
Increasing Design Productivity Through Core
Reuse, Meta-Data Encapsulation, and Synthesis

Adam Arnesen, Kevin Ellsworth, Derrick Gibelyou, Travis Haroldsen, Jared Havican, Marc Padilla,
Brent Nelson, Michael Rice, and Michael Wirthlin

NSF Center for High-Performance Reconfigurable Computing (CHREC)
Dept. of Electrical and Computer Engineering

Brigham Young University
Provo, UT, 84602, USA

Abstract—This paper presents a novel IP core reuse strategy
which reduces design time from days to hours for communication
circuits such as digital radio receivers. This design productivity
is obtained by leveraging a highly parameterized library of
communication specific cores. These cores are described in
IP-XACT XML with vendor extensions describing the timing
behavior of their communication interfaces. A synthesis tool,
called Ogre, was created that generates the communication
interfaces between cores described in IP-XACT and synthesizes
full designs from structural synchronous dataflow specifications.
Design productivity improvements are demonstrated with several
radio receiver designs.

I. INTRODUCTION

Reusing hardware cores has long been held out as a
promising approach for improving design productivity [1].
Indeed, it has successfully been used in System-on-chip (SOC)
design flows [2], where cores are integrated together using well
defined bus interfaces such as AMBA, PLB (core connect), and
Wishbone. As long as the cores correctly adhere to a given
bus protocol, hardware reuse involves simply the structural
interconnection of a set of predefined cores which have been
parameterized (i.e., address range, interrupt behavior, etc.)
Meta-data formats such as IP-XACT [3] have further been
proposed for encapsulating many of the low-level details of a
reusable core in machine readable form. Finally, design tools
have been created to use this meta-data such as Xilinx EDK,
Altera SOC Builder, and Mentor Graphics Platform Express.

In spite of these successes, reuse is much more difficult
in general hardware design scenarios where non-standardized
interconnect and communication protocols are used. Examples
of non-standard communication include point to point connec-
tions, broadcast connections, and various types of handshaking
and timed exchanges of data. Often, these protocols are custom
to each module and thus require the creation of additional
circuitry to interconnect a collection of cores to one another.
Supporting the automatic creation of this interface circuitry
requires that the timing and protocol information of these
modules be characterized in a machine readable manner. In
addition, a corresponding CAD tool is required with the ability

This work was supported by the I/UCRC Program of the National Science
Foundation under Grant No. 0801876.

to read this timing information and use it to correctly and
automatically interconnect a collection of cores into a fully
scheduled, finished design.

This paper describes such an interface synthesis approach
and associated CAD tool set (called Ogre). While it does not
address the automated reuse of circuit modules with arbitrary
interconnection protocols, it moves beyond bus-based inter-
connection approaches and introduces timing parameterization
for coarse grain hardware modules in stream-based process-
ing applications which implement the synchronous data flow
(SDF) model of computation. It does this by introducing a
set of vendor extensions to the recently-approved IP-XACT
standard and which describe the timing behavior of cores
in a streaming computation. Specifically, these extensions
describe point to point connections between producing and
consuming SDF actors that are defined by their consumption
rates, latency, and sample delay. In addition, they provide
for the additional parameterization of cores at high levels of
abstraction, simplifying the use of those modules by designers.
The corresponding CAD tool flow processes these IP-XACT
descriptions of module timing behavior and synthesizes user
designs into efficient implementations.

To demonstrate the effectiveness of the technique, a digital
radio building block set was created and described using these
IP-XACT extensions. The Ogre CAD tool was then used to
rapidly implement a variety of digital radios including seven
different QPSK implementations. The results demonstrate that
the Ogre design flow reduced design time for the selected
radios from a few days to less than an hour. Seven different
QPSK designs, each of which occupy a different location in
the area/time tradeoff space, demonstrate the ability of Ogre
to support rapid design space exploration and find a variety
of solutions to a problem instance by automatically handling
many of the timing details for the user.

The balance of the paper is as follows. First, our approach
to the parameterization of circuit modules is introduced along
with an introduction to IP-XACT and our extensions. The pa-
rameterized block library which was used for the experiments
in this paper is introduced. The Ogre CAD tool flow is then
described followed by a description of a set of experiments
designed to demonstrate the utility and performance of the

Parameter Type Description
loopBandwidth double, 0.01 to 0.5 BnT used in calculating constant multiplicand values
loopDampingFactor double, 0.5 to 1.5 ζ used in calculating constant multiplicand values
phaseDetectorGain double, -10.0 to +10.0 Kp used in calculating constant multiplicand values
accumulationWidth natural Number of bits right of radix point for internal accumulator
kPrecision positive (≤ 62 bits) Number of fractional bits used for constant multiplicand values
ddsGain double, -10.0 to +10.0 K0 used in calculating constant multiplicand values
samplesPerSymbol {2, 4} N
order {1, 2} Loop order: first order (no accumulator) or second order (with accumulation)

TABLE I
PARAMETERS FOR LOOP FILTER CORE.

approach. Finally, conclusions and suggestions for future work
are given.

II. LIBRARY CORE PARAMETERIZATION AND META-DATA
REPRESENTATION

Comprehensive parameterization of cores significantly in-
creases their reusability. Cores that have many parameters can
be used in a variety of situations with no changes to the core.
Although it is more difficult to create highly parameterized
cores—the extra design time is offset by the increased design
productivity provided by this parameterization.

While a highly parameterized library of cores helps to
enable reuse and increases design productivity, significant
increases in productivity are further enabled through meta-
data descriptions of these IP cores. Meta-data in electronic
formats enables automated tools to reason about details of core
operation and interconnect and abstracts these details from
the designer. This work represents this meta-data in XML by
leveraging the standard IP-XACT XML schema for represent-
ing IP cores [3], [4]. The strengths of IP-XACT for describing
large libraries of cores for SOC are discussed in detail in [5]
and include strong taxonomy and core naming, hardware port
information, file sets, and bus-based interconnection schemes.
This work leverages IP-XACT to represent parameters and
extends it to describe the timing of core interfaces. Specifically,
this work represents the following four types of parameters in
a meta-data format:

Low-Level Parameterization: This is most closely re-
lated to conventional VHDL-level parameterization. That
is, it is used to declare bit-widths on inputs and outputs,
rounding modes, pipelining directives, etc.
Domain-Specific Parameterization: This is used to pro-
vide a level of parameterization usable by a domain
expert who is not necessarily a hardware designer. It
allows a domain expert to deal with cores at the levels of
abstraction he or she typically deals with when designing
application-specific models.
Dependent Parameterization: This describes the link
between domain-specific and low-level parameterization.
It allows low-level parameters to be computed based on
domain-specific parameter values set by an application
expert.

Temporal Parameterization: This refers to the parame-
terization introduced in this work to describe the temporal
behavior of a core.

It is important to understand our use of the word “parame-
terization” here. Often, this refers to the parameters passed
to a module generator program and which controls the cre-
ation/generation of the module instance. However, our use of
the term parameterization here refers more to a description
of the behavior of an already-existent core without regard
to how it was generated. That is, our goal is to describe
existing cores at a level of detail which will enable a design
tool to combine a collection of cores together with custom-
synthesized interface circuitry to create a finished design. In
this section we discuss these types of parameterization and
how they were implemented using the IP-XACT standard.

A. Low-Level Parameterization

Parameterization of hardware cores has traditionally been
done with low-level parameters such as bit-widths and op-
erating modes. This level of parameterization increases the
reusability of a core by allowing it to be used in designs
that require different bit-widths. Low-level parameterization
is quite common and is fairly simple to implement, especially
when the cores are intended to be generated using module gen-
erators. The cores developed in this research are parameterize
at this low-level.

Low-level parameterization (as with all the parameterization
done in this work) leverages the standard IP-XACT XML
schema for representing IP cores [3], [4]. Parameterization
is a native feature of IP-XACT and allows parameters to be
given default values, provides a manipulation interface for
these parameters and allows parameters to be set by the user,
by a tool, or to be set based on other parameter values.

B. High-Level Parameterization

To further increase the reusability of cores, additional high-
level parameters specific to digital communication systems
are used. These high-level parameters allow the designer to
interact with the core at a higher level of abstraction. Examples
of high-level parameters are shown in the Table I for a loop
filter core. This is a simple first-order loop filter consisting
of a multiplier and accumulator. In addition to low-level

parameters for signal bit-widths and constant multiplication
coefficients, this core contains high-level parameters specific
to communication receivers. The parameters shown in the
table are used to perform a non-trivial calculation which
determines both bit-widths and coefficients necessary for a
given signal processing function. In addition, this core contains
a parameter named ’samplesPerSymbol’—this allows the core
to be quickly used in different radio personalities that each
use a different number of samples for each output symbol
computed. Changing this parameter fundamentally changes the
core’s internal organization. This high level of parameteriza-
tion significantly improves the ease of reuse for these cores.

C. Dependent Parameterization

Once high-level parameters have been set, many low-level
parameters can be automatically computed by evaluating ex-
pressions found within the IP-XACT description of the core.
These expressions leverage the XPath expression language
provided natively by XML [6] and custom expression exten-
sions and functions developed within this work [4]. This re-
duces the number of unique parameters that must be specified
yet allows for powerful, deep parameterization. We note here
that not all of the dependencies between high and low-level
parameters are expressed in IP-XACT—VHDL functions (in
corresponding core module generators) are also leveraged for
the computation of some low-level parameters.

The XML example below defines a dependent parameter
that is evaluated based on a high-level parameter named
’Sregsize’.

<spirit:value spirit:resolve="dependent"
spirit:dependency="(id(’Sregsize’) >= 2)
* id(’Sregsize’) + (id(’Sregsize’) < 2)
* 2">2

</spirit:value>

D. Temporal Parameterization

In order to facilitate the automatic interconnection of cores,
the temporal behavior of the core interfaces needs to be
expressed. While IP-XACT provides most of the elements
needed to describe cores, some additional information is
needed to enable CAD tools to reason about the timing of
cores and their interconnect in data-driven applications. IP-
XACT allows for external vendor extensions to support this
extra information. This research extends IP-XACT in several
ways including extensions to describe the temporal behavior
of library cores.

As described earlier, the design space is constrained to
designs modeled by the homogeneous synchronous data-flow
model of computation [7]. Meta-data descriptions must be
added to IP-XACT to describe the temporal behavior of
this model. The following three elements are added to IP-
XACT via vendor extensions to define this behavior: latency,
data introduction interval and sample delay. Each of these
extensions are represented by XML elements as extensions
to the IP-XACT schema.

The latency represents the number of clock cycles that
elapse from the time that data is consumed on the inputs of the

core to the time that the corresponding results are produced
on the outputs. This does not mean that the core is pipelined
in the traditional sense or that data can be accepted by the
core on every cycle. For example, cores that accept data only
every 8 cycles and take 9 cycles to compute a result would
be given a latency value of 9. The Ogre scheduler uses this
information to determine appropriate start times for pipelined
cores. All cores used in this environment have a static latency
to allow the scheduler to perform static scheduling.

The data introduction interval for a core describes how
many clock cycles must elapse between the introduction of
data for each new sample. Cores with a data introduction
interval of one can accept new samples each clock cycle.
The data introduction interval of a core is independent of
its latency. For example a core that has a data introduction
interval of 3 can consume data on clock cycle 0 but then will
not consume data again until clock cycle 3 and then again on
cycle 6.

The sample delay parameter indicates the number of SDF
sample delays (Z−1) that occur between the input of the core
and its output. These are different delays than regular pipeline
register delays. Sample delays are used during synthesis to
eusure that samples correctly line up when pipelined cores
are used for computation. The outputs of a core with a sample
delay of one would be used in computations with the sample
immediately following the one that produced that particular
output.

The XML example below defines a temporal SDF interface
with a data introduction interval of 7, a pipeline depth of 8,
and a sample delay of 0.

<chrec:behavioralLayer>
<chrec:dataIntroductionInterval>7
</chrec:dataIntroductionInterval>
<chrec:pipelineDepth> 8
</chrec:pipelineDepth>
<chrec:sampleDelay>0</chrec:sampleDelay>

</chrec:behavioralLayer>

Fig. 1. This figure shows the loop filter block from the library. This block
should be modeled as having a latency of 2 and a data introduction interval
of 1 and no sample delay.

Figure 1 provides an example of the top-level interface of
the loop filter block. This figure shows the level of parame-
terization that is presented to the user. Note that the low-level

details of bitwidths and internal behavior are largely hidden.
The temporal behavior listed is used internally by the tools and
in this example show that the core takes two clock cycles to
compute one result, it can accept new data every clock cycle,
and there is no internal sample delay.

III. A LIBRARY OF PARAMETERIZED CORES

The design of digital radio receivers was chosen as the
demonstration vehicle for this work. To that end, a library of
building blocks suitable for the creation of a variety of radio
personalities was developed. The blocks were first created as
parameterized VHDL modules. Meta data descriptions of these
cores were then created in the IP-XACT format discussed
earlier. The temporal characteristics of the cores were specified
to facilitate their use within a SDF system.

The radio receiver personalities targeted in this research
include QPSK, Offset QPSK, PCM/FM, 16QAM, 8PSK, and
16APSK, although other desired constellations may also be
possible with slight adjustments. The creation of the block
set took advantage of the fact that there are many recurring
blocks in these different radio types. These recurring blocks
include interpolators, timing error detectors (TEDs), phase
error detectors (PEDs), loop filters, direct digital synthesis
(DDS) blocks, and numerically controlled oscillators (NCOs).
A list of some of the created blocks is as follows:

Clockwise Rotation: Rotates a complex signal by a
certain angle, determined by sine and cosine inputs.
Interpolator: FIR filter which outputs an approximation
of the desired sample based on available sample values.
Decision Block: Finds and outputs the constellation point
for a given modulation scheme that is closest to the
processed input value.
Timing Error Detector: Computes the sample timing
error. The rest of the blocks in a typical timing loop
attempt to drive this error to zero.
Loop Filter: A proportional-plus-integrator filter. This is
commonly used to smooth the output error signals coming
from the TED and PED cores.
Numerically Controlled Oscillator: Part of timing loop
control; generates control signals for TED and PED.
Calculate Mu: Generates fractional interval, µ, typically
for use by interpolator.
Phase Error Detector: Computes a sample phase error.
The rest of the blocks in a typical phase loop attempt to
drive this error to zero.
Direct Digital Synthesizer: Generates sine and cosine
outputs based on an input phase value.

One of the goals of this work was to support the exploration
of cost/performance points in the overall solution space for
each radio personality selected. Thus, multiple versions of
each block were designed which differ in their temporal
behavior. For each block there are combinational versions
as well as heavily pipelined versions to facilitate different
radio requirements. In addition, the various blocks exhibit
different data consumption rates based on their internal design.
Table II lists three blocks in the library and their variations. For

example, four cubic interpolator blocks are available to support
a range of latencies, clock rates, and resource requirements.
Not shown in the table, each cubic interpolator also has a
different data consumption rate.

Block Latency Delay Max Freq. Area
(cycles) (ns) (MHz) Slices DSPs

Cubic 0 34.5 N/A 22 12
Interp- 8 43.1 185 53 12
olator 9 54.6 164 156 4

16 43.8 365 119 1
0 9.6 N/A 53 2

TED 1 12.5 159 53 2
2 10.5 284 55 2

Loop 0 11.1 N/A 66 5
Filter 2 18.0 167 74 5

3 18.0 223 74 5

TABLE II
A LISTING OF DIFFERENT VERSIONS OF BLOCKS THAT WERE CREATED

AND THEIR TIMING/AREA CHARACTERISTICS. LATENCY IS MEASURED IN
CLOCK CYCLES AND IS THEREFORE OMITTED IN COMBINATIONAL

VERSIONS WHICH HAVE NO INPUT CLOCK. BLOCK DELAY IS THE TOTAL
TIME FROM WHEN THE INPUT IS PRESENTED TO WHEN THE OUTPUT

CORRESPONDING APPEARS.(THESE RESULTS ARE BASED ON A
VIRTEX4-SX35 FPGA)

IV. THE DESIGN ENVIRONMENT: USING CORES AND
THEIR DESCRIPTIONS

A rich library of parameterized cores and their XML meta-
descriptions are not useful unless a design tool is available that
can interpret the XML. Such a design tool should be able to
import the XML-based cores and make them available to the
designer. Because the tool can interpret the parameters of the
cores, the tool can make user resolved parameters available
to the designer and automatically set others to computed
values as defined by XML dependencies. A variety of different
design tools could be created at different levels of abstraction
to integrate these cores such as high-level compiler tools,
structural design tools, or application-specific design tools.

A structural design tool was created in this project that
allows a designer to compose digital radio receivers (and other
signal processing systems) by selecting circuit cores from a
library and defining the communication between them. The
structural design is performed using the well-known Simulink
GUI. HDL cores, with their associated XML wrappers, are im-
ported into a Simulink library and placed on a GUI panel. The
communication between the cores is defined using Simulink
connections. The designer also sets the high-level parameters
available for each core (low level parameters are set by the
design tool). An example of a radio model created within this
GUI is seen in Figure ??.

The design tool synthesizes a netlist through the following
steps as shown in Figure 2:

1) Checks the structural integrity of the design and vali-
dates the parameters set by the user.

2) Propagates high-level parameters set by the user to the
low-level parameters within the design.

3) Resolves bit-widths and sets the bit-widths of all uncon-
strained ports and signals.

4) Generates a global schedule for the design determining
the optimal start times of all cores using an iterative
modulo scheduling technique [8].

5) Synthesizes a finite state machine controller in VHDL to
sequence the cores according to the generated schedule.

6) Generates the top-level HDL model in VHDL that
instances and interconnects the given cores (with their
instance specific parameters) and the finite state ma-
chine.

Fig. 2. The synthesis tool flow produces synthesizable VHDL from the
Simulink-based schematic capture.

After completion of the flow, the generated design and core
VHDL files are ready to be used in the normal FPGA design
tool flow. All of the designs generated by this research were
able to be fully synthesized and placed and routed onto a
Xilinx SX-35 FPGA on an XTremeDSP board. The results of
these system’s generation is discussed in Section V.

V. EXPERIMENTAL RESULTS

To test the core library and its associated meta-data in the
design environment, several radio designs were created both
by hand and by using the tool.

A. Manual Constructing Radios

After completion, the library of cores was used to construct
two different radios. The first was a basic combinational QPSK
demodulator which consumed one data sample per clock cycle
(see Figure 3).

Construction of the combinational QPSK radio was fairly
straightforward. Connecting the cores by hand, it took about
a day to produce a working radio that could run on hardware
with a zero bit error rate. This radio test was fairly uninter-
esting but it proved that the VHDL cores were functionally
correct.

The second design consisted of pipelined versions of many
of the cores and was thus able to run at a much higher clock
rate. However, the pipelined cores increased the complexity of

Fig. 3. A QPSK Receiver

the radio design because of the feedback and use of pipelining.
After determining the desired timing and sequencing required,
a finite state machine controller was created to control and
sequence the blocks in the new design. Finally, a number of
manual design iterations were required to find a solution in the
design space which was able to meet both sample and cycle-
level timing. The final design required 15 clock cycles per loop
iteration (input sample) and the design time was approximately
three days.

B. Automatic Radio Generation Using Ogre

The first design created using the tool flow of the previous
section was the combinational QPSK receiver. The design
time, which was a day for the hand-connected design, was
reduced to less than an hour when using the tool. The blocks
were simply interconnected in Simulink and the Ogre tool
completed the design. The pipelined version of the QPSK
receiver discussed above was also implemented using the Ogre
design environment, producing a functional radio in less than
an hour, a significant improvement over the previous three day
design time. Not only was design productivity improved, but
the loop schedule or latency, which was 15 clock cycles in
the hand-built design, was shortened to 14 cycles without a
decrease in reachable clock frequency.

Design space exploration was also facilitated by this rapid
design generation. Instead of taking a few days to get one
design working, it was now possible to get many designs
working in a single day. This drastically changes the design
process. The question changes from “How can I get this
combination of cores to function correctly?” to “Which core
combination is best?”

This design time improvement can also be leveraged to
rapidly create an entire suite of radios with different charac-
teristics. Using the entire reuse system, this research was able
to produce seven different QPSK implementations, a BPSK
design, and 8PSK and 16QAM designs in a single day. Each
of these designs was implemented and downloaded to the
XTremeDSP board and demonstrated to correctly produce a
constellation. Bit error plots were generated for several QPSK
designs as shown in Figure 4. These plots show that the
generated QPSK design performed comparably to the hand-

Fig. 4. Bit error rate tests were performed on the generated and hand built radios to verify correctness.

built design. No performance decrease was observed. This
type of design time improvement can contribute not only to an
increase in design productivity but also to the feasibility and
ease of use for rapidly reconfigurable radio and other data-
driven designs. For example, radio systems implemented in
FPGAs could be rapidly designed and configured on the fly
to meet current needs in the field.

VI. CONCLUSION

This paper has presented an approach for reusing hardware
cores in an end to end design environment and has demon-
strated significant design productivity improvements with this
system. These productivity improvements have been seen
previously in SOC design and this research extends these
improvements to data-driven design by developing a library of
standard cores for digital communication systems, describing
these cores in meta-data, and leveraging the library and its
core descriptions in a design environment. The library of cores
developed in this research consists primarily of cores for use in
digital communication systems. These cores are parameterized
at both a high and low level to provide flexibility and to allow
the designer to reason with the cores at a higher level. These
cores also differ in their latency, data introduction interval and
sample delay characteristics and each functions as an actor in
an SDF graph.

Each core in the library is accompanied by a meta-data
description which encapsulates all of the details of the cores’
operation. This is done by leveraging and expanding the
standard IP-XACT schema. Parameterization native to IP-
XACT is extensively used and extensions are added to fully
specify the temporal behavior of the core.

The cores and their accompanying meta-data are used in a
design system which allows the designer to quickly specify

a circuit’s structure in a GUI. This structure is then given to
the synthesis system which ensures that all cores are correctly
connected to one another and that the control signals on these
cores are correctly set to enforce all data dependencies and to
ensure proper operation.

The combination of reusable cores, meta-data describing
these cores, and an end-to-end synthesis flow enables signif-
icant improvements in design productivity. Designs that took
weeks to build by hand were built in a matter of hours using
the library, descriptions, and tools. These productivity benefits
were observed on several different radio designs.

REFERENCES

[1] International Technology Roadmap for Semiconductors 2007 Edition:
Design, International Semiconductor Industry Association, 2007.

[2] R. Bergamaschi, S. Bhattacharya, R. Wagner, C. Fellenz, M. Muhlada,
F. White, J.-M. Daveau, and W. Lee, “Automating the design of SOCs
using cores,” Design & Test of Computers, IEEE, vol. 18, no. 5, pp.
32–45, Sep-Oct 2001.

[3] IP-XACT Draft/D5: A specification for XML meta-data and tool inter-
faces, SPIRIT consortium, 1370 Trancas Street #184, Napa, CA, 94558,
May 2009.

[4] IP-XACT v1.4: A specification for XML meta-data and tool interfaces,
SPIRIT consortium, 2008.

[5] A. Arnesen, N. Rollins, and M. Wirthlin, “A multi-layered XML schema
and design tool for reusing and integrating FPGA IP,” in 19th Interna-
tional Conference on Field Programmable Logic and Applications (FPL-
2009), August 2009, pp. 472–475.

[6] W. Wide Web Consortium (W3C), “XML Path Language (XPath) 2.0,”
http://www.w3.org/TR/xpath20/, January 2007.

[7] E. Lee and D. Messerschmitt, “Synchronous data flow,” Proceedings of
the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[8] B. R. Rau, “Iterative modulo scheduling,” The International Journal of
Parallel Processing, vol. 24, no. 1, February 1996.

