
Voter Insertion Algorithms for FPGA Designs Using Triple
Modular Redundancy

Jonathan Johnson and Michael Wirthlin
NSF Center for High-Performance Reconfigurable Computing (CHREC) ∗

Dept. of Electrical and Computer Engineering
Brigham Young University

Provo, UT 84606, USA
jonjohn@byu.net, wirthlin@ee.byu.edu

ABSTRACT
Triple Modular Redundancy (TMR) is a common reliabil-
ity technique for mitigating single event upsets (SEUs) in
FPGA designs operating in radiation environments. For
FPGA systems that employ configuration scrubbing, major-
ity voters are needed in all feedback paths to ensure proper
synchronization between the TMR replicates. Synchroniza-
tion voters, however, consume additional resources and im-
pact system timing. This paper will introduce and contrast
four algorithms for inserting synchronization voters while
automatically performing TMR. The area cost and timing
impact of each algorithm on a number of circuit benchmarks
will be reported. This paper will demonstrate that one of
the algorithms provides the best overall timing performance
results with an average 9.8% increase in critical path length
over a triplicated design without voters. Another algorithm
provides far better area results at a slightly higher timing
cost (an average 2.1% area increase over a triplicated design
without voters).

Categories and Subject Descriptors
B.8.1 [Performance and Reliability]: Reliability, Test-
ing, and Fault-Tolerance

General Terms
Reliability, Design, Algorithms

1. INTRODUCTION
SRAM-based FPGAs are an attractive alternative to ASICs

for space-based computing missions because of their in-orbit
reconfigurability, their ability to perform application-specific
computations, and their lower non-recurring engineering costs
[1, 2]. SRAM-based FPGAs, however, are susceptible to ra-

∗This work was supported by the I/UCRC Program of the
National Science Foundation under Grant No. 0801876.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’10, February 21–23, 2010, Monterey, California, USA.
Copyright 2010 ACM 978-1-60558-911-4/10/02 ...$10.00.

diation effects in space environments, particularly radiation-
induced single-event upsets (SEUs). SRAM-based FPGAs
contain a large number of internal memory cells that can
be upset by high energy particles. These include memory
cells for configuration memory, user flip-flops, internal block
memory, and other device-specific customization modes. SEUs
within the configuration memory are especially challenging
as they may change the functionality implemented by the
FPGA. For example, configuration SEUs may modify the
routing, logic, clocking, or other aspects of a user design.

Unique strategies for configuration SEU mitigation have
been developed for systems that incorporate SRAM-based
FPGAs within high radiation environments. The most com-
mon and well understood technique combines triple modu-
lar redundancy (TMR) [3] and configuration memory scrub-
bing [4]. TMR uses hardware redundancy to mask any single
design failure by voting on the result of three identical copies
of the circuit. Configuration scrubbing involves the contin-
uous configuration of the device with a known golden bit-
stream stored in a protected memory to prevent the buildup
of multiple coincident SEUs. Fault-injection and radiation
experiments have demonstrated the robustness of this miti-
gation approach.

Inserting majority voters is an important step in auto-
mated TMR. Majority voters are used to resynchronize the
circuit state after configuration scrubbing [5], as well as for
other purposes. Voters are inserted within all feedback paths
to ensure that state within logic feedback is updated when
the bitstream scrubbing process repairs circuit resources.
Identifying good locations for these voters, however, is a
difficult problem. Poor synchronization voter locations lead
to large area overhead and a significant increase in critical
path timing. This paper investigates and identifies algo-
rithms for inserting synchronization voters in an FPGA de-
sign during automated TMR that minimize area overhead
and loss in critical path timing performance. While auto-
mated approaches for inserting synchronization voters dur-
ing TMR have been developed and incorporated into auto-
mated tools [6], we are unaware of any previously published
work that describes how this voter insertion is performed.

This paper will begin by describing the SEU mitigation
strategy involving TMR and configuration scrubbing. Auto-
mated approaches for implementing TMR will be described
with an emphasis on voter insertion. The need for synchro-
nization voters will be demonstrated with an example. The
paper will then present four algorithms that determine ap-
propriate synchronization voter locations. These algorithms

will be compared in terms of their area overhead and timing
performance impact. This paper will demonstrate that re-
stricting voters to locations directly after flip-flops is a good
timing performance heuristic for voter insertion algorithms.

2. MITIGATION TECHNIQUES FOR SRAM
FPGAS

SRAM-based FPGAs have dense arrays of memory cells
and consequently are especially sensitive to SEUs. Much like
SRAM and DRAM, SRAM-based FPGAs contain a large
amount of internal state that is sensitive to single event ef-
fects. FPGAs contain user flip-flops, block memories, and
the device configuration memory. The largest portion of
this state is found within the configuration memory that
defines the operation of the circuit. Upsets within the con-
figuration memory modify the behavior of the routing, logic,
clock tree, etc. These upsets appear as “hardware faults” or
failures within the user circuit1.

Unique mitigation methods are needed to protect FPGA
circuits from radiation-induced SEUs. The most common
mitigation approach for FPGAs is a combination of TMR
and configuration bitstream scrubbing. TMR is used to tem-
porarily mask configuration SEUs and configuration scrub-
bing is used to repair configuration SEUs. Together, these
techniques provide significant improvements in reliability.

2.1 Triple Modular Redundancy
Triple modular redundancy is a well known fault mitiga-

tion technique that uses redundant hardware to mask circuit
faults. A circuit protected by TMR has three redundant
copies of the original circuit and a majority voter (see Fig-
ure 1). A single fault in any of the redundant hardware
modules will not produce an error at the output as the ma-
jority voter will select the correct result from the two work-
ing modules. Triplicated voters are often used to avoid a
single point of failure.

module A0

module A1

module A2

voter

voter

voter

Figure 1: Structural Implementation of TMR.

TMR is used extensively in SRAM-based FPGA systems
to mitigate against radiation-induced SEUs. Several experi-
ments have demonstrated significant improvements in relia-
bility when using TMR through fault injection and radiation
testing. The use of TMR in FPGAs, however, is very expen-
sive as the resulting circuit is at least three times the size
of the original circuit, and the circuit operates at a slower
clock rate than the original circuit.

1These faults, however, are soft faults that can be repaired
through configuration scrubbing.

2.2 Configuration Scrubbing
While TMR is effective at protecting a circuit from single

circuit failures due to SEUs, it cannot protect the circuit
from multiple independent SEUs. If multiple SEUs occur
within the configuration memory, two or three copies of the
redundant circuit may fail. With more than one failure, the
majority voters will chose an incorrect value (i.e., two in-
correct circuits) and lose the benefit of redundant hardware.
Configuration bitstream scrubbing is a technique used to re-
pair configuration SEUs and prevent the build up of multiple
independent SEUs.

Configuration scrubbing is used in conjunction with TMR
to prevent the accumulation of multiple coincident SEUs [7,
8]. Like conventional memory scrubbing, configuration scrub-
bing involves the continuous reading and repairing of the
configuration data to prevent the accumulation of SEUs.
Most FPGA scrubbing techniques require some external hard-
ware including external memory for configuration data stor-
age. Like memory scrubbing, there are a variety of ways to
implement configuration scrubbing in FPGAs [9, 10]. Addi-
tionally, the time required to perform an individual scrub-
bing cycle on an entire device is dependent upon the size of
the device and the implementation of the scrubber.

3. AUTOMATED TMR
Although TMR is often applied to designs manually, the

process is straightforward enough to be implemented by an
automated CAD tool. Existing tools for applying TMR to
FPGA designs include the Xilinx XTMR tool [3, 6] and the
BYU/Los Alamos National Laboratory BL-TMR tool [11].
Using an automated tool can provide several advantages over
implementing TMR by hand. For example, inserting voters
in the proper places manually can be a tedious and error
prone process.

The voter insertion algorithms presented in this paper op-
erate on circuits represented at the post-synthesis netlist
level. In this representation, circuits consist of instantiations
of FPGA primitives such as LUTs, flip-flops, and dedicated
hardware, and nets that define the connectivity between the
primitives. The result of the algorithms is a new netlist
that contains a triplicated version of the original netlist with
voters inserted at appropriate locations. After automated
TMR, the triplicated netlist follows the traditional FPGA
process of technology mapping, placement, and routing, as
shown in Figure 2.

TMR and
Voter Insertion

Technology
Mapping

Place &
Route

RTL
Synthesis

EDIF netlist Vendor proprietary
format

HDL
Source

Figure 2: TMR toolflow for FPGAs.

The process of automated TMR begins with creating three
identical copies of the original circuit. First, each component
instantiation is triplicated. Next, each net is triplicated.
The nets are then connected such that the connectivity of
each of the three replicates matches the connectivity of the
original circuit. This is the straightforward part of TMR.

Inserting majority voters to mask errors is a more complex
process and is the focus of the algorithms presented in this
paper.

3.1 Voter Insertion
The location of voters in a TMR design is specified in

terms of nets from the original, unmitigated design. When
inserting a voter at a net location, the net is split into two
pieces and a voter is inserted in the middle. The source of
the original net becomes the source of the voter and all of
the sinks of the original net are driven by the voter. This
voter insertion occurs in the context of TMR where there are
three copies of the source and three copies of each instance.
Inserting a voter on a net in the original design involves
replacing the three copies of the net in the TMR design
with voter nets as described in the following process:

1. Instantiate three voters to perform triple voting on the
given net,

2. Identify the three copies of the source of the net and
connect these sources to the inputs of each of the three
voters, and

3. Connect the output of each voter to the corresponding
sinks of the net.

We refer to the process of inserting voters on a net as cutting
a net with voters, since the original net is replaced by two
sets of triplicated nets: one feeding into the voters and one
exiting from them. Figure 3 illustrates the basic triplication
and voter insertion process.

module A module B

module B0

module B1

module B2

module A0 voter

module A1 voter

module A2 voter

Triplication and
Voter Insertion

Figure 3: The net after Module A is cut with trip-
licated voters.

Automated voter insertion is difficult because there are
constraints that govern where voters can be inserted. Find-
ing an optimal voter configuration that meets the constraints
is difficult because the voter locations affect the timing per-
formance, area, and reliability of the resulting circuit.

One of the constraints that governs voter insertion is that
there are certain nets in a netlist representation of a cir-
cuit that cannot be cut by voters because of the FPGA ar-
chitecture. Figure 4 illustrates an example of this issue.
The figure shows two bits of a simple ripple-carry adder im-
plemented using the dedicated carry chain and arithmetic
hardware found in the Virtex FPGA family. The adder

in the figure is implemented using logic cells in two dif-
ferent slices. Net A in the figure cannot be cut by vot-
ers because this net is implemented by a dedicated route
connection within a logic slice. Since there is no recon-
figurable routing between a MULT AND primitive and a
MUXCY primitive, a MULT AND cannot drive a voter and
a MUXCY cannot receive its input directly from a voter.
We refer to locations such as net A as illegal cut locations.
Other illegal cut locations include nets between MUXCY
and XORCY primitives, nets between internal multiplex-
ors that are used to create wider LUTs or multiplexors (i.e.
MUXF5, MUXF6, MUXF7, MUXF8), and some nets con-
necting cascaded DSP48 primitives. Voter insertion algo-
rithms must not create netlists that have voters inserted at
illegal cut locations.

In addition to illegal cut locations, there are other loca-
tions where inserting voters is legal, but results in an un-
desirable implementation. For example, net B in Figure 4
is implemented using fast dedicated carry chain routing.
Adding a voter on this net is legal but breaks the high-
speed carry chain logic. To add a voter, the output of the
MUXCY primitive in the lower slice must be routed to a
different slice where the voting is performed. The output of
this voter would then need to be routed into the CIN input
of the upper MUXCY, breaking the high-speed carry chain.
In addition to avoiding illegal cut locations, the voter inser-
tion algorithms presented in this paper avoid dedicated carry
chain routing nets in order to preserve timing performance
as much as possible.

MULT_AND

MUXCY

XORCYLUTA1

B1

Cin

Cout

S1

f=A B

MULT_AND

MUXCY

XORCYLUTA2

B2

Cin

Cout

S2

f=A B

A

B

Figure 4: Two bits of a ripple-carry adder using
FPGA primitives, carry chain, and dedicated arith-
metic hardware.

Various reliability concerns motivate voter insertion at dif-
ferent circuit locations. We refer to voters by names that
indicate their purpose in a circuit. Voter categories typi-
cally used in FPGA implementations of TMR for reliable
operation in space-based missions include the following:

Reducing Voters are used to reduce a triplicated signal
down to a single output. These are used when non-
redundant FPGA outputs are needed to interface with
the other components of a system (such as at the out-
puts of the FPGA).

Clock Domain Crossing Voters are used for resynchro-
nizing signals crossing clock domains in a triplicated
circuit.

Partitioning Voters are used to increase reliability in the
presence of multiple independent upsets by creating
additional TMR partitions.

Synchronization Voters are used to keep sequential logic
state synchronized between TMR replicates when a
scrubbing process corrects SEUs. This category is the
focus of the algorithms presented in this paper.

3.2 Synchronization Voters
Synchronization voters are necessary in TMR circuits used

on FPGAs that employ configuration scrubbing. The pur-
pose of these voters is to resynchronize the registered state
within the design after FPGA logic problems are repaired
with configuration scrubbing. Synchronization voters are
placed within sequential feedback loops to restore system
state. To demonstrate the importance of synchronization
voters, consider the simple triplicated counter in Figure 5(a).
Three copies of a register and accumulator logic are instan-
tiated to provide fault tolerance for any single circuit failure.
Voters are placed at the outputs to select the majority re-
sult should a failure occur. The synchronization problem
that occurs with this circuit is demonstrated by the wave-
form of Figure 5(b).

In this example, a configuration fault occurs that forces
the clock enable of the third TMR replicate into a stuck-
at-0 condition. Because of this fault, the counter does not
increment; it remains in the same count state until the clock
enable is repaired by scrubbing. Once the counter has been
repaired through configuration scrubbing, it continues its
count sequence from the state in which it was stuck. Al-
though repaired and operating properly, the counter is out of
sequence with the other two counters. While the TMR voter
circuitry properly ignores the incorrect count value, any ad-
ditional faults in the other TMR replicates would cause the
redundancy to be overcome, allowing the error to propagate
throughout the rest of the circuit.

Synchronization voters are voters placed within the feed-
back of a circuit to provide resynchronization after a fault
occurs. Figure 6(a) demonstrates the proper use of synchro-
nization voters by placing the voters within the feedback
loop. Using the voters within the feedback ensures that the
proper input value is provided to all of the counters no mat-
ter where the fault lies. The benefits of this technique are
illustrated in the counter failure waveform of Figure 6(b).

As described in the earlier example, the third TMR repli-
cate experiences a stuck-at-0 fault on its clock enable input.
While this fault is present, the third counter retains the same
value and falls out of sequence with the other counters. The
voter circuitry masks this faulty value and provides a correct
value on the feedback path. Once the configuration fault is
repaired by online scrubbing, the proper value is loaded into
the third counter and it becomes resynchronized with the
other counters. With all three counters synchronized and
repaired, the circuit will reliably operate in the presence of
another configuration fault.

4. ALGORITHMS FOR AUTOMATED
VOTER INSERTION

Although synchronization voters are essential in FPGA

registers

accumulator
logic

voters

voters

voters

x0[7:0]

registers

accumulator
logic

x1[7:0]

registers

accumulator
logic

x2[7:0]

(a) Simple counter with voters outside the
feedback loop.

7 8 9 A B C D

7 8 9 A B C D

7 8 8 8 8 9 A

x0[7:0]

x1[7:0]

x2[7:0]

clock enable
stuck @ 0

clock enable
repair

(b) A simple counter is susceptible to TMR synchro-
nization problems when SEUs occur within the feed-
back loop, even after scrubbing has corrected the
configuration memory.

Figure 5: A simple triplicated counter.

circuits that use TMR, manually adding synchronization
voters in a design is a difficult and error prone process. Auto-
mated tools are necessary for selecting synchronization voter
locations and inserting them in the design. This section will
introduce four algorithms for automatically selecting loca-
tions for synchronization voters.

Synchronization voter insertion algorithms must deter-
mine a set of nets within a design that cuts all feedback in
the design. Voters are placed on each of these nets to ensure
synchronization voting occurs within the feedback structures
of a design. Determining a set of voter locations that sat-
isfies this constraint is an instance of the feedback edge set
(FES) problem. Determining a minimum set of voter inser-
tion locations to satisfy the constraint is an instance of the
minimum (FES) problem, which is NP-hard [12].

While polynomial time approximation algorithms for the
minimum FES problem exist ([13], [14]), the minimum set of
voter insertion locations is not necessarily the best solution
for FPGA implementations of TMR. In order to preserve
performance, care must be taken to avoid voter insertion lo-
cations that would negatively impact timing performance.
In addition, existing FES algorithms cannot be applied di-
rectly because FPGAs have illegal cut locations. Each of
the algorithms in this section solves the FES problem for
voter insertion in a way that avoids illegal cut locations. In

registers

accumulator
logic

voters

voters

voters

x0[7:0]

registers

accumulator
logic

x1[7:0]

registers

accumulator
logic

x2[7:0]

(a) Simple counter with voters inside the
feedback loop.

7 8 9 A B C D

7 8 9 A B C D

7 8 8 8 8 C D

x0[7:0]

x1[7:0]

x2[7:0]

clock enable
stuck @ 0

clock enable
repair

(b) Synchronization voters protect the counter from
TMR synchronization problems when scrubbing
SEUs.

Figure 6: A triplicated counter protected by syn-
chronization voters.

addition, the algorithms employ heuristics based on FPGA
architecture that attempt to minimize circuit area and tim-
ing impact.

This section will first present a very simple voter inser-
tion algorithm that solves the problem in a local manner.
This will be followed by three algorithms based on strongly
connected component (SCC) decomposition that attempt to
meet the constraints while using fewer voters and applying
timing-based heuristics. An upper bound on the run-time
complexity of each algorithm will be given in terms of |V |
(the number of nodes in the circuit graph) and |E| (the num-
ber of edges in the circuit graph).

4.1 Voters After Every Flip-Flop
The Voters After Every Flip-Flop algorithm places a voter

after the output of each flip-flop in a circuit. The two flip-
flops in the circuit of Figure 7(a) would be triplicated with
voters after each flip-flop as shown in Figure 7(b). While
this algorithm does not perform any feedback analysis, it is
guaranteed to intersect every cycle with a voter because in
standard synchronous circuits, each cycle must have at least
one flip-flop.

The algorithm requires only a simple analysis of the circuit
and runs in O(|V |) time. Although this algorithm is simple,
it ensures that only one set of triplicated voters can be placed

in a single timing path, which helps reduce the negative
timing impact of voter insertion. A simple timing path is any
path from one flip-flop to another; when voters are placed
only directly after each flip-flop, it is impossible to have more
than one voter in a single timing path.

D Q D Qlogic

(a) Original circuit before TMR.

D Q D Qlogic

D Q D Qlogic

voter

voter

voterD Q D Qlogic

voter

voter

voter

(b) The triplicated circuit has voters after
each flip-flop.

Figure 7: Voters After Every Flip-Flop insertion al-
gorithm.

4.2 Algorithms Based on SCC Decomposition
While the preceding simple algorithm satisfies the con-

straints of synchronization voter insertion, it often inserts
many more voters than are actually needed. The algorithms
that follow are designed to insert fewer voters. They work
progressively by identifying feedback, inserting voters in the
feedback, and stopping when there is no feedback left un-
cut. By inserting fewer voters, these algorithms have the
potential to be able to produce circuits with better timing
performance and area.

The following three algorithms use strongly connected com-
ponents (SCCs) to determine a more efficient feedback cut
set. The SCCs of a graph are the maximal subgraphs in
which there is a path from each node to every other node.
SCC decomposition is the process of finding all of the SCCs
in a graph. The definition of an SCC leads to the following
corollaries:

• Each SCC contains at least one cycle,
• No cycle spans more than one SCC,
• There are no cycles outside of the SCCs of a graph,

and
• Nodes not involved in any cycles will not be found in

any SCC.

These corollaries suggest that decomposing a graph into
SCCs can be a way of simplifying the problem of deter-

mining where to place synchronization voters. Since any
cycle involves nodes only in a single SCC, each SCC can be
treated as a subproblem of the overall synchronization voter
insertion problem. Furthermore, graph edges not involved
in any of a graph’s SCCs need not be considered for voter
insertion.

In order to use SCC decomposition to determine where to
insert synchronization voters, the algorithms in this section
first generate a directed graph representation of a circuit.
Each component instantiation in the circuit netlist becomes
a node in the graph. Each net in the netlist becomes a set
of edges; an edge is created from every net source to every
net sink.

Once a graph representation of the circuit has been cre-
ated, the algorithms break up the SCCs of the graph into
smaller and smaller SCCs by systematically removing edges
until all SCCs are dissolved and there are no cycles left
in the graph. The process of breaking up SCCs by re-
moving edges is illustrated with the example graph in Fig-
ure 8. This graph contains two SCCs: {{2, 3, 4, 5, 6, 7, 8},
{9, 10, 11}}. The removal of edge (6, 3) would break the first
SCC into two smaller SCCs, resulting in the SCC decom-
position: {{2, 3, 4, 5}, {6, 7, 8}, {9, 10, 11}}. Removing edge
(10, 11) would dissolve the third SCC into a feed forward
component, giving the SCC decomposition: {{2, 3, 4, 5},
{6, 7, 8}}. Additionaly removing edges (2, 3) and (7, 8) would
completely dissolve all of the SCCs in the graph. If this
graph represented a circuit, then placing synchronizing vot-
ers at each of these four locations would cut all feedback
with voters, ensuring proper TMR synchronization.

2 3 6

7 8 11

9 10

5 4

1

12

Figure 8: SCCs can be broken by removing edges.

The algorithms that follow require repeated use of SCC
decomposition (after each edge removal) in order to deter-
mine what subproblems are created when edges are removed.
Several algorithms for SCC decomposition exist, including
Kosaraju’s algorithm [15] and Tarjan’s algorithm [16], both
of which run in O(|V | + |E|) time.

The algorithms based on SCC decomposition all have the
same basic structure which is summarized with pseudocode
in Algorithm 1. The basic structure of the algorithms uses
a stack-based method for processing all of the SCCs. To be-
gin, an SCC decomposition of the circuit graph is computed,
and all of the SCCs are pushed onto a stack (S). The algo-
rithm iterates over the SCCs in the stack until the stack is
empty. During each iteration of the while loop, a single SCC
is popped off of the stack for processing. Edges are removed
from the SCC to break the SCC into smaller SCCs or single
nodes. An SCC decomposition is recomputed and any re-
maining SCCs are pushed onto the SCC stack for processing
in the next iteration. This process continues until all of the
SCCs have been broken into feed forward components. The
edge set used to break the feedback of the SCCs indicates
the location of the synchronization voters.

The algorithms that use this structure differ in the man-

ner in which they select edges to remove to dissolve the
SCCs into feed forward components. Different edge selection
strategies are used to identify feedback edge cutsets that re-
sult in, for example, a faster circuit or a fewer number of
voters.

Algorithm 1 Basic Structure of SCC Decomposition Algo-
rithms

Initialize List L
Initialize Stack S
Compute SCC decomposition
for all scc in resulting SCCs do

Push scc onto S
end for
while S is not empty do

scc = S.pop()
Algorithm specific edge removal
Add removed edges to List L
Recompute SCC decomposition of scc.nodes
for all newSCC in resulting SCCs do

Push newSCC onto S
end for

end while
Insert voters on nets corresponding to edges in L

4.2.1 Highest Fanout SCC Decomposition Algorithm
The Highest Fanout SCC Decomposition Algorithm has

the basic structure outlined above and uses a heuristic in-
tended to minimize the number of voters needed to intersect
the cycles of a circuit. The heuristic is based on the intuitive
suggestion that a significant amount of feedback can be cut
by inserting voters on a single net with high fan-out. Nets
with high fanout are likely to be part of multiple cycles that
can all be cut at a single point. At each iteration of the
SCC processing while loop, the SCC in question is analyzed
to find the node with the highest legal cut fanout. The legal
cut output edges from this node are then removed from the
graph. In this manner, edge removal is prioritized with high
fanout nets. The algorithm runs in O(|V |2|E|) time, but this
is a conservative upper bound. The |V |2 term comes from
the fact that each time an SCC is processed by the while
loop, each of its nodes must be examined to find the node
with the highest fan-out. In practice, the number of times
the SCC processing loop executes is far fewer than |V |, and
the number of nodes in any SCC is generally far fewer than
|V |.

4.2.2 Highest Flip-Flop Fanout SCC Decomposition
Algorithm

The Highest Flip-Flop Fanout SCC Decomposition Algo-
rithm is similar to the previous algorithm but identifies high
fanout nets that originate from flip-flops only. This algo-
rithm has two priorities: inserting a small number of vot-
ers and reducing the negative impacts of voter insertion on
timing performance. When more than one set of voters is
inserted in a single timing path (i.e. a path from one register
to the next), the voters negatively affect timing performance
more than is necessary. For each SCC processed by this al-
gorithm, the flip-flop with the highest legal cut fanout in
the SCC is determined. The legal cut output edges from
this node are removed. Since a timing path consists of the
logic from one flip-flop to the next, inserting voters only di-

rectly after flip-flop outputs ensures that at most one voter
will be inserted per timing path. The runtime of this algo-
rithm is the same as the previous, O(|V |2|E|). As with the
previous algorithm, this is a conservative upper bound. The
timing performance benefits of using this algorithm will be
demonstrated in Section 5.

For an example of the Highest Flip-Flop Fanout SCC De-
composition Algorithm, consider Figure 9. The figure is
a graph representation of a circuit that includes flip-flops
that are involved in feedback. The flip-flop nodes in the
graph are indicated with gray shading. The initial SCC
decomposition performed by the algorithm gives the SCCs
{{1, 2, 4, 3}, {5, 7, 6}}. The algorithm pushes these SCCs
onto a stack and begins processing them with the while loop.
The first SCC popped off of the stack is {5, 7, 6}. Its only
flip-flop node, node 7, is chosen to have its data output net
removed from the graph. In this case, the output net from
node 7 is represented by a single edge, (7, 6). Edge (7, 6) is
removed from the graph and an SCC decomposition of the
subgraph induced by the nodes {5, 7, 6} is computed. Since
the feedback has been removed, no SCCs are found in the
subgraph and the while loop continues to the next iteration.

The next iteration pops the SCC {1, 2, 4, 3} off of the
stack. In this SCC, node 3 is the flip-flop node with the
highest fan-out, so it is chosen to have its data output net
removed from the graph. Its output net is represented by
edges (3, 1), (3, 2), and (3, 5). These edges are removed from
the graph (note, however, that this results in only a single
voter insertion location) and an SCC decomposition of the
subgraph induced by nodes {1, 2, 4, 3} is performed. The re-
sult of the decomposition is a single remaining SCC: {2, 4}.
This SCC is pushed onto the stack and the while loop con-
tinues to the next iteration.

In the next iteration, the SCC {2, 4} is popped off of the
stack. Since node 4 is its only flip-flop node, its data output
net edges are removed ((4, 2) and (4, 6)). An SCC decom-
position of the subgraph induced by {2, 4} is performed and
no SCCs are found. At this point the stack is empty and
all of the SCCs have been broken up into feed forward only
components. The edges removed by the algorithm result in
voters being placed directly after each of nodes 3, 4, and 7.
This is sufficient to correctly mitigate the circuit’s feedback.

2

3

6

7

4

51

Figure 9: Graph representation of a circuit that in-
cludes flip-flops involved in feedback.

4.2.3 Highest Fan-in Flip-Flop Output SCC Decom-
position Algorithm

The Highest Fan-in Flip-Flop Output SCC Decomposition
Algorithm uses a heuristic similar to the high fan-out heuris-
tic. It is based on the hypothesis that just as inserting voters
after flip-flops with high fan-out can reduce the total num-
ber of voters needed to cut all feedback, inserting voters
after flip-flops with high fan-in can have a similar effect. In
this algorithm, flip-flop fan-in is defined as the number of
nets that directly or indirectly feed into the data input of a
flip-flop going up to five levels backwards as computed by a
depth-limited DFS traversal. For each SCC processed by the
while loop, the algorithm finds the flip-flop in the SCC with
the highest fan-in and a legal voter location output edge and
removes the data output edge. The run time complexity is
O(|V |3 +2|V |2|E|+ |V ||E|2). As with the other algorithms,
this is a conservative upper bound. The extra |V | factor in
the dominant term (over the |V |2 of the previous two al-
gorithms) comes from the fact that for each flip-flop node
found in each SCC, a depth-limited DFS must be performed
to determine the fan-in of the flip-flop. In practice, the num-
ber of nodes traversed in each of these searches is far fewer
than |V |.

5. EXPERIMENTAL RESULTS
Experiments were performed in order to compare the al-

gorithms in the preceding section in terms of their impact
on the timing performance and area of a circuit when ap-
plying TMR. It is well known that applying TMR to an
FPGA design generally causes poorer timing performance
and increases the size of the circuit by at least 3X. A poor
voter insertion approach can induce a size increase of well
over 3X. The purpose of these experiments is to determine
which voter insertion strategies are best for preserving the
timing performance of a circuit and reducing the amount of
extra area added by voters when applying TMR. A suite of
15 circuit benchmarks including both real-world and syn-
thetic designs was used in the experiments.

5.1 Procedure
The experiments involved applying TMR to each of the

test designs using each synchronization voter insertion al-
gorithm. The toolflow used to apply TMR and determine
the timing performance and area of each design is shown
in Figure 2. The toolflow executes only up to the place
and route phase, since at this point the timing performance
and area of the resulting circuit can be determined. The
number of voters inserted by each algorithm was recorded
in addition to the number of logic slices consumed by the
resulting design. The critical path length and area of each
design after having TMR applied with each voter insertion
algorithm were recorded and compared to the critical path
length and area of the original, untriplicated design in ad-
dition to a version of the design that was triplicated with-
out inserting synchronization voters. Critical path lengths
were determined by repeating the place and route process
with successively tighter timing constraints until the place
and route tool failed to generate a configuration capable of
meeting the constraint. Timing constraints were adjusted in
0.1 ns intervals. In this manner, the tightest possible criti-
cal path length achievable by the place and route tool was
determined for each iteration of each design, including the
original, untriplicated version.

The primary target FPGA device for these experiments
was the Xilinx Virtex 1000 (XCV1000-5-fg680). The Virtex
4 SX55 (XC4VSX55-10-ff1148) was also used for one of the
test designs (ssra core) because the circuit required a larger
part than the V1000 when triplicated.

5.2 Results
Table 1 provides the critical path length, number of vot-

ers inserted, and number of slices used by each algorithm’s
version of the designs. The mean values for the critical path
and number of voters are calculated over 14 of the bench-
mark designs2. The best algorithm’s result for each row in
the table is given in bold.

The results in Table 1 show that for the test designs in
question, the algorithm that produced the best timing re-
sults overall is the Voters After Every Flip-Flop algorithm,
which increased the critical path length of the design while
adding TMR by only 15.3% over the original design and
9.8% over the triplicated version with no synchronization
voters. The Highest Flip-Flop Fanout and Highest Fan-in
Flip-Flop Output algorithms also provided very good timing
results. It is interesting to note that the Highest Fan-out
algorithm, which is the only algorithm that does not re-
strict voter placement to locations directly after flip-flops,
provided the worst overall timing results. Although it tied
for best timing performance on some of the benchmark de-
signs, it never outperformed any of the other algorithms.
Each of the other algorithms had at least one design where
it was exclusively the best for timing performance. This
result suggests that the heuristic of placing voters directly
after flip-flops in order to place at most a single set of voters
in any timing path is effective.

In terms of circuit area, Table 1 shows that the algorithm
that induced the lowest increase on average in the number of
slices used by a design is the Highest Flip-Flop Fanout algo-
rithm. The Highest Fan-out and Highest Fan-in Flip-Flop
Output algorithms both performed nearly as well. Inter-
estingly, the Voters After Every Flip-Flop algorithm, which
provided the best overall timing results, gave significantly
poorer results in the area category.

Overall, the best combination of area and timing perfor-
mance results is obtained by using the Highest Flip-Flop
Fanout algorithm. Its timing results are nearly as good as
those of the Voters After Every Flip-Flop algorithm, and
its area results are far better. However, when sheer tim-
ing performance is the only concern, the Voters After Every
Flip-Flop algorithm is the best choice in the average case.

Table 1 also reports the average run times of the 4 algo-
rithms. As noted previously, the algorithmic complexities
of the algorithms are very conservative upper bounds. Due
to the nature of standard digital logic circuits, we expect
these algorithms to scale much better than their complexi-
ties would imply. In practice, the feedback encountered in
most digital circuits is simple enough for the algorithms to
manage in reasonable time. The longest run time that we
have encountered for any of these algorithms was 1600 s for
a particularly complex design.

2The blowfish design was excluded from the mean calcula-
tions because it did not produce a full row of data. Two of
the voter insertion algorithms inserted more voters in this
design than could be mapped to the target device. These
entries are marked with asterisks in the table.

6. CONCLUSION
When configuration bitstream scrubbing is employed to-

gether with triple modular redundancy, synchronization vot-
ers are essential for resynchronizing the TMR replicates when
faults are corrected. Using the algorithms presented in this
paper, it is possible to apply TMR and insert synchroniza-
tion voters using an automated CAD tool. The best overall
algorithm (considering both area and timing performance
impacts) is the Highest Flip-Flop Fan-out algorithm. The
Voters After Every Flip-Flop algorithm can provide slightly
better timing results at the cost of increased area overhead
due to a greater number of voters.

The experimental results obtained in this work indicate
that in order to minimize the negative timing impact of
TMR, voter insertion algorithms should limit voter locations
primarily to flip-flop output nets. The algorithms in this pa-
per that follow this policy increase the critical path length
of a design by only 15.8% on average (over an untriplicated
version), compared to 23.5% for the other algorithm. Al-
though algorithms that perform the best on average in the
timing performance and area categories have been identi-
fied, in cases where timing performance and area are critical
factors in a space-based mission, several different voter in-
sertion algorithms should be tried in order to determine the
best algorithm for the particular circuit being implemented
and the constraints of the mission.

7. REFERENCES
[1] David Ratter. FPGAs on Mars. Technical report,

Xilinx, August 2004. XCell Journal #50.

[2] Michael Caffrey, Michael Wirthlin, William Howes,
Daniel Richins, Diane Roussel-Dupre, Scott Robinson,
Anthony Nelson, and Anthony Salazar. On-orbit flight
results from the reconfigurable Cibola Flight
Experiment satellite (CFESat). In 17th Annual IEEE
Symposium on Field Programmable Custom
Computing Machines (FCCM 2009), pages 3–10,
Napa, CA, April 2009.

[3] Brendan Bridgford, Carl Carmichael, and Chen Wei
Tseng. Single-event upset mitigation selection guide.
Xilinx Application Note XAPP987, 1, 2008.

[4] Carl Carmichael, Earl Fuller, Phil Blain, and Michael
Caffrey. SEU mitigation techniques for Virtex FPGAs
in space applications. In Proceedings of the Military
and Aerospace Programmable Logic Devices
International Conference (MAPLD), Laurel, MD,
September 1999.

[5] Carl Carmichael. Triple module redundancy design
techniques for Virtex FPGAs. Technical report, Xilinx
Corporation, November 1, 2001. XAPP197 (v1.0).

[6] Xilinx TMRTool. Product Brief, Xilinx Corporation,
2006.

[7] C. Carmichael, M. Caffrey, and A. Salazar. Correcting
single-event upsets through Virtex partial
configuration. Xilinx Application Notes, XAPP216
(v1. 0), 2000.

[8] F. Lima, C. Carmichael, J. Fabula, R. Padovani,
R. Reis, X. Inc, and CA San Jose. A fault injection
analysis of Virtex FPGA TMR design methodology.
In Radiation and Its Effects on Components and
Systems, 2001. 6th European Conference on, pages
275–282, 2001.

[9] J. Heiner, N. Collins, and M. Wirthlin. Fault tolerant
ICAP controller for high-reliable internal scrubbing. In
Proceedings of the Aerospace Conference, pages 1–10,
2008.

[10] M. Berg, C. Poivey, D. Petrick, D. Espinosa, A. Lesea,
KA LaBel, M. Friendlich, H. Kim, and A. Phan.
Effectiveness of Internal Versus External SEU
Scrubbing Mitigation Strategies in a Xilinx FPGA:
Design, Test, and Analysis. IEEE Transactions on
Nuclear Science, 55(4 Part 1):2259–2266, 2008.

[11] B. Pratt, M. Caffrey, P. Graham, K. Morgan, and
M. Wirthlin. Improving FPGA design robustness with
partial TMR. In 44th Annual IEEE International
Reliability Physics Symposium Proceedings, pages
226–232, 2006.

[12] R.M. Karp. Reducibility among combinatorial
problems. Complexity of computer computations,
43:85–103, 1972.

[13] G. Even. Approximating minimum feedback sets and
multicuts in directed graphs. Algorithmica,
20(2):151–174, 1998.

[14] P. Eades, X. Lin, and W.F. Smyth. A fast and
effective heuristic for the feedback arc set problem.
Information Processing Letters, 47(6):319–323, 1993.

[15] M. Sharir. A strong-connectivity algorithm and its
applications in data flow analysis. Computers &
Mathematics with Applications, 7(1):67 – 72, 1981.

[16] Robert Tarjan. Depth-first search and linear graph
algorithms. In Switching and Automata Theory, 1971.,
12th Annual Symposium on, pages 114–121, Oct. 1971.

O
ri

g
in

a
l

(U
n
tr

ip
li
c
a
te

d
)

T
M

R
w

/
o
u
t

v
o
te

rs

V
o
te

rs
A

ft
e
r

E
v
e
ry

F
F

H
ig

h
e
st

F
a
n
-o

u
t

H
ig

h
e
st

F
F

F
a
n
-o

u
t

H
ig

h
e
st

F
F

F
a
n
-i
n

O
u
tp

u
t

blowfish Critical Path 28.3 ns 27.2 ns * 36.5 ns 31.7 ns *
Voters - - 8820* 954 777 7158*
Slices 3416 10293 * 10742 10462 *

des3 Critical Path 11.1 ns 11.0 ns 13.6 ns 15.0 ns 13.6 ns 13.5 ns
Voters - - 449 435 353 407
Slices 658 2056 2312 2295 2242 2281

qpsk Critical Path 80.0 ns 83.7 ns 85.4 ns 89.8 ns 83.9 ns 83.9 ns
Voters - - 1752 165 96 111
Slices 1041 3186 3901 3268 3207 3207

free6502 Critical Path 29.6 ns 30.9 ns 31.5 ns 39.6 ns 33.1 ns 32.5 ns
Voters - - 465 237 264 267
Slices 484 1485 1738 1604 1615 1616

T80 Critical Path 27.8 ns 29.2 ns 32.4 ns 36.1 ns 33.7 ns 34.1 ns
Voters - - 828 573 483 645
Slices 931 2831 3304 3111 3079 3193

macfir Critical Path 14.4 ns 16.9 ns 14.2 ns 19.4 ns 19.5 ns 19.5 ns
Voters - - 4224 219 219 219
Slices 658 2445 3761 2571 2566 2566

serial divide Critical Path 9.2 ns 9.5 ns 11.6 ns 13.9 ns 12.2 ns 12.2 ns
Voters - - 156 66 60 60
Slices 40 129 209 166 164 164

planet Critical Path 10.9 ns 10.8 ns 12.5 ns 12.6 ns 12.6 ns 12.6 ns
Voters - - 21 18 18 18
Slices 144 435 443 441 441 441

s1488 Critical Path 9.9 ns 10.3 ns 12.3 ns 12.0 ns 12.0 ns 12.0 ns
Voters - - 21 18 18 18
Slices 145 438 446 444 444 444

s1494 Critical Path 10.4 ns 10.7 ns 12.4 ns 12.2 ns 12.2 ns 12.2 ns
Voters - - 21 18 18 18
Slices 148 447 458 456 456 456

s298 Critical Path 15.8 ns 16.2 ns 19.4 ns 19.5 ns 19.1 ns 20.1 ns
Voters - - 96 87 84 87
Slices 517 1551 1594 1600 1593 1601

tbk Critical Path 10.3 ns 10.6 ns 13.1 ns 12.9 ns 12.9 ns 12.9 ns
Voters - - 201 186 186 186
Slices 155 501 612 603 603 603

synthetic Critical Path 9.9 ns 10.0 ns 13.9 ns 10.2 ns 10.4 ns 10.1 ns
Voters - - 13877 290 326 290
Slices 3061 12286 12286 12286 12286 12286

lfsrs Critical Path 9.0 ns 10.8 ns 13.9 ns 13.9 ns 12.7 ns 12.9 ns
Voters - - 5400 360 450 450
Slices 1195 7429 6468 7658 7578 7578

ssra core Critical Path 6.1 ns 6.5 ns 7.2 ns 7.0 ns 7.2 ns 6.9 ns
Voters - - 30270 684 636 696
Slices 5393 18651 28033 18793 18745 18865

Mean critical path
length 18.17 ns 19.08 ns 20.96 ns 22.44 ns 21.08 ns 21.10 ns

% Increase over original - 5.0% 15.3% 23.5% 16.0% 16.1%

% Increase over TMR w/out voters - - 9.8% 17.6% 10.5% 10.6%

Mean number of voters - - 4127.2 239.7 229.4 248.0

Mean number of slices 1040.7 3847.9 4683.2 3949.7 3929.9 3950.1

% Increase over original - 269.7% 350.0% 279.5% 277.6% 279.6%

% Increase over TMR w/out voters - - 21.7% 2.6% 2.1% 2.7%

Mean Run Time - - 0.4 s 11.0 s 5.9 s 116.7 s

Table 1: Critical path length, number of voters, number of slices induced, and average run time of each voter
insertion algorithm.

