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ABSTRACT 

Numerical non-robustness is a recurring phenomenon in 
scientific computing. It is primarily caused by numerical 
errors arising because of fixed-precision arithmetic in 
integer and/or floating-point computations. Exact 
computation, based on arbitrary-precision arithmetic, has 
been developed over the last decade as an emerging 
numerical computation paradigm in response to this 
problem of numerical non-robustness. Exact arithmetic, 
specifically arbitrary-precision arithmetic, has been 
traditionally implemented using efficient software libraries 
such as GNU Multi-Precision (GMP). However, this results 
in a slower arithmetic performance when compared to 
fixed-precision arithmetic. In this paper we present a first 
effort, to the best of our knowledge, of reconfigurable 
hardware support for arbitrary-precision arithmetic. The 
proposed hardware architectures are based on virtual 
convolution sche1duling which is derived from a formal 
representation of the problem. Targeting high performance 
and efficiency, dynamic (non-linear) pipelines techniques 
were exploited to eliminate the effects of deeply-pipelined 
operators. Referenced to GMP, our experiments showed 
promising results. 

1. INTRODUCTION 

Numerical non-robustness is a recurring phenomenon in 
scientific computing. It is primarily caused by numerical 
errors arising because of fixed-precision arithmetic. Most of 
these errors can be considered harmless, but occasionally 
there are “catastrophic” errors in the computation that cause 
non-robust behavior such as crashing of the program and/or 
infinite loops [1]. In response to this problem, exact 
computation, based on exact/arbitrary-precision arithmetic, 
was first introduced in 1995 by Yap and Dub’e [2] as an 
emerging numerical computation paradigm. Arbitrary-
precision arithmetic, also called bignum arithmetic, allows 
computer programs to perform arithmetic operations in 
integer and/or floating-point representations with an 
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arbitrary number of digits of precision. This is typically 
limited only by the available memory of the host system [3, 
4]. Exact/arbitrary-precision arithmetic is applied in most 
problems in computational sciences and engineering such 
as public-key cryptography, computational metrology and 
Coordinate Measuring Machines (CMMs), computation of 
fundamental mathematical constants such as π to millions 
of digits, rendering fractal images, computational geometry, 
geometric editing and modeling, and Constraint Logic 
Programming (CLP) languages [1, 2, 3, 4, 5]. 
 Arbitrary-precision arithmetic is mostly implemented in 
software, perhaps embedded into a computer language. 
Over the last decade, a number of big number software 
packages have been developed. These include the GNU 
Multi-Precision (GMP) library, CLN, LEDA, Java.math, 
BigFloat, BigDigits, Crypto++, etc. [4, 5]. In addition, there 
exist stand-alone application software/languages such as 
PARI/GP, Mathematica, Maple, Macsyma, dc 
programming language, REXX programming language, etc. 
[4].  
 Arbitrary-precision numbers are often stored as large-
variable-length arrays of digits in some base related to the 
system word-length. Because of this, arithmetic 
performance is slower compared to fixed-precision 
arithmetic which is closely related to the size of the 
processor internal registers [2]. There have been some 
attempts for hardware implementations. However, those 
attempts usually amounted to specialized hardware for 
small-size discrete multi-precision and/or large-size fixed-
precision [6, 7, 8, 9, 10] integer arithmetic rather than real 
arbitrary-precision arithmetic. 
 In this paper we present a first effort of reconfigurable 
hardware support for arbitrary-precision arithmetic. We 
propose the use of High-Performance Reconfigurable 
Computers (HPRCs) as a promising candidate for arbitrary-
precision arithmetic. These platforms are characterized by 
higher performance and processing power compared to 
conventional platforms [11, 12, 13] as well as by higher 
flexibility, i.e. Run-Time-Reconfigurability (RTR), 
compared to ASIC solutions. The SRC-6 is an example of 
this category of computers [14] and is used here for this 
purpose.  
 The proposed hardware architectures, which will be 
derived from a formal representation of the problem, are 



 

based on virtual convolution scheduling. Dynamic (non-
linear) pipelines techniques will be exploited to eliminate 
the effects of deeply-pipelined reduction operators. The 
efficiency of the proposed hardware will also be analyzed. 
The experimental work will be verified for both correctness 
and performance in reference to the GMP library. 

2. PROBLEM FORMULATION 

Exact arithmetic supports exact computation with the four 
basic arithmetic operations (+,-,x,÷) over the rational field 
QQ [1, 2, 3, 4, 5]. Therefore, within the context of hardware 
support, the problem of exact computation is reduced to 
implementing the four basic arithmetic operations with 
arbitrary-precision of operands.  
 Generally, the asymptotic computational complexity of 
each operation depends on the bit length of operands [5, 
15], see Table. 1. Therefore, the main challenge of 
arbitrary-precision arithmetic on hardware is the 
physical/spatial limitations of the hardware. In other words, 
the problem can be formulated as: given a fixed-precision 
arithmetic unit, e.g. p-digit by p-digit multiplier, it is 
required to realize an arbitrary-precision arithmetic unit, 
e.g. arbitrary large-variable-size m1-digit by m2-digit 
multiplier. In achieving this objective, our approach is 
based on leveraging previous work and concepts that were 
introduced for solving similar problems. For example, 
Tredennick [16] proposed architectural solutions for 
variable-length byte string processing. Similarly, Olariu 
[17] formally analyzed and proposed solutions for the 
problem of sorting arbitrary large number of items using a 
sorting network of small fixed I/O size. Finally, ElGindy 
[18] investigated the problem of mapping recursive 
algorithms on reconfigurable hardware.  
 

Table 1. Computational Complexity of Arithmetic 
Operations [15] 

 
 
 Our formal representation of the problem will consider 
only the multiplication operation. This is based on the fact 
that multiplication is a core operation from which the other 
basic arithmetic operations can be easily derived, e.g. 
division as a multiplication using invariant integers [19, 

20]. We will show how our proposed arithmetic unit can 
perform arbitrary-precision addition, subtraction, 
multiplication, as well as arbitrary-length convolution 
operations. Division is reserved for future support and will 
not be included in this work only because of time 
constraints. We decided to investigate the 
Basecase/Schoolbook algorithm, see Table 1. Although this 
algorithm is not the fastest algorithm O(n2), it is the 
simplest and most straight forward algorithm with the least 
overhead. In addition, this algorithm is usually the starting 
point for almost all available software implementations of 
arbitrary-precision arithmetic. For example, in the case of 
GMP, the Basecase algorithm is used up to a pre-
determined operand size threshold, 3000-10,000 bit length 
depending on the underlying microprocessor architecture, 
beyond which the software adaptively switches to a faster 
algorithm [20, 21]. Our emphasis was on investigating the 
feasibility and/or the potential of reconfigurable hardware 
within the domain of exact computations. Therefore, our 
performance comparisons with GMP will be maintained up 
to this threshold of data size. We preserve the adaptive 
implementation of the faster algorithms for future 
investigation. This will be supported by the native RTR 
adaptability of HPRCs. 

3. APPROACH AND ARCHITECTURES 

3.1. Formal Problem Representation 

An arbitrary-precision m-digit number in arbitrary numeric 
base r can be represented by: 
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It can also be interpreted as an n-digit number with base rp, 
where p is dependent on the underlying hardware word-
length, e.g. 32-bit or 64-bit. This is represented by equation 
(2) as follows: 
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 Multiplication, accordingly, can be formulated as shown 
in Fig. 1 and expressed by equation (3). In other words, as 
implied by equation (4a), multiplication of high-precision 
numbers can be performed through two separate processes 
in sequence. The first is a low-fixed-precision, i.e. p-digits, 
multiply-accumulate (MAC) process for calculating the 
coefficients/partial-products Ci’s as given by equation (4b). 
This is followed by a merging process of these 
coefficients/partial-products into a final single high-
precision product as given by equation (4a). Equation (4b) 
shows that the coefficients Ci’s can be represented at 
minimum by 2p-digit precision. The extra digits are due to 



 

the accumulation process. Therefore, Ci’s can be expressed 
as shown by equation (4c). 
 

 
Fig. 1. Multiplication matrix of high-precision numbers 
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3.2. Multiplication as a Convolve-and-Merge Process  

It can be easily noticed that the coefficients Ci’s given by 
equation (4b) are in the form of a convolution sum. This led 
us to believe that virtualizing the convolution operation and 
using it as a scheduling mechanism will be a straight 
forward path for implementing multiplication, and hence 
the remaining arithmetic operations. The different sub 
operands, i.e. A’s and B’s, being stored in the system 
memory, will be accessed according to the convolution 
schedule and passed to the MAC process. The outcome of 
the MAC process is then delivered to the merging process 
which merges the partial products, according to another 
merging schedule, into the final results. The final results are 

then scheduled back into the system memory according to 
the same convolution schedule. 
 The convolution schedule, on one hand, can be derived 
from equation (4b). It is simply a process that generates the 
addresses/indexes for A’s, B’s and C’s governed by the 
rules given in equation (4b). On the hand, the merging 
schedule can be derived from equation (5) which results 
from substituting equation (4c) into equation (4a). Fig. 2 
shows the merging schedule as a high-precision addition of 
three components. The first component is simply a 
concatenation of all the first p-digits of the MAC output. 
The second component is a p-digit shifted concatenation of 
all the second p-digits of the MAC output. Finally, the third 
component is a 2p-digit shifted concatenation of all the 
third p-digits of the MAC output. 
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 The merging schedule, as described above, is a high-
precision schedule which will work only if the merging 
process is performed after the MAC process has finished 
completely. Given the algorithm complexity O(n2), and 
allowing the two processes to work sequentially one after 
another would dramatically impact the performance. 
However, modifying the merging process to follow a small-
fixed-precision scheduling scheme that works in parallel 
and in synchrony with the MAC process would bring back 
the performance to its theoretical complexity O(n2). The 
modified merging scheme can be very easily derived either 
from equation (5) or Fig. 2 resulting in equation (6): 
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This would mean that as soon as the MAC process 
finishes one partial result, Ci in 3p-digit precision, the 
merging process, in-place, produces a final partial result Si 
in p-digit precision, see Fig. 3. This precision matches the 
word-length of the supporting memory system which 
allows easy storage of the final result without stalling either 
the MAC or the merging process. The merging process  
  

 
Fig. 2. Merging schedule 



 

 
Fig. 3. Arithmetic unit architecture 

 

registers the remaining high-precision digits for use in 
subsequent calculations of Si’s. 

In addition to performing multiplication, the derived 
architecture in Fig. 3 can also natively perform the 
convolution operation for sequences of arbitrary-size. This 
is because the MAC process generates the coefficients in 
equation (4b) according to a convolution schedule and in 
fact they are the direct convolution result. In other words, 
only the MAC process is needed for convolution operation. 
Furthermore, the same unit can be used to perform addition 
and/or subtraction by passing the input operands directly to 
the merging process without going through the MAC 
process.  
 It is necessary at this point to investigate the growth of 
the MAC process as it represents an upper bound for the 
unit precision. As discussed earlier, shown in Fig. 1, and 
given by equation (4c), the outcome of the MAC process, 
Ci, consists of three parts: the multiply digits, Qi

low, Qi
high, 

and the accumulation digits, Δi. The corresponding number 
of digits, nCi, nQi

low, nQi
high, nΔi, can be expressed as given by 

equations (7a), (7b) , (7c), and shown in Fig. 4.  
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Fig. 4. Growth of MAC process (accumulation/carry digits) 

 

Controlling the growth of the MAC process by keeping 
the accumulation/carry digits less than or equal to p-digits, 
equation (7c) gives the upper bound on the precision of the 
input operands. This is in terms of the hardware unit word-
length, i.e. p-digits, and the numeric system base r. For 
example, for a binary representation, i.e. r=2, and a 64-bit 
arithmetic unit, i.e. p=64, the accommodated operand 
precision is 128 ExibiByte which is beyond any realistic 
storage system. In other words, a hardware unit with such 
parameters can provide almost infinite-precision arithmetic. 

4. EXPERIMENTAL WORK 

Our experiments have been performed on one of the-state-
of-the-art HPRCs, i.e. SRC-6 [14]. SRC-6 is based on Xeon 
2.8GHz microprocessors and Xilinx Virtex-II XC2V6000-4 
100MHz FPGAs, with six local memories each 512K x 64 
bits wide. The proposed architecture was developed partly 
in Xilinx System Generator v8.2 environment as well as in 
VHDL. In both environments, the architectures were highly 
parameterized. 
 The hardware performance was referenced to one of the 
most efficient [21] software libraries supporting arbitrary-
precision arithmetic, namely GMP library on Xeon 2.8GHz. 
We considered two versions of GMP. The first was the 
compiled version of GMP which is highly optimized for the 
underlying microprocessor. The other was the highly 
portable version of GMP. 

4.1. Implementation Issues  

Large-precision reduction operations used in both the 
MAC, i.e. 3p-digit accumulation, and the merging 
processes proved to be a challenge due to critical-path 
issues. Techniques of deep-pipelining proposed in [22, 23], 
and those of non-linear pipelining presented in [24, 25] 
were considered to eliminate those effects of deeply-
pipelined operators, see Fig. (5a). The buffering 
mechanism, presented in [22, 23], showed either low 
throughput and efficiency, or high latency and resources 
usage for our case. Therefore, we leveraged the techniques 
of non-linear pipelines [24, 25] which proved to be 
effective, see Fig. (5b). 
 We analyzed the pipeline efficiency, as defined in [24, 
25], of our proposed architecture. This is expressed by  



 

 
(5a) Deeply-pipelined accumulator 

 

 
(5b) Proposed non-linear-pipelined accumulator 

 

Fig. 5. Accumulator of the MAC process   

equations (8a), (8b) and shown in Fig. 6. We implemented 
two versions of the arithmetic unit, i.e. 32-bit and 64-bit. 
For very large data, the efficiency for the 32-bit unit was 
lower bounded to 80% while the efficiency for the 64-bit 
unit was lower bounded to 84.62%, see equation (8b) and 
Fig. 6. 
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Fig. 6. Pipeline efficiency 

4.2. Eperimental Results  

Our experiments were performed for two bascases, i.e. 32-
bit and 64-bit bases. Both cases showed similar behavior for 

execution time and speedup. In this section, we only show 
the results of the 64-bit bascase.   
 The arbitrary-precision addition/subtraction 
performance was measured on SRC-6 and compared to 
both the compiled and portable versions of GMP. As shown 
in Fig. 7, T_COMP_HW, i.e. the total computation time of 
the hardware on SRC-6, is lower than the execution time of 
both the compiled and portable versions of GMP. The 
performance speedup is shown in Fig. 8. The hardware 
implementation asymptotically outperforms the software, 
by a factor of approximately 5, because of the inherent 
parallelism exploited by the hardware. We can also notice 
that for small-precision addition/subtraction the speedup 
factor starts from approximately 25. This is due to the large 
overhead, relative to the data size, associated with the 
software while the only overhead associated with the 
hardware is due to the pipeline latency. This latency is 
independent on the data size. It is also worth to notice the 
linear behavior, O(n), of both the software and the 
hardware. This is because both execute the same algorithm, 
i.e. Bascase addition/subtraction [20, 21], see Table 1. 
 

 
Fig. 7. Addition/subtraction execution time 

 

 
Fig. 8. Addition/subtraction hardware speedup versus GMP  

 
 In the case of multiplication, we notice a non-linear 
behavior O(n1+e), 0<e<1; see Fig. 9 and Table 1. We notice 
also a similar behavior to the addition/subtraction for small-
size operands. In this case the hardware outperforms GMP 
in general with at least a factor of approximately 25. Fig. 
(9a) shows a significant performance for the hardware  



 

 
(9a) Hardware versus compiled and portable GMP 

 

 
(9b) Hardware versus compiled GMP 

 
Fig. 9. Multiplication execution time 

 

 
Fig. 10. Multiplication hardware speedup versus portable 

GMP 
 

compared to the portable version of GMP. This is because 
this version of GMP uses the same algorithm as ours, i.e. 
Basecase with O(n2) see Table 1, independent of the data 
size [20, 21]. As shown in Fig. 10, the hardware behavior 
asymptotically outperforms the portable GMP 
multiplication by a factor of approximately 9. However, this 
is not the case with the compiled GMP multiplication which 
is highly optimized and adaptive. Compiled GMP uses four 
multiplication algorithms and adaptively switches from a 
slower to a faster algorithm depending on the data size and 
according to pre-determined thresholds [20, 21]. For these 
reasons, the hardware, as can be seen from Fig. (9b), 
outperforms the compiled GMP up to a certain threshold, 

approximately 10Kbits, beyond which the situation 
reverses. 

5. CONCLUSIONS AND FUTURE WORK 

In this paper we presented an unprecedented effort, to the 
best of our knowledge, of reconfigurable hardware support 
for arbitrary-precision arithmetic, and hence exact 
arithmetic/computations. Our emphasis was on 
investigating the feasibility and/or the potential of 
reconfigurable hardware within the domain of exact 
computations. Our approach was based on leveraging 
previous work and concepts that were introduced for 
solving similar problems. The proposed solution was 
derived from a formal representation of the problem, and 
was based on virtual convolution scheduling. In our formal 
representation we considered only the multiplication 
operation. That was due to the fact that multiplication is a 
core operation from which the other basic arithmetic 
operations can be easily derived. We showed how our 
proposed arithmetic unit could perform arbitrary-precision 
addition, subtraction, multiplication, as well as arbitrary-
length convolution operations. Division was reserved for 
future support and was not included in this work only 
because of time constraints. Dynamic (non-linear) pipelines 
techniques were exploited to eliminate the effects of 
deeply-pipelined reduction operators. The efficiency of the 
proposed hardware was also analyzed.  
 The experimental work was verified for both 
correctness and performance in reference to the GMP 
library on the SRC-6 HPRC. The hardware outperformed 
GMP by a factor of 5x speedup for addition/subtraction, 
while the speedup factor was lower bounded to 9x 
compared to the portable version of GMP multiplication. 
We found HPRCs a promising candidate for arbitrary-
precision arithmetic and exact computations.  
 However, for the sake of completeness a lot of work 
remains needed. For example, implementation of faster 
algorithms and the adaptive switching among them should 
be investigated. This can be supported by the native RTR 
adaptability of HPRCs. In addition, the support of floating-
point arbitrary-precision arithmetic might be needed as 
well. 

6. REFERENCES 

[1] Vikram Sharma, “Complexity Analysis of Algorithms in 
Algebraic Computation”,  PhD dissertation, Department of 
Computer Science, Courant Institute of Mathematical 
Sciences, New York University, January 2007. 

[2] C.K. Yap, T. Dube, “The Exact Computation Paradigm”, In 
Computing in Euclidean Geometry, D.Z. Du and F. K. 
Hwang, Editors, 2nd ed., Vol. 4 of Lecture Notes Series on 
Computing, pp. 452—492, World Scientific Press, 
Singapore, 1995. 



 

[3] Donald E. Knuth, “The Art of Computer Programming”, 
Vol. 2, “Seminumerical Algorithms”, 3rd edition, Addison-
Wesley, 1998. 

[4] http://en.wikipedia.org/wiki/Arbitrary_precision_arithmetic 

[5] Chen Li, “Exact Geometric Computation: Theory and 
Applications”, PhD dissertation, Department of Computer 
Science, Institute of Mathematical Sciences,, New York 
University, January 2001. 

[6] Julie Langou, Julien Langou, Piotr Luszczek, Jakub Kurzak, 
Alfredo Buttari and Jack Dongarra, “Exploiting the 
Performance of 32 bit Floating Point Arithmetic in 
Obtaining 64 bit Accuracy (Revisiting Iterative Refinement 
for Linear Systems)”, Proceedings of the ACM/IEEE SC 
2006 Conference, November 2006, Tampa, Florida, USA. 

[7] Javier Hormigo, Julio Villalba, Emilio L. Zapata, “CORDIC 
Processor for Variable-Precision Interval Arithmetic”, 
Journal of VLSI Signal Processing Systems,  Vol. 37 Issue 1, 
May 2004. 

[8] S. Balakrishnan, S.K. Nandy, “Arbitrary Precision 
Arithmetic --- SIMD Style”, Eleventh International 
Conference on VLSI Design: VLSI for Signal Processing, p. 
128, 1998. 

[9] Saha, A., Krishnamurthy, R., “Design and FPGA 
Implementation of Efficient Integer Arithmetic Algorithms”, 
Proceedings of IEEE Southeastcon'93, Vol. 4, Issue 7, April 
1993. 

[10] D.M. Chiarulli, W.G. Rudd, and D.A. Buell, “DRAFT--- A 
Dynamically Reconfigurable Processor for Integer 
Arithmetic”, In Proc. 7th Symp. on Computer Arithmetic, pp. 
309-321, IEEE Computer Society Press, 1989. 

[11] A. Michalski, K. Gaj, D.A. Buell, “High-Throughput 
Reconfigurable Computing: A Design Study of an IDEA 
Encryption Cryptosystem on the SRC-6e Reconfigurable 
Computer”, FPL 2005, pp.681-686. 

[12] E. El-Araby, T. El-Ghazawi, J. Le Moigne, and K. Gaj, 
“Wavelet Spectral Dimension Reduction of Hyperspectral 
Imagery on a Reconfigurable Computer,” IEEE 
International Conference on Field-Programmable 
Technology, FPT 2004, Brisbane, Australia, December 
2004. 

[13] E. El-Araby, M. Taher, T. El-Ghazawi, and J. Le Moigne, 
“Prototyping Automatic Cloud Cover Assessment (ACCA) 

Algorithm for Remote Sensing On-Board Processing on a 
Reconfigurable Computer”, IEEE International Conference 
on Field-Programmable Technology (FPT 2005), Singapore, 
11-14 Dec., 2005. 

[14] SRC Computers, Inc., “SRC CarteTM C Programming 
Environment v2.2 Guide (SRC-007-18)”, August 2006. 

[15] http://en.wikipedia.org/wiki/Computational_complexity_of_
mathematical_operations 

[16] H. L. Tredennick, T. A. Welch, “High-speed Buffering for 
Variable Length Operands”, Proceedings of the 4th annual 
symposium on Computer architecture ISCA '77,  Vol. 5, 
Issue 7,  pp. 205-210, March 1977. 

[17] Stephan Olariu, M. Christina Pinotti, S. Q. Zheng, “How to 
Sort N Items Using a Sorting Network of Fixed I/O Size”, 
IEEE Transactions on Parallel and Distributed Systems, 
Vol. 10, No. 5, pp. 487-499, May 1999. 

[18] H. ElGindy and G. Ferizis, “Mapping Basic Recursive 
Structures to Runtime Reconfigurable Hardware”, 
Proceedings of FPL 2004, August 2004. 

[19] Torbjorn Granlund and Peter L. Montgomery, “Division by 
Invariant Integers using Multiplication”, in Proceedings of 
the SIGPLAN PLDI’94 Conference, June 1994. 

[20] GMP Manual, “GNU MP The GNU Multiple Precision 
Arithmetic Library”, Edition 4.2.1, 2 May 2006. 

[21] http://gmplib.org/ 

[22] Ling Zhuo, Gerald R. Morris, Viktor K. Prasanna, “High-
Performance Reduction Circuits Using Deeply Pipelined 
Operators on FPGAs”, accepted for publication in IEEE 
Transactions on Parallel and Distributed Systems. 

[23] Ling Zhuo, Viktor K. Prasanna, “High-Performance and 
Area-Efficient Reduction Circuits on FPGAs”, Proceedings 
of the 17th International Symposium on Computer 
Architecture and High Performance Computing, October 
2005, Rio de Janeiro, Brazil.  

[24] Hwang, K., “Advanced Computer Architecture: Parallelism, 
Scalability, Programmability”, McGrawHill, 1993. 

[25] Hwang, K., and Xu, Z., “Scalable Parallel Computing: 
Technology, Architecture, Programming”, McGrawHill, 
1998.

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


