parallelism cannot be
expressed within a single kernel. Even if the sections of the
code are completely independent, they would still be part of
a single pipeline. Moreover, a single kernel is optimized as a
whole; thus, if one section of the code stalls, the whole kernel
is stalled. In the present scenario, this implies that if a table
lookup is stalled and the parser is a part of the same kernel,
the entire operation would stall even if the two are completely
independent. This fact has serious performance implications.

The notion of persistent kernels is not new and has been
explored previously in a slightly different contexts on GPUs
[12] as persistent threads. There are key differences however:
the processing model in this paper is task based; therefore,
thread scheduling is not a concern. Moreover, persistence in
the context of this design implies a kernel that does not
terminate once it is launched. The persistent kernel model
enables the expression of this independence and parallelism.
In a packet processing scenario, each packet is handled in-
dependently; therefore, the ability to exploit parallelism is of
paramount importance. Large number of packets may be kept
in flight using this technique, which is necessary for a high-
throughput design.

B. Global On-chip Memory

To achieve line-rate performance, many packets have to be
kept in flight. Variable latency or low throughput in accessing
this data may lead to packet loss and jitter. Off-chip memory
systems such as DDR memory controllers cannot provide such
performance given the memory operations per second required
for packet processing. Large cache lines of traditional memory
systems are unsuitable for packet editing operations. Packet
editing requires access to a few bytes at a time only. Memory
controllers are also prone to stalling, and nondeterministic
delays makes them a poor choice for storing in-flight packet
data.

AOCL does not support lgobal on-chip memory, which
would be ideal for this scenario since this data would be shared
among different persistent kernels, and passing the entire
packet from one kernel to another would be resource intensive.
To solve this problem, a persistent kernel that declares local
storage arrays is employed. The AOCL compiler realizes the
local memory as an M20K block on the Arria 10 device.
Each M20K block has two input and two output ports. This
limitation requires that no more than two persistent kernels
should write or read from the memory server. Otherwise,
arbitration logic would be required. This is not desirable for
performance and resource utilization reasons. Global on-chip
memory is supported by Xilinx SDAccel [13]; however, the
developer has little control over its parameters.

IV. OVERALL SWITCH ARCHITECTURE

Using the building blocks outlined in the previous section,
the abstract switch architecture discussed in Section II is
mapped using OpenCL. Fig 6 shows the complete router
realization. The ingress kernel receives the packet stream either
from the host in DMA chunks or from an on-board Ethernet
interface. It constructs a Packet Header Vector (PHV) with
the available information, and passes it down the processing
pipeline. Likewise, the de-parser kernel writes the packet to the
main memory or to the I/O channel for the on board Ethernet
channel.

Similar to the RMT architecture [1], the PHV containing
the parsed-packet representation along with meta-data is trans-
ferred from one stage to another. However, choosing FPGA as
the target allows the flexibility of mapping as many stages to
the device – only limited by the physical resources of the target
device. Also, the width of the PHV may be tuned to trade-off
performance and utilization.

A. Parser Kernel

The parser receives the PHV with basic meta-data, such as
ingress port and packet length. It also receives the address
of the packet in the memory server described in Section
III-B. In this context, the memory server might be referred
to as the packet server. Since an FPGA-based OpenCL design
has a theoretical maximum achievable clock frequency of no
more than 230 to 240 MHz, wide data paths are employed
to process two packets per clock cycle; therefore, the parser
kernel reads two PHVs from the input channel and directs



Fig. 3. Match Action Stage Architecture

them to the parser loop. This loop is fully pipelined by the
AOCL compiler. Once fully populated, it provides two parsed-
packet representations every clock cycle.

B. Matching Stages

PHV from the parsed packet is passed onto the next
matching kernel for lookup and update operation. Two types
of matching kernels were implemented: TCAM-based ternary
match, and exact match. The aim is to create a minimal number
of TCAM entries on chip, which may later be extended to a
more sophisticated architecture enabling a larger number of
entries using off-chip memory if necessary.

Initially the TCAM entries were realized as local memory
in the RMT kernels, similar to the packet server architecture.
The RMT kernel would listen on the upstream stage (either
the parser or previous match stage) for the PHV data. Once
a new data item was available, the PHV would be read from
the FIFO, matched to the local array and the associated action
data acted upon. The updated PHV would then be written to
the downstream channel.

Control Plane: In a traditional switch architecture, popu-
lation of the tables is managed by the control plane. In this
architecture, each RMT stage kernel has an associated control
kernel to add entries to the table. These kernels are launched
by the host to add or update table entries. The TCAM kernel
would read the data items and update its local memory array.
This architecture is depicted in Fig 3.

Creating a large array of entries being evaluated in parallel
uses an unaffordable amount of logic since the compiler would
either realize the array completely as registers to facilitate
parallelism, or in some cases depending upon the OpenCL
code structure, as a large number of shallow BRAMs. Either
method is wasteful of logic resources. The exercise highlighted
the limitations associated with HLS-based design expression.
Moving the TCAM to an RTL-based design improved the de-
vice utilization and performance. This decision was motivated
by the following key factors: a high-performance TCAM is
an essential part of any switch, the TCAM architecture is not
expected to change from one P4 design to another; therefore, a
static RTL module is acceptable. An RTL-based design would
allow more control and precision around performance and area
decisions. Before investing the time and effort in designing and

Fig. 4. RTL based Match Action Stage Architecture

integrating an RTL-based TCAM with an OpenCL pipeline,
the maximum achievable throughput in an OpenCL-based
design was determined. For the design at hand with a single
parser/de-parser stage and three RMT stages, a throughput of
70 Million Packets Per Second (Mpps) was achieved, which
indicates the theoretical maximum performance achievable.

C. RTL Based TCAM

AOCL allows the integration of custom RTL into OpenCL
designs by making the RTL module a part of the OpenCL
Board Support Package (BSP). The module must expose
Altera Avalon streaming interfaces for input and output data.
These channels are exposed inside the OpenCL domain as I/O
channels that the OpenCL design can write to and read from
like any other channel. Since the TCAM design is not the
objective of this study, a naive TCAM implementation is used
that sequentially reads through data stored in BRAM cells in
a pipelined manner. This decision was taken to concentrate
on the OpenCL aspects of the system, ignoring the details of
TCAM design. Also, a smart caching algorithm around the
TCAM [14] may relax the requirement for a large TCAM.
Another component similar in interface to the TCAM module
was designed to achieve exact match classification. Fig 4
shows the RTL TCAM in conjunction with the OpenCL
kernels. Together, these components make up an OpenCL-
based RMT stage. Similar to the OpenCL-only RMT stage,
there is a control kernel marked update kernel; however,
the match and action parts have been split to avoid stalls
in the action kernel and keep more requests in flight. The
query kernel may be fused with the action/result kernel of the
previous stage to avoid redundant kernels.

This process also highlighted the limitations of HLS,
demonstrating that not all types of logic may be optimally
synthesized. It may also be pointed out that despite its
shortcomings, OpenCL enables great productivity gains by
supplying control-plane logic, pipelining and other primitives;
thus, being forced to write a small part of the design in RTL
is still better than to write the entire design in RTL.



Fig. 5. Resource Sharing of TCAM in Multiple Stages

Fig. 6. All the kernel required to implement the simple router

D. TCAM Resource Sharing

If resources are scarce, a single RTL TCAM may be shared
among multiple RMT stages as depicted in Fig 5. The RMT
stage, instead of writing to the TCAM query channel, now
directly writes to the query kernel that listens to all RMT
stages. Each query request is tagged with the incoming RMT
stage’s ID to be passed along by the RTL TCAM with the
lookup result. This ID enables the result kernel to route the
outcome of the lookup to the appropriate kernel.

E. Related Work

While the focus of this work has been to design a complete
switching architecture in OpenCL for FPGA targets, different
attempts have been made at different parts of the switching
problem for example, Attig et. al [15] implement a 400 Gb/s
parser and Jiang et. al [16] present matching engines based
on FPGA. Naous et al. [17] have implemented an OpenFlow
compliant switch on the popular NetFPGA platform utilizing
a RTL-based design methodology. Brebner et. al in [18]
present an automatic architecture which can reach a throughput
of 200 Mpps with a TCAM size similar to this work and
appropriate parameter choice, however the work presented
here synthesizes router specification described in OpenCL as
compared to a fixed logic architecture as in [18]. There also
have been attempts at using GPUs to switch packets, such as
[19], [20] and [21]. Han et. al [19] and Li et. al [21] present
GPU based implementations of routers. GPUs have high
throughput compared to FPGAs in terms of data processing;
however, the latency introduced by GPUs in packet processing
makes them unsuitable for line rate processing. Moreover, high
power requirements hamper their deployment in edge network
scenarios. GPUs are also hampered by the unavailability of
on-board interface to operate independently. All of these

are important considerations for network appliances, making
GPUs less favorable for network processing. Makkes et. al
[22] in their recent work present a high performance lookup
engine on GPUs and CPUs, this engine batches up lookup
requests to exploit GPU thread size, it also makes certain
assumptions around the number of prefixes and the structure
of the data in general. Rinta-Aho et. al [23] and Nikander et. al
[24] present work in compiling router specification described
in Click [25] to an FPGA based router. While interesting in
it’s own right, attempting to compile an entire C code base to
FPGA [23] does not produce optimum results for performance.
We compare work presented here to [23] in the results section.
Kim et. al [20] propose a router named Network Balancing Act
(NBA) which achieves comparable throughput to this work on
a heterogeneous platform, their presented work has features
including IPSec and Intrusion Detection System. ReClick
router by Unnikrishnan et. al [26] present another attempt at
converting a Click router specification in to HDL based FPGA
design. The authors present a feature rich implementation
however, the throughput achieved is not competitive.

V. RESULTS

All experiments were carried out on the Arria 10 GX FPGA
Development Kit with 4 GB of DDR4 RAM. The board was
plugged into a Cisco UCS C240 M4 server with two Intel
Xeon E5-2667 v3 CPUs running at 3.2 GHz with 64 GB of
RAM. The design was compiled using Altera OpenCL SDK
Version 15.1. The custom TCAM and matching engine were
integrated in the design by modifying the Altera supplied BSP.

To determine realistic performance and area expectations,
the resource utilization and performance metrics of individual
components are examined. Table I shows the utilization and
performance metrics for the look up engine. The numbers
in parenthesis are the resource utilization for the complete
design along with the launching kernels to test the design. In
this relatively simple design, each M20K block holds eight
data/mask pairs that are searched sequentially. The TCAM in
the current design is 40-bits wide.

Table II depicts the resource utilization in different parts of
the design, indicating the efficiency of the design paradigm.
It is evident from tables II and III that much of the device
is occupied with the TCAM engine. This can partly be
attributed to the naive TCAM design as stated earlier. To
achieve maximum performance, a dedicated lookup engine
was instantiated for each match+action stage, namely one
longest prefix match stage and exact match engines for the
send frame and forwarding stages. The TCAM engine, being
the slowest component in the chain, restricted the performance
of the overall system to a little under 40 Mpps for 64-byte
packets, with the limiting factor being the naive TCAM design.
Without this limitation, the design is able to process at 70
Mpps.

If resources are constrained, the result kernel and the query
kernel for the subsequent RMT stage may be merged to
conserve resources. Table IV indicates the impact of this
optimization on the overall device utilization. The first column



TABLE I
LOOKUP ENGINE SPECS

TCAM Engine Exact Match Engine

Logic Utilization (ALMs) 60,959 (90,538) 58,628 (89,287)

Dedicated Logic Registers 138,477 (196,859) 144,549 (208,861)
RAM Blocks 65 129
Block Memory Bits 82,432 (853,746) 82,432 (909,554)
Fmax 242 MHz 241 MHz
Lookups Per Second 45 Million 57 Million
Overall Logic Utilization 21% 21%

TABLE II
DEVICE UTILIZATION OF DIFFERENT SWITCH COMPONENTS

IPv4 Parser Packet De-parser
Checksum Server

Logic Utilization 2068 4929 4012 9870
(ALMs)
Logic Registers 5325 10835 13008 25968
RAM Blocks 22 0 40 35584
Block Memory Bits 3806 0 200704 14

TABLE III
MATCH ACTION COMPONENTS UTILIZATION

Add Query Result

Logic Utilization (ALMs) 1021 1254 1503
Dedicated Logic Registers 2123 2710 3566
RAM Blocks 2 0 0
Block Memory Bits 6784 0 0

TABLE IV
ROUTER RESOURCE UTILIZATION

Merged Kernels Separate Kernels

Logic Utilization (ALMs) 257,473 (60%) 264,736 (62%)
Dedicated Logic Registers 590,946 603,921
RAM Blocks 1139 (42%) 1211 (45%)
Block Memory Bits 3,818,190 (7%) 3,908,846 (7%)

represents the design with merged kernels, and the second col-
umn indicates the device utilization without the merge kernel
optimization. The numbers in the parenthesis are the percent
utilization of the overall device resources. It may be noted
that the resource utilization includes all of the auxiliary logic
needed by the design, such as the DDR controller and the soft
logic to interface with the PCIe interface. Due to the scarcity
of data on a FPGA-based router performance, it is difficult to
make a fair comparison. To emphasize the accomplishment of
this work, Table V compares the performance of the current
OpenCL-based design to other design approaches. It might be
noted that performance data for more recent FPGA designs is
not available; therefore, the comparison presented in Table V
cannot be used to draw a fruitful comparison.

TABLE V
PERFORMANCE COMPARISON

Packets Per Sec Platform

NetFPGA (Ref) 415 K Xilinx Virtex II Pro
NetFPGA (OpenFlow) 1.95 M Xilinx Virtex II Pro
Click2NetFPGA 178 K Xilinx Virtex II Pro
OpenCL Router 40 M Arria 10 GX 115

VI. CONCLUSION

OpenCL is fast becoming a viable language of choice for
FPGA development. This work presents a design paradigm
using OpenCL for packet processing applications on FPGA
targets. While it may still be difficult to fully express all
intricacies of hardware design using OpenCL, the productivity
benefits of OpenCL make it a worthwhile investigation. Some
design primitives targeting streaming applications in general
and packet processing applications in particular were also pre-
sented. Some of the suggested future work includes determin-
ing a solution to the performance bottleneck associated with
the TCAM engine using a more sophisticated implementation.
More features such as queue management and buffering should
be explored as important avenues of investigation.

REFERENCES

[1] P. Bosshart, G. Gibb, H.-s. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding Metamorphosis: Fast
Programmable Match-Action Processing in Hardware for SDN,” ACM
SIGCOMM Computer Communication Review, pp. 99–110, 2013.

[2] L. Jose, L. Yan, G. Varghese, and N. McKeown, “Compiling Packet
Programs to Reconfigurable Switches,” 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 15), pp. 103–
115, 2015.

[3] P. Bosshart, G. Varghese, D. Walker, D. Daly, G. Gibb, M. Izzard,
N. McKeown, J. Rexford, C. Schlesinger, D. Talayco, and A. Vahdat,
“P4: Programming Protocol-Independent Packet Processors,” ACM SIG-
COMM Computer Communication Review, vol. 44, no. 3, pp. 87–95,
2014.

[4] L. Ling, J. Grecco, H. Mitchel, L. Dong, P. Gupta, N. Oliver, C. Bhushan,
W. Qigang, A. Chen, S. Wenbo, Y. Zhihong, A. Sheiman, and I. Mc-
Callum, “High-performance, energy-efficient platforms using in-socket
FPGA accelerators,” in Proceeding of the ACM/SIGDA international
symposium on Field programmable gate arrays - FPGA ’09. New
York, New York, USA: ACM Press, feb 2009, p. 261.

[5] K. Ovtcharov, O. Ruwase, J.-y. Kim, J. Fowers, K. Strauss, and E. S.
Chung, “Accelerating Deep Convolutional Neural Networks Using Spe-
cialized Hardware,” Microsoft Research Whitepaper, pp. 3–6, 2015.

[6] I. Li, W. Shum, and K. Truong, “160-fold acceleration of the Smith-
Waterman algorithm using a field programmable gate array (FPGA),”
BMC bioinformatics, 2007.

[7] D. P. Singh, T. S. Czajkowski, and A. Ling, “Harnessing the power
of FPGAs using Altera’s OpenCL compiler,” in Proceedings of the
ACM/SIGDA international symposium on Field programmable gate
arrays - FPGA ’13. New York, New York, USA: ACM Press, feb
2013, p. 5.

[8] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow,” ACM SIGCOMM
Computer Communication Review, vol. 38, no. 2, p. 69, mar 2008.

[9] G. Brebner and W. Jiang, “High-speed packet processing using recon-
figurable computing,” IEEE Micro, vol. 34, no. 1, pp. 8–18, 2014.

[10] Altera Corporation, “Altera SDK for OpenCL,” 2015.
[Online]. Available: https://www.altera.com/content/dam/altera-
www/global/en US/pdfs/literature/hb/opencl-
sdk/aocl programming guide.pdf



[11] K. Krommydas, W. C. Feng, M. Owaida, C. D. Antonopoulos, and
N. Bellas, “On the characterization of OpenCL dwarfs on fixed and
reconfigurable platforms,” Proceedings of the International Conference
on Application-Specific Systems, Architectures and Processors, pp. 153–
160, 2014.

[12] K. Gupta, J. A. Stuart, and J. D. Owens, “A study of persistent threads
style GPU programming for GPGPU workloads,” in 2012 Innovative
Parallel Computing, InPar 2012. IEEE, may 2012, pp. 1–14.

[13] Xilinix Corporation, “SDAccel Development Environment.” [On-
line]. Available: http://www.xilinx.com/products/design-tools/software-
zone/sdaccel.html

[14] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “CacheFlow :
Dependency-Aware Rule-Caching for Software-Defined Networks Cate-
gories and Subject Descriptors,” in ACM Symposium on SDN Research,
2016.

[15] M. Attig and G. Brebner, “400 Gb/s programmable packet parsing on
a single FPGA,” Proceedings - 2011 7th ACM/IEEE Symposium on
Architectures for Networking and Communications Systems, ANCS 2011,
vol. 400, pp. 12–23, 2011.

[16] W. Jiang and V. K. Prasanna, “Scalable Packet Classification on FPGA,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 20, no. 9, pp. 1668–1680, sep 2012.

[17] J. Naous, D. Erickson, G. A. Covington, G. Appenzeller, and N. McK-
eown, “Implementing an OpenFlow switch on the NetFPGA platform,”
in Proceedings of the 4th ACM/IEEE Symposium on Architectures for
Networking and Communications Systems - ANCS ’08. New York, New
York, USA: ACM Press, Nov 2008, p. 1.

[18] G. Brebner and W. Jiang, “High-speed packet processing using recon-
figurable computing,” IEEE Micro, vol. 34, pp. 8–18, 2014.

[19] S. Han, K. Jang, K. Park, and S. Moon, “PacketShader,” Proceedings
of the ACM SIGCOMM 2010 conference on SIGCOMM - SIGCOMM
’10, vol. 40, no. 4, p. 195, 2010.

[20] J. Kim, K. Jang, K. Lee, S. Ma, K. Shim, and S. Moon, “NBA (network
balancing act): A high-performance packet processing framework for
heterogeneous processors,” European Conference on Computer Systems
(EuroSys), 2015.

[21] P. Li and Y. Luo, “P4GPU,” in Proceedings of the 2016 Symposium on
Architectures for Networking and Communications Systems - ANCS ’16.
New York, New York, USA: ACM Press, mar 2016, pp. 125–126.

[22] M. X. Makkes, A. Varbanescu, C. de Laat, and R. Meijer, “Fast packet
forwarding engine based on software circuits,” Proceedings of the 12th
ACM International Conference on Computing Frontiers - CF ’15, pp.
1–8, 2015.

[23] T. Rinta-Aho, M. Karlstedt, and M. P. Desai, “The Click2NetFPGA
toolchain,” USENIX Annual Technical Conference (USENIX ATC 12),
p. 7, Jun 2012.

[24] B. Pekka Nikander, S. D. Sahasrabuddhe, and J. Kempf, “Towards
Software-defined Silicon: Experiences in Compiling Click to NetFPGA,”
2010.

[25] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
click modular router,” ACM Transactions on Computer Systems, vol. 18,
no. 212, pp. 263–297, aug 2000.

[26] D. Unnikrishnan, J. Lu, L. Gao, and R. Tessier, “ReClick - A modular
dataplane design framework for FPGA-based network virtualization,”
in Proceedings - 2011 7th ACM/IEEE Symposium on Architectures for
Networking and Communications Systems, ANCS 2011. IEEE, oct 2011,
pp. 145–155.


