

BRINGING HIGH-PERFORMANCE RECONFIGURABLE COMPUTING
TO EXACT COMPUTATIONS

Esam El-Araby, Ivan Gonzalez, and Tarek El-Ghazawi

NSF Center for High-Performance Reconfigurable Computing (CHREC),
ECE Department, The George Washington University

801 22nd Street NW, Washington, DC 20052, USA
{esam, ivangm, tarek}@gwu.edu

ABSTRACT

Numerical non-robustness is a recurring phenomenon in
scientific computing. It is primarily caused by numerical
errors arising because of fixed-precision arithmetic in
integer and/or floating-point computations. Exact
computation, based on arbitrary-precision arithmetic, has
been developed over the last decade as an emerging
numerical computation paradigm in response to this
problem of numerical non-robustness. Exact arithmetic,
specifically arbitrary-precision arithmetic, has been
traditionally implemented using efficient software libraries
such as GNU Multi-Precision (GMP). However, this results
in a slower arithmetic performance when compared to
fixed-precision arithmetic. In this paper we present a first
effort, to the best of our knowledge, of reconfigurable
hardware support for arbitrary-precision arithmetic. The
proposed hardware architectures are based on virtual
convolution sche1duling which is derived from a formal
representation of the problem. Targeting high performance
and efficiency, dynamic (non-linear) pipelines techniques
were exploited to eliminate the effects of deeply-pipelined
operators. Referenced to GMP, our experiments showed
promising results.

1. INTRODUCTION

Numerical non-robustness is a recurring phenomenon in
scientific computing. It is primarily caused by numerical
errors arising because of fixed-precision arithmetic. Most of
these errors can be considered harmless, but occasionally
there are “catastrophic” errors in the computation that cause
non-robust behavior such as crashing of the program and/or
infinite loops [1]. In response to this problem, exact
computation, based on exact/arbitrary-precision arithmetic,
was first introduced in 1995 by Yap and Dub’e [2] as an
emerging numerical computation paradigm. Arbitrary-
precision arithmetic, also called bignum arithmetic, allows
computer programs to perform arithmetic operations in
integer and/or floating-point representations with an

This work was supported in part by the I/UCRC Program of the National
Science Foundation under the NSF Center for High-Performance
Reconfigurable Computing (CHREC).

arbitrary number of digits of precision. This is typically
limited only by the available memory of the host system [3,
4]. Exact/arbitrary-precision arithmetic is applied in most
problems in computational sciences and engineering such
as public-key cryptography, computational metrology and
Coordinate Measuring Machines (CMMs), computation of
fundamental mathematical constants such as π to millions
of digits, rendering fractal images, computational geometry,
geometric editing and modeling, and Constraint Logic
Programming (CLP) languages [1, 2, 3, 4, 5].
 Arbitrary-precision arithmetic is mostly implemented in
software, perhaps embedded into a computer language.
Over the last decade, a number of big number software
packages have been developed. These include the GNU
Multi-Precision (GMP) library, CLN, LEDA, Java.math,
BigFloat, BigDigits, Crypto++, etc. [4, 5]. In addition, there
exist stand-alone application software/languages such as
PARI/GP, Mathematica, Maple, Macsyma, dc
programming language, REXX programming language, etc.
[4].
 Arbitrary-precision numbers are often stored as large-
variable-length arrays of digits in some base related to the
system word-length. Because of this, arithmetic
performance is slower compared to fixed-precision
arithmetic which is closely related to the size of the
processor internal registers [2]. There have been some
attempts for hardware implementations. However, those
attempts usually amounted to specialized hardware for
small-size discrete multi-precision and/or large-size fixed-
precision [6, 7, 8, 9, 10] integer arithmetic rather than real
arbitrary-precision arithmetic.
 In this paper we present a first effort of reconfigurable
hardware support for arbitrary-precision arithmetic. We
propose the use of High-Performance Reconfigurable
Computers (HPRCs) as a promising candidate for arbitrary-
precision arithmetic. These platforms are characterized by
higher performance and processing power compared to
conventional platforms [11, 12, 13] as well as by higher
flexibility, i.e. Run-Time-Reconfigurability (RTR),
compared to ASIC solutions. The SRC-6 is an example of
this category of computers [14] and is used here for this
purpose.
 The proposed hardware architectures, which will be
derived from a formal representation of the problem, are

based on virtual convolution scheduling. Dynamic (non-
linear) pipelines techniques will be exploited to eliminate
the effects of deeply-pipelined reduction operators. The
efficiency of the proposed hardware will also be analyzed.
The experimental work will be verified for both correctness
and performance in reference to the GMP library.

2. PROBLEM FORMULATION

Exact arithmetic supports exact computation with the four
basic arithmetic operations (+,-,x,÷) over the rational field
QQ [1, 2, 3, 4, 5]. Therefore, within the context of hardware
support, the problem of exact computation is reduced to
implementing the four basic arithmetic operations with
arbitrary-precision of operands.
 Generally, the asymptotic computational complexity of
each operation depends on the bit length of operands [5,
15], see Table. 1. Therefore, the main challenge of
arbitrary-precision arithmetic on hardware is the
physical/spatial limitations of the hardware. In other words,
the problem can be formulated as: given a fixed-precision
arithmetic unit, e.g. p-digit by p-digit multiplier, it is
required to realize an arbitrary-precision arithmetic unit,
e.g. arbitrary large-variable-size m1-digit by m2-digit
multiplier. In achieving this objective, our approach is
based on leveraging previous work and concepts that were
introduced for solving similar problems. For example,
Tredennick [16] proposed architectural solutions for
variable-length byte string processing. Similarly, Olariu
[17] formally analyzed and proposed solutions for the
problem of sorting arbitrary large number of items using a
sorting network of small fixed I/O size. Finally, ElGindy
[18] investigated the problem of mapping recursive
algorithms on reconfigurable hardware.

Table 1. Computational Complexity of Arithmetic
Operations [15]

 Our formal representation of the problem will consider
only the multiplication operation. This is based on the fact
that multiplication is a core operation from which the other
basic arithmetic operations can be easily derived, e.g.
division as a multiplication using invariant integers [19,

20]. We will show how our proposed arithmetic unit can
perform arbitrary-precision addition, subtraction,
multiplication, as well as arbitrary-length convolution
operations. Division is reserved for future support and will
not be included in this work only because of time
constraints. We decided to investigate the
Basecase/Schoolbook algorithm, see Table 1. Although this
algorithm is not the fastest algorithm O(n2), it is the
simplest and most straight forward algorithm with the least
overhead. In addition, this algorithm is usually the starting
point for almost all available software implementations of
arbitrary-precision arithmetic. For example, in the case of
GMP, the Basecase algorithm is used up to a pre-
determined operand size threshold, 3000-10,000 bit length
depending on the underlying microprocessor architecture,
beyond which the software adaptively switches to a faster
algorithm [20, 21]. Our emphasis was on investigating the
feasibility and/or the potential of reconfigurable hardware
within the domain of exact computations. Therefore, our
performance comparisons with GMP will be maintained up
to this threshold of data size. We preserve the adaptive
implementation of the faster algorithms for future
investigation. This will be supported by the native RTR
adaptability of HPRCs.

3. APPROACH AND ARCHITECTURES

3.1. Formal Problem Representation

An arbitrary-precision m-digit number in arbitrary numeric
base r can be represented by:

raraA

rararaaA

j

m

j

j
j

m
m

<≤=

++++=

∑
−

=

−
−

0,

..........
1

0

1
1

2
210

(1)

It can also be interpreted as an n-digit number with base rp,
where p is dependent on the underlying hardware word-
length, e.g. 32-bit or 64-bit. This is represented by equation
(2) as follows:

⎥
⎥

⎤
⎢
⎢

⎡
==

=⎥
⎦

⎤
⎢
⎣

⎡
===

∑

∑∑ ∑∑∑∑ ∑
−

=
+

−

=

−

=

−

=
+

−

=

−

=

+
+

−

=

−+

=

p
mnraAwhere

rArrararaA

p

k

k
ipki

n

i

ip
i

n

i

ip
p

k

k
ipk

n

i

p

k

ipk
ipk

n

i

pi

ipj

j
j

,
1

0

1

0

1

0

1

0

1

0

1

0

1

0

1)1(

(2)

 Multiplication, accordingly, can be formulated as shown
in Fig. 1 and expressed by equation (3). In other words, as
implied by equation (4a), multiplication of high-precision
numbers can be performed through two separate processes
in sequence. The first is a low-fixed-precision, i.e. p-digits,
multiply-accumulate (MAC) process for calculating the
coefficients/partial-products Ci’s as given by equation (4b).
This is followed by a merging process of these
coefficients/partial-products into a final single high-
precision product as given by equation (4a). Equation (4b)
shows that the coefficients Ci’s can be represented at
minimum by 2p-digit precision. The extra digits are due to

the accumulation process. Therefore, Ci’s can be expressed
as shown by equation (4c).

Fig. 1. Multiplication matrix of high-precision numbers

p

n

i

i
i

n

i

ip
i

n

i

i
i

n

i

ip
i

rx
p

mn
p

mnwhere

xCxBxAABC

xBxBrBBxAxArAA

=⎥
⎥

⎤
⎢
⎢

⎡
=⎥

⎥

⎤
⎢
⎢

⎡
=

=⋅==

====== ∑∑∑∑
−

=

−

=

−

=

−

=

,,

)()()(

)(,)(

2
2

1
1

1

0

1

0

1

0

1

0

2211

(3)

)2(

)2(
3

3
2

210
21

21
......)(−+

−++++++= nn
nn xCxCxCxCCxC (4a)

⎪
⎪
⎩

⎪
⎪
⎨

⎧

≥−∀=

≥∀=

−+≤≤==

−

=
−

=
− ∑∑

1

2

21
00

)(0

0

)2(0,

nkiA

nkB

nniBAABC
where

ki

k

i

k
kik

i

k
kiki

(4b)

p
i

high
i

low
ii rxxxQQC =Δ++= ,2 (4c)

3.2. Multiplication as a Convolve-and-Merge Process

It can be easily noticed that the coefficients Ci’s given by
equation (4b) are in the form of a convolution sum. This led
us to believe that virtualizing the convolution operation and
using it as a scheduling mechanism will be a straight
forward path for implementing multiplication, and hence
the remaining arithmetic operations. The different sub
operands, i.e. A’s and B’s, being stored in the system
memory, will be accessed according to the convolution
schedule and passed to the MAC process. The outcome of
the MAC process is then delivered to the merging process
which merges the partial products, according to another
merging schedule, into the final results. The final results are

then scheduled back into the system memory according to
the same convolution schedule.
 The convolution schedule, on one hand, can be derived
from equation (4b). It is simply a process that generates the
addresses/indexes for A’s, B’s and C’s governed by the
rules given in equation (4b). On the hand, the merging
schedule can be derived from equation (5) which results
from substituting equation (4c) into equation (4a). Fig. 2
shows the merging schedule as a high-precision addition of
three components. The first component is simply a
concatenation of all the first p-digits of the MAC output.
The second component is a p-digit shifted concatenation of
all the second p-digits of the MAC output. Finally, the third
component is a 2p-digit shifted concatenation of all the
third p-digits of the MAC output.

∑∑∑

∑∑∑

−+

=

−+

=

−+

=

−+

=

−+

=

−+

=

Δ===

⋅+⋅+≡

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ+⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

2

0

2

0

2

0

2

2
2

0

2

0

2

0

212121

212121

,,

)(

)(

nn

i

i
i

carry
nn

i

ihigh
i

high
nn

i

ilow
i

low

carryhighlow

nn

i

i
i

nn

i

ihigh
i

nn

i

ilow
i

xCxQCxQC

where
xCxCCxC

xxxxQxQxC

(5)

 The merging schedule, as described above, is a high-
precision schedule which will work only if the merging
process is performed after the MAC process has finished
completely. Given the algorithm complexity O(n2), and
allowing the two processes to work sequentially one after
another would dramatically impact the performance.
However, modifying the merging process to follow a small-
fixed-precision scheduling scheme that works in parallel
and in synchrony with the MAC process would bring back
the performance to its theoretical complexity O(n2). The
modified merging scheme can be very easily derived either
from equation (5) or Fig. 2 resulting in equation (6):

)(,00

)2(,00

),(

)(,...,2,1,0,

21

21

1

21211

nnkk

nnkkQQ

digitspSSHRrSxS

nniQQS

k

k
high
k

low
k

i
p

iii

i
high
i

low
iii

+≥<∀=

−+><∀=Δ==

=⋅=⋅=

+=Δ+++=
−−

−−−

δ

δ

δ

(6)

This would mean that as soon as the MAC process
finishes one partial result, Ci in 3p-digit precision, the
merging process, in-place, produces a final partial result Si
in p-digit precision, see Fig. 3. This precision matches the
word-length of the supporting memory system which
allows easy storage of the final result without stalling either
the MAC or the merging process. The merging process

Fig. 2. Merging schedule

Fig. 3. Arithmetic unit architecture

registers the remaining high-precision digits for use in
subsequent calculations of Si’s.

In addition to performing multiplication, the derived
architecture in Fig. 3 can also natively perform the
convolution operation for sequences of arbitrary-size. This
is because the MAC process generates the coefficients in
equation (4b) according to a convolution schedule and in
fact they are the direct convolution result. In other words,
only the MAC process is needed for convolution operation.
Furthermore, the same unit can be used to perform addition
and/or subtraction by passing the input operands directly to
the merging process without going through the MAC
process.
 It is necessary at this point to investigate the growth of
the MAC process as it represents an upper bound for the
unit precision. As discussed earlier, shown in Fig. 1, and
given by equation (4c), the outcome of the MAC process,
Ci, consists of three parts: the multiply digits, Qi

low, Qi
high,

and the accumulation digits, Δi. The corresponding number
of digits, nCi, nQi

low, nQi
high, nΔi, can be expressed as given by

equations (7a), (7b) , (7c), and shown in Fig. 4.
pnnnnnn high

i
low
ii

high
i

low
ii QQQQC ==++= Δ , (7a)

⎪
⎩

⎪
⎨

⎧

−+≤≤−−+
−≤≤−

−≤≤+
=Δ

)2(,)1(log
)1()1(,)(log

)2(0,)1(log

21121

122

2

nnininn
ninn

nii
n

r

r

r

i

(7b)

)(1282646464

0,log

64
2

2
2

maxmax

ExibiByteEiBmpwhen

rpmppn
p

mn p
r

≡⋅≤≤⇒=

⋅≤≤⇒≤≤⎥
⎥

⎤
⎢
⎢

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ΔΔ

(7c)

Fig. 4. Growth of MAC process (accumulation/carry digits)

Controlling the growth of the MAC process by keeping
the accumulation/carry digits less than or equal to p-digits,
equation (7c) gives the upper bound on the precision of the
input operands. This is in terms of the hardware unit word-
length, i.e. p-digits, and the numeric system base r. For
example, for a binary representation, i.e. r=2, and a 64-bit
arithmetic unit, i.e. p=64, the accommodated operand
precision is 128 ExibiByte which is beyond any realistic
storage system. In other words, a hardware unit with such
parameters can provide almost infinite-precision arithmetic.

4. EXPERIMENTAL WORK

Our experiments have been performed on one of the-state-
of-the-art HPRCs, i.e. SRC-6 [14]. SRC-6 is based on Xeon
2.8GHz microprocessors and Xilinx Virtex-II XC2V6000-4
100MHz FPGAs, with six local memories each 512K x 64
bits wide. The proposed architecture was developed partly
in Xilinx System Generator v8.2 environment as well as in
VHDL. In both environments, the architectures were highly
parameterized.
 The hardware performance was referenced to one of the
most efficient [21] software libraries supporting arbitrary-
precision arithmetic, namely GMP library on Xeon 2.8GHz.
We considered two versions of GMP. The first was the
compiled version of GMP which is highly optimized for the
underlying microprocessor. The other was the highly
portable version of GMP.

4.1. Implementation Issues

Large-precision reduction operations used in both the
MAC, i.e. 3p-digit accumulation, and the merging
processes proved to be a challenge due to critical-path
issues. Techniques of deep-pipelining proposed in [22, 23],
and those of non-linear pipelining presented in [24, 25]
were considered to eliminate those effects of deeply-
pipelined operators, see Fig. (5a). The buffering
mechanism, presented in [22, 23], showed either low
throughput and efficiency, or high latency and resources
usage for our case. Therefore, we leveraged the techniques
of non-linear pipelines [24, 25] which proved to be
effective, see Fig. (5b).
 We analyzed the pipeline efficiency, as defined in [24,
25], of our proposed architecture. This is expressed by

(5a) Deeply-pipelined accumulator

(5b) Proposed non-linear-pipelined accumulator

Fig. 5. Accumulator of the MAC process

equations (8a), (8b) and shown in Fig. 6. We implemented
two versions of the arithmetic unit, i.e. 32-bit and 64-bit.
For very large data, the efficiency for the 32-bit unit was
lower bounded to 80% while the efficiency for the 64-bit
unit was lower bounded to 84.62%, see equation (8b) and
Fig. 6.

()()

processmergingtheoflatencytheisLand

processMACtheoflatencytheisLwhere

nn
L
LnnL

nnL

merger

mac

merger

mactotal

merger

−

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−⋅

+
−=

−−
−=

2121

21 1111
1

11
11

1η

(8a)

⎪⎩

⎪
⎨
⎧

=⇒===

=⇒===

==

∞

∞

∞→∞

%62.842,11,64

%00.801,4,32

lim
21 ,

η

η

ηη

mergermac

mergermac

total

mac

nn

LLbitsp

LLbitsp
when

L
L

(8b)

Fig. 6. Pipeline efficiency

4.2. Eperimental Results

Our experiments were performed for two bascases, i.e. 32-
bit and 64-bit bases. Both cases showed similar behavior for

execution time and speedup. In this section, we only show
the results of the 64-bit bascase.
 The arbitrary-precision addition/subtraction
performance was measured on SRC-6 and compared to
both the compiled and portable versions of GMP. As shown
in Fig. 7, T_COMP_HW, i.e. the total computation time of
the hardware on SRC-6, is lower than the execution time of
both the compiled and portable versions of GMP. The
performance speedup is shown in Fig. 8. The hardware
implementation asymptotically outperforms the software,
by a factor of approximately 5, because of the inherent
parallelism exploited by the hardware. We can also notice
that for small-precision addition/subtraction the speedup
factor starts from approximately 25. This is due to the large
overhead, relative to the data size, associated with the
software while the only overhead associated with the
hardware is due to the pipeline latency. This latency is
independent on the data size. It is also worth to notice the
linear behavior, O(n), of both the software and the
hardware. This is because both execute the same algorithm,
i.e. Bascase addition/subtraction [20, 21], see Table 1.

Fig. 7. Addition/subtraction execution time

Fig. 8. Addition/subtraction hardware speedup versus GMP

 In the case of multiplication, we notice a non-linear
behavior O(n1+e), 0<e<1; see Fig. 9 and Table 1. We notice
also a similar behavior to the addition/subtraction for small-
size operands. In this case the hardware outperforms GMP
in general with at least a factor of approximately 25. Fig.
(9a) shows a significant performance for the hardware

(9a) Hardware versus compiled and portable GMP

(9b) Hardware versus compiled GMP

Fig. 9. Multiplication execution time

Fig. 10. Multiplication hardware speedup versus portable

GMP

compared to the portable version of GMP. This is because
this version of GMP uses the same algorithm as ours, i.e.
Basecase with O(n2) see Table 1, independent of the data
size [20, 21]. As shown in Fig. 10, the hardware behavior
asymptotically outperforms the portable GMP
multiplication by a factor of approximately 9. However, this
is not the case with the compiled GMP multiplication which
is highly optimized and adaptive. Compiled GMP uses four
multiplication algorithms and adaptively switches from a
slower to a faster algorithm depending on the data size and
according to pre-determined thresholds [20, 21]. For these
reasons, the hardware, as can be seen from Fig. (9b),
outperforms the compiled GMP up to a certain threshold,

approximately 10Kbits, beyond which the situation
reverses.

5. CONCLUSIONS AND FUTURE WORK

In this paper we presented an unprecedented effort, to the
best of our knowledge, of reconfigurable hardware support
for arbitrary-precision arithmetic, and hence exact
arithmetic/computations. Our emphasis was on
investigating the feasibility and/or the potential of
reconfigurable hardware within the domain of exact
computations. Our approach was based on leveraging
previous work and concepts that were introduced for
solving similar problems. The proposed solution was
derived from a formal representation of the problem, and
was based on virtual convolution scheduling. In our formal
representation we considered only the multiplication
operation. That was due to the fact that multiplication is a
core operation from which the other basic arithmetic
operations can be easily derived. We showed how our
proposed arithmetic unit could perform arbitrary-precision
addition, subtraction, multiplication, as well as arbitrary-
length convolution operations. Division was reserved for
future support and was not included in this work only
because of time constraints. Dynamic (non-linear) pipelines
techniques were exploited to eliminate the effects of
deeply-pipelined reduction operators. The efficiency of the
proposed hardware was also analyzed.
 The experimental work was verified for both
correctness and performance in reference to the GMP
library on the SRC-6 HPRC. The hardware outperformed
GMP by a factor of 5x speedup for addition/subtraction,
while the speedup factor was lower bounded to 9x
compared to the portable version of GMP multiplication.
We found HPRCs a promising candidate for arbitrary-
precision arithmetic and exact computations.
 However, for the sake of completeness a lot of work
remains needed. For example, implementation of faster
algorithms and the adaptive switching among them should
be investigated. This can be supported by the native RTR
adaptability of HPRCs. In addition, the support of floating-
point arbitrary-precision arithmetic might be needed as
well.

6. REFERENCES

[1] Vikram Sharma, “Complexity Analysis of Algorithms in
Algebraic Computation”, PhD dissertation, Department of
Computer Science, Courant Institute of Mathematical
Sciences, New York University, January 2007.

[2] C.K. Yap, T. Dube, “The Exact Computation Paradigm”, In
Computing in Euclidean Geometry, D.Z. Du and F. K.
Hwang, Editors, 2nd ed., Vol. 4 of Lecture Notes Series on
Computing, pp. 452—492, World Scientific Press,
Singapore, 1995.

[3] Donald E. Knuth, “The Art of Computer Programming”,
Vol. 2, “Seminumerical Algorithms”, 3rd edition, Addison-
Wesley, 1998.

[4] http://en.wikipedia.org/wiki/Arbitrary_precision_arithmetic

[5] Chen Li, “Exact Geometric Computation: Theory and
Applications”, PhD dissertation, Department of Computer
Science, Institute of Mathematical Sciences,, New York
University, January 2001.

[6] Julie Langou, Julien Langou, Piotr Luszczek, Jakub Kurzak,
Alfredo Buttari and Jack Dongarra, “Exploiting the
Performance of 32 bit Floating Point Arithmetic in
Obtaining 64 bit Accuracy (Revisiting Iterative Refinement
for Linear Systems)”, Proceedings of the ACM/IEEE SC
2006 Conference, November 2006, Tampa, Florida, USA.

[7] Javier Hormigo, Julio Villalba, Emilio L. Zapata, “CORDIC
Processor for Variable-Precision Interval Arithmetic”,
Journal of VLSI Signal Processing Systems, Vol. 37 Issue 1,
May 2004.

[8] S. Balakrishnan, S.K. Nandy, “Arbitrary Precision
Arithmetic --- SIMD Style”, Eleventh International
Conference on VLSI Design: VLSI for Signal Processing, p.
128, 1998.

[9] Saha, A., Krishnamurthy, R., “Design and FPGA
Implementation of Efficient Integer Arithmetic Algorithms”,
Proceedings of IEEE Southeastcon'93, Vol. 4, Issue 7, April
1993.

[10] D.M. Chiarulli, W.G. Rudd, and D.A. Buell, “DRAFT--- A
Dynamically Reconfigurable Processor for Integer
Arithmetic”, In Proc. 7th Symp. on Computer Arithmetic, pp.
309-321, IEEE Computer Society Press, 1989.

[11] A. Michalski, K. Gaj, D.A. Buell, “High-Throughput
Reconfigurable Computing: A Design Study of an IDEA
Encryption Cryptosystem on the SRC-6e Reconfigurable
Computer”, FPL 2005, pp.681-686.

[12] E. El-Araby, T. El-Ghazawi, J. Le Moigne, and K. Gaj,
“Wavelet Spectral Dimension Reduction of Hyperspectral
Imagery on a Reconfigurable Computer,” IEEE
International Conference on Field-Programmable
Technology, FPT 2004, Brisbane, Australia, December
2004.

[13] E. El-Araby, M. Taher, T. El-Ghazawi, and J. Le Moigne,
“Prototyping Automatic Cloud Cover Assessment (ACCA)

Algorithm for Remote Sensing On-Board Processing on a
Reconfigurable Computer”, IEEE International Conference
on Field-Programmable Technology (FPT 2005), Singapore,
11-14 Dec., 2005.

[14] SRC Computers, Inc., “SRC CarteTM C Programming
Environment v2.2 Guide (SRC-007-18)”, August 2006.

[15] http://en.wikipedia.org/wiki/Computational_complexity_of_
mathematical_operations

[16] H. L. Tredennick, T. A. Welch, “High-speed Buffering for
Variable Length Operands”, Proceedings of the 4th annual
symposium on Computer architecture ISCA '77, Vol. 5,
Issue 7, pp. 205-210, March 1977.

[17] Stephan Olariu, M. Christina Pinotti, S. Q. Zheng, “How to
Sort N Items Using a Sorting Network of Fixed I/O Size”,
IEEE Transactions on Parallel and Distributed Systems,
Vol. 10, No. 5, pp. 487-499, May 1999.

[18] H. ElGindy and G. Ferizis, “Mapping Basic Recursive
Structures to Runtime Reconfigurable Hardware”,
Proceedings of FPL 2004, August 2004.

[19] Torbjorn Granlund and Peter L. Montgomery, “Division by
Invariant Integers using Multiplication”, in Proceedings of
the SIGPLAN PLDI’94 Conference, June 1994.

[20] GMP Manual, “GNU MP The GNU Multiple Precision
Arithmetic Library”, Edition 4.2.1, 2 May 2006.

[21] http://gmplib.org/

[22] Ling Zhuo, Gerald R. Morris, Viktor K. Prasanna, “High-
Performance Reduction Circuits Using Deeply Pipelined
Operators on FPGAs”, accepted for publication in IEEE
Transactions on Parallel and Distributed Systems.

[23] Ling Zhuo, Viktor K. Prasanna, “High-Performance and
Area-Efficient Reduction Circuits on FPGAs”, Proceedings
of the 17th International Symposium on Computer
Architecture and High Performance Computing, October
2005, Rio de Janeiro, Brazil.

[24] Hwang, K., “Advanced Computer Architecture: Parallelism,
Scalability, Programmability”, McGrawHill, 1993.

[25] Hwang, K., and Xu, Z., “Scalable Parallel Computing:
Technology, Architecture, Programming”, McGrawHill,
1998.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

