
HMFlow: Accelerating FPGA Compilation with
Hard Macros for Rapid Prototyping

Christopher Lavin, Marc Padilla, Jaren Lamprecht, Philip Lundrigan,
Brent Nelson and Brad Hutchings

NSF Center for High-Performance Reconfigurable Computing (CHREC)
Dept. of Electrical and Computer Engineering

Brigham Young University
Provo, UT, 84602, USA

Email: {chrislavin, brent nelson, brad hutchings}@byu.edu

Abstract—The FPGA compilation process (synthesis, map,
place, and route) is a time consuming task that severely limits
designer productivity. Compilation time can be reduced by saving
implementation data in the form of hard macros. Hard macros
consist of previously synthesized, placed and routed circuits
that enable rapid design assembly because of the native FPGA
circuitry (primitives and nets) which they encapsulate.

This work presents results from creating a new FPGA design
flow based on hard macros called HMFlow. HMFlow has shown
speedups of 10-50X over the fastest configuration of the Xilinx
tools. Designed for rapid prototyping, HMFlow achieves these
speedups by only utilizing up to 50 percent of the resources on
an FPGA and produces implementations that run 2-4X slower
than those produced by Xilinx. These speedups are obtained on
a wide range of benchmark designs with some exceeding 18,000
slices on a Virtex 4 LX200.

I. INTRODUCTION

For years, hardware designers have looked on almost de-
spairingly at the rapid compile times of their software engi-
neering colleagues. While their software friends perform many
compile-debug-edit cycles per day, they are lucky to get one
per day, or sometimes, one per week. Faster implementation
times would ultimately translate into improved productivity
because hardware engineers would be able to test and debug
more designs per day—just like their software counterparts.
Unfortunately, FPGA implementation times are not getting
much faster, largely because devices keep getting bigger with
every generation.

One may argue, for verification purposes at least, that
compilation time can be avoided simply by using simulation
to verify correct function. Indeed, where possible, simulation
can and should be the tool of choice. Compile times for
simulators are similar in duration to conventional software
compiles and simulators provide more convenient observabil-
ity than FPGA devices. However, simulation executes RTL
approximately 1,000,000 times more slowly than silicon. For
complex designs, e.g., software radio, radar, print rendering,
etc., it often takes too long to verify functional correctness in
simulation. Engineers in these situations may initially perform

This work was supported by the I/UCRC Program of the National Science
Foundation under Grant No. 0801876.

RTL verification with a simulator, but later, as simulation time
begins to be counted in days, these engineers start loading
their designs into FPGAs so their algorithms can be tested
in-system, with actual data.

One way to accelerate debug and verification time is to
reduce the amount of computation required to convert RTL
to a bitstream by using pre-compiled modules. For example,
in software, pre-compiled modules take the form of large
pre-compiled libraries that need only be linked to the final
executable during the compile-debug-edit cycle. Pre-compiled
modules are widely used in software compilation flows and
they dramatically reduce build time by eliminating compila-
tion, e.g., reducing the computational effort required to build
a software application.

In hardware, pre-compiled modules are typically referred to
as “hard macros.” A hard macro is a module that has been pre-
compiled (previously synthesized/mapped/placed/routed) and
stored in a library for later use by a designer. Previous work [1]
demonstrates the feasibility of a design methodology based on
hard macros and exhibits the potential they have to accelerate
FPGA compilation times for rapid prototyping purposes. This
work further demonstrates the validity of this technique by
implementing a complete FPGA design flow based on hard
macros called HMFlow.

Our goal for HMFlow is to demonstrate a reduction in
compilation time of at least 10× over the conventional Xilinx
design flow. In order to focus on this goal, designs were
optimized for fast compilation rather than clock rate and area.
In addition, we only targeted designs which utilize 50% or
less of FPGA resources for a given device. These tradeoffs
are quite acceptable for rapid prototyping purposes where
compilation time is a significant bottleneck.

The primary research questions answered in this paper are:
• What challenges exist in constructing a rapid FPGA

compilation flow using hard macros?
• How can such challenges be overcome?
• How much faster is a hard macro-based compilation flow

than a conventional flow?
• What impact does rapid compilation have on maximum

clock rate and area?

The rest of the paper is outlined as follows: In Section II
we describe similar efforts to accelerate FPGA compilation.
Section III introduces the main challenge of creating a hard
macro-based design flow for commercial FPGAs and a new
open source FPGA CAD tool framework called RapidSmith.
In Section IV we present and describe the new hard macro-
based design flow called HMFlow, its challenges and how they
were overcome to achieve rapid compilation. In Section V, the
benchmark circuits and the performance of HMFlow on those
circuits is presented and analyzed. In Section VI we conclude
and describe future efforts of HMFlow.

II. RELATED WORK

Accelerating place and route is one way to reduce overall
compilation time. Three different approaches to reduce place
and route time are: (1) use variants of sequential algorithms,
(2) develop parallel versions of these algorithms, or (3) accept
a lower Quality of Result (QOR). Among these approaches
are techniques such as router parallelization [2], multiphase
placement [3], accelerated simulated annealing [4][5], clus-
tered hierarchical placement [6] [7], and accelerated routing
[8]. In contrast to the others, [5], [6] and [7] have reported on
results that trade QOR for reduced place and route time.

Another way to reduce FPGA implementation time is to
simply reduce the amount of circuitry that needs to be placed
and routed by using pre-compiled (previously placed/routed)
circuits wherever possible. Horta and Lockwood [9] demon-
strated the creation of bitstream-based re-locatable cores which
are quite similar in nature to hard macros. Similar efforts
are reported in [10] where bitstream hard cores were used
in a network-on-chip to provide accelerated logic emulation
and prototyping. Unfortunately, bitstream hard cores are much
more restricted because they must reside between restrictive
configuration boundaries and require matching bus macro in-
terfaces to be present both in the core as well as in the existing
FPGA configuration. Similar work by Tessier [6] shows usage
of pre-placed macroblocks accelerate place and route by 2.6×
over commercial tools. However, the macroblocks did not
include any routing information.

Intermediate virtual fabrics are another strategy that exploits
reuse of pre-compiled structures [11]. This technique abstracts
the FPGA to a domain-specific fabric created off-line and
customized for a particular application domain. These fab-
rics accommodate macroblocks which are placed and routed
quickly onto the fabric. This technique is effective if the
intermediate fabric has already been built for a particular
application, however, each newly created intermediate fabric
still requires a lengthy place and route.

Our approach differs from those previously mentioned in
that it uses non-traditional algorithms for placement and
routing and preserves internal routing within hard macros to
potentially reduce routing time. The tool described in this work
is also compatible with System Generator, a commercially-
available design capture system provided by Xilinx. By lever-
aging non-traditional algorithms, custom hard macros and Sys-
tem Generator, we demonstrate a new approach to accelerate

map par –p par –r .NCD .NCD .NCD

xdl xdl xdl

.XDL .XDL .XDL

bitgen .BIT

PLACED

DESIGNS

ROUTED

DESIGNS

MAPPED

DESIGNS
BITSTREAMS

BYU

RapidSmith Tools

Xilinx Backend Design Flow

Fig. 1. Illustration of where XDL interfaces with the Xilinx tool flow and
how RapidSmith interacts with XDL.

FPGA compilation.

III. RAPIDSMITH: AN XDL FRAMEWORK

Experimenting with actual Xilinx devices requires a new
physical CAD flow (place/route) that supports hard macros. As
reported by [1], the Xilinx placer does not handle hard macros
well; when fed designs that included several hard macros,
placement often failed, or exhibited excessively long runtimes.
PlanAhead, the Xilinx physical floor-planning tool, is also not
well-suited to our purposes because it does not automatically
generate re-locatable hard macros. Xilinx does provide an
exchange format, the Xilinx Design Language (XDL), which
is an open design format and exposes enough device detail
(however, without timing data) so that experimental place and
route software can be written to directly target Xilinx devices.
Although XDL is quite verbose, it is very useful and forms
the basis of RapidSmith, a tool that can be used to rapidly
prototype CAD tools for Xilinx devices.

Used to develop HMFlow, RapidSmith (1) imports designs
in XDL, (2) provides an efficient API for manipulating XDL
designs, e.g., sufficient to write a placer or router and (3)
exports designs as XDL to the Xilinx software so a bitstream
can be generated. XDL and RapidSmith played an important
role in the development of HMFlow and are discussed in the
remainder of this section.

A. Xilinx Design Language (XDL)

XDL is an interface provided by Xilinx which is a human-
readable text-based language describing native circuits for
Xilinx FPGAs. XDL describes circuit designs in the same
fashion as the more widely used Netlist Circuit Description
(NCD) file format. NCD and XDL files describe a native
(physical) netlist for Xilinx FPGAs that contain mapped FPGA
primitives and circuit networks (nets). These native netlists
can represent designs which can exist at any phase of place
or route. The XDL interface exists as a Xilinx executable
distributed with its design tools called xdl.

The xdl program has three modes; one to convert NCD
to XDL files (-ncd2xdl), one to convert XDL to NCD files
(-xdl2ncd) and a -report mode. The first two modes

allow the user to gain access to designs in XDL and convert
them back to NCD for use in the remainder of the Xilinx tool
flow as can be seen from the top portion of Figure 1. The
report mode produces very large (several gigabytes) of textual
data in reports called XDLRC files which describe a particular
FPGA device. Although XDLRC report files do not contain
any timing information about a device, they do provide the
user with enough information to create full, non-timing driven
placement and routing tools.

Although XDL allows the user to access the proprietary
NCD format and manipulate designs in XDL, there existed
no framework at the time of our experimentation to easily
build FPGA CAD tools1. The lack of support for XDL and its
ungainly nature led to the creation of our own custom XDL
tool framework called RapidSmith.

B. RapidSmith: A Framework for the Rapid Creation of FPGA
CAD Tools

RapidSmith [14] is a Java-based software tool which lever-
ages XDL and enables the rapid creation of FPGA CAD tools
for Xilinx FPGAs. RapidSmith solves two major challenges of
using XDL. First, RapidSmith provides a complete framework
that can import XDL, modify designs and also export XDL to
allow the design to be used in the remainder of the Xilinx tool
flow. Second, it dramatically reduces the multi-gigabyte-sized
XDLRC report files to a much more compact format suitable
for the use and creation of custom FPGA CAD tools.

RapidSmith can import/export XDL designs anywhere in the
Xilinx tool flow that accepts NCD as seen in Figure 1. Rapid-
Smith includes a fast, custom-built XDL parser to import de-
signs into its own data structure for manipulation. The Rapid-
Smith design data structure has over 200 APIs specifically
written for design manipulation. This design data structure is
patterned heavily after XDL in that it uses the same design
abstractions: primitive instances, nets, modules and module
instances. The organization of these design abstractions in
XDL and RapidSmith is shown in Figure 2. XDL designs (and
thus, RapidSmith designs) are composed of a collection of
primitive instances (such as SLICELs, DSP48s, etc.) and nets
(input/output pins with optional routing elements). Modules,
although found less frequently in conventional designs, are
different in that they present a level of hierarchy in the design.
A module contains a collection of instances and nets which
are treated as a single entity. These modules are particularly
useful to this work because they can be used to represent hard
macro definitions which contain relative placement and routing
information. Module instances are simply the instantiation of
a module in a design.

One of the most challenging tasks in designing RapidSmith
was to provide light-weight, fast and efficient files describing
an FPGA device. This can be a difficult task where modern
FPGAs can contain 10,000,000s of separate wires and over
100,000 primitives. In RapidSmith, this task has been accom-
plished by aggressive object reuse and custom serialization

1However, since that time, open source projects leveraging XDL called Torc
[12] and OpenPR [13] have been developed.

Design

Instance

PrimitiveType

Attribute (List)

PrimitiveSite

Net

NetType

Pin (List)

PIP (List)

Module

Port (List)

Instance (List)

Net (List)

ModuleInstance

Instance (List)

Net (List)

Fig. 2. Design Abstractions in RapidSmith Patterned After XDL

.mdl

Hard Macro

Cache

Hard

Macro

Generator

Design

Parser &

Mapper

Design

Stitcher

Hard

Macro

Placer

Design

Router
.xdl

SYSTEM GENERATOR
INPUT DESIGN

HARD MACRO SOURCES

PLACED & ROUTED
IMPLEMENTATION

Fig. 3. Block Diagram of HMFlow

layered with a publicly-available serialization protocol [15].
Using this technique (see [16] for details), RapidSmith is able
to achieve dramatic reduction of FPGA device representation
by converting XDLRC report files into a format that is 10000-
13000× smaller than the raw text. For example, a 23 GB
XDLRC report file detailing a Virtex 6 LX760 part can
be compacted into a file that is less than 2MB and loads
into memory in less than 2.5 seconds. The size, and more
importantly, the load times of these files were critical for the
construction of a rapid prototyping tool flow.

Given our success of using RapidSmith to create custom
FPGA CAD tools such as placers and routers, RapidSmith
has been released as an open source tool for the benefit of the
research community. RapidSmith downloads, documentation
and examples are available at (removed for blind review).

IV. HMFLOW: A RAPID PROTOTYPING FLOW

HMFlow is the vehicle by which we demonstrate the ef-
fectiveness of hard macros at accelerating FPGA compilation.
The flow begins by importing designs created using Xilinx
System Generator as seen in Figure 3. Design data are stored
in Simulink Model Files (.MDL) that are parsed by the design
parser and mapper tool. The mapper also identifies each block
in a design and its corresponding hard macro. If the hard macro
does not exist in the hard macro cache, the mapper invokes
the hard macro generator to create one for the mapper and to
store it in the cache.

Once all of the hard macros have been created or retrieved
from the cache, they are given to the design stitcher, which
will “stitch” all of the hard macros together. The design
stitcher also inserts appropriate I/O buffers (IOBs) and clock
generation circuitry. The design is then passed to the hard
macro placer and router to be exported as a final placed and
routed implementation in XDL.

The remainder of this section describes in detail the design
entry techniques, algorithms and steps that have been con-

Each block is

converted to a

Hard Macro

Fig. 4. Snapshot of an example System Generator Design

structed to realize and implement HMFlow.

A. Xilinx System Generator

Although HMFlow can be used with any design entry
tool, System Generator was chosen for this work because it
provided several benefits out-of-the-box. System Generator is
well-suited to hard macros because it is a block-based design
tool. HMFlow automatically converts each of the System
Generator blocks into a hard macro as shown in Figure 4.
Also, since HMFlow uses System Generator designs as input,
existing System Generator simulation tools can be leveraged
for HMFlow-bound designs.

Another advantage of using System Generator is its design
compilation path. HMFlow provides a rapid prototyping path
so designs can be quickly tested on an FPGA. However, once
the design is functionally correct, a high quality implementa-
tion is needed for design deployment. Since HMFlow accepts
designs that are System Generator compatible, a high QOR is
easily obtained (albeit with much longer runtime) by simply
using the conventional Xilinx System Generator tools.

B. Design Parsing, Hard Macro Mapping and Generation

1) Simulink Design Parser: The first step of HMFlow is
to parse the System Generator design stored in the Simulink
Model file (MDL). HMFlow has a custom built JavaCC-based
parser to perform this task and populates a custom made
Simulink-compatible data structure.

One drawback of using System Generator is that informa-
tion about design blocks, such as bit widths of ports, are
not stored in the MDL file. Therefore, the parser has to
recalculate these widths on-the-fly during parsing and it must
be performed on a block-by-block basis. Despite this technical
challenge, HMFlow is able to support over 75% of the most
commonly used System Generator blocks in HMFlow designs.

2) Hard Macro Mapping: The mapper receives the design
from the parser and iterates over all of the blocks in the data
structure to identify the System Generator blocks. For each
block it finds, an MD5 hash is generated from its type and
parameters to uniquely identify the block and corresponding
hard macro. The mapper then uses the hash to check the cache
to see if the hard macro has already been built. If the hard
macro has already been built, it is loaded from the cache and

given to the mapper. If the hard macro is not in the cache, the
mapper invokes the hard macro generator.

3) Automated Hard Macro Generation: Xilinx does not
provide any method for automated hard macro creation of
arbitrary designs. The only method provided is a tedious,
manual process using FPGA Editor, therefore, an automated
hard macro generator was created using RapidSmith. This
hard macro generator is an improved version of that used in
preliminary work [1].

To create hard macros in HMFlow, arbitrary design blocks
(NGC netlists from System Generator) are implemented with
the conventional Xilinx tools. Designs are prepared by insert-
ing special port-identifying hard macros which are attached
to each of the inputs and outputs of a design. These special
hard macros remain untouched as the design passes through
the Xilinx tools and specify the ports to create in the final
hard macro. After synthesis of the hard macro-bound design,
resource utilization counts are extracted from the synthesis
report to generate slice, DSP48 and BRAM placement con-
straints. These constraints ensure that hard macros are compact
and also maximize the number of valid locations they can be
placed on the FPGA.

Once the placed and routed design (NCD file) is generated
with the Xilinx tools, it is converted to XDL for manipulation
by the hard macro generator. The hard macro generator then
performs various transformations2 on the design to convert it to
a Xilinx compatible hard macro. The hard macro is then stored
in the hard macro cache using a similar compact format to that
used in RapidSmith device files as described in Section III-B.

C. Design Stitcher

After the mapper has gathered all of the hard macros
corresponding to a design, the design stitcher must perform
the “stitching” of all the hard macros together into a single
implementation. Design stitching requires the creation of nets
in the XDL to designate connections between the hard macro
ports. These connections are created based on connections
present in the original System Generator design description.

Once all of the nets have been created, the design stitcher
will instantiate the proper IOBs according to the pins desig-
nated in the System Generator design. Once these IOBs are
created, clock generation circuitry is added to the design. In
the Virtex 4 series, an additional step is required to avoid the
NBTI effect [17] which requires the connection of all unused
DCMs to an on-chip oscillator, the PMV primitive. After this
step, the design is completely mapped to the FPGA and could
be output to XDL. However, to avoid slow hard disk access
times, the design is passed directly to the hard macro placer.

D. Hard Macro Placer

Since HMFlow uses hard macros instead of FPGA primi-
tives as the objects that are placed onto the FPGA fabric, there
is a significant reduction in problem size. Even though the hard
macros produced from System Generator design blocks are

2More details on hard macros and their conversion can be found in
RapidSmith documentation [16].

relatively fine-grained, they still result in a 10-20× reduction
of objects requiring placement. However, the algorithm used
to perform placement also affects how fast placement will
occur. Throughout the development of HMFlow, three different
placers were created, a recursive bi-partitioning placer, a
random placer and finally a greedy heuristic placer.

1) Recursive bi-partitioning Placer: The most commonly
used FPGA placement algorithm is simulated annealing. This
is due to its ability to obtain high quality implementations
(which are often characterized by minimized wire length) at
the expense of longer runtimes. In most cases, this is quite
desirable because of the need to obtain a high QOR. How-
ever with rapid compilation as a goal for HMFlow, different
algorithms were tested for their ability to perform placement
quickly.

Our first attempt at a fast placer followed the approach
of Maidee et. al [18] which used a recursive bi-partitioning
algorithm. This involves partitioning the hard macros of a
design into two separate groups such that the number of
connections between the two groups is minimized. The two
groups were created and optimized using the heuristic de-
veloped by Kernighan and Lin [19]. By recursively dividing
each subgroup in this manner, it would ultimately reduce
total wire length of the nets in the design. Our attempts
using this implementation did show significant acceleration
of the placement process, however, the quality of most of
the resulting implementations resulted in clock rates averaging
approximately 67 MHz on Virtex 4 parts. This result may be
due to our choice of partitioning parameters or the lack of a
final simulated annealing step as used in [18].

2) Random Placer: Through various experiments, random
placements of several hard macro designs were attempted. The
results were surprising in that most of the designs were still
route-able and produced similar implementation quality to that
of the recursive bi-partitioning placer. The random placer was
extremely fast, placing most designs in a fraction of a second.
This was due to the fact that each hard macro was placed
only once rather than being swapped several times as in the
partitioning placer.

3) Heuristic Placer: The conclusion made from the surpris-
ing performance of the random placer is that rapid placement
can be achieved by placing each hard macro once but doing so
in a manner that made an attempt at optimizing the placement.
This would improve on the quality of the random placement,
but still retain the fast execution time of the random placer.

The greedy heuristic developed was quite simple since it
depended mostly on the amount of connectivity between hard
macros. The heuristic dictates that hard macros are placed
one-by-one starting with those containing DSP48 or BRAM
primitives as those are the most scarce primitives on the FPGA
fabric. Following the DSP/BRAM hard macros, placement
priority is given to the largest (greatest number of occupied
tiles) hard macros first as they may be the next most difficult
to place.

When a hard macro is placed, the 1st, 2nd, or 3rd most
connected hard macro to the current hard macro is queried

to see if it has already been placed. If so, the current hard
macro is placed as close as possible to its highly connected
companion. If none of the three hard macros are already
placed, the hard macro is placed arbitrarily into one of nine
bins designated on the FPGA fabric. This process proceeds
until all hard macros are placed. This technique has proven
successful on all benchmark designs used when resource
utilization is 50% or less of the FPGA. Results comparing the
three placement algorithms are deferred to Section V where
the benchmark designs used are described in detail.

E. Full Design Router

The Xilinx router, par, has an option (-p) to only perform
the routing of a design, however, if a design is partially routed,
those routes are not guaranteed to remain intact. This is a
problem if the output of HMFlow were to create a placed hard
macro design in XDL and then converted to NCD for par
to route because the hard macros are flattened in the XDL
to NCD conversion process. This would negate any savings
provided by hard macros which contained routed nets. To
leverage pre-routed routes from hard macros, a custom, full
design router was created using RapidSmith for HMFlow.

Traditionally, the most popular FPGA router algorithm has
been PathFinder [20] because of its ability to negotiate routing
conflicts in an effective way. However, PathFinder requires
making several iterations over the nets of a design in order to
complete successfully. It is this iterative nature that optimizes
circuit speed at the expense of longer runtime. For this reason,
a different algorithmic approach was taken for HMFlow.

A simple FPGA routing technique is that of a maze router
and is the principle algorithm used in this work. A maze router
is fast because it only makes a single pass through all the
nets in a design. However, unlike PathFinder, FPGA routing
resources are assigned on a first-come, first-served basis which
can cause significant routing conflicts given certain scenarios.

To overcome these potential conflicts, the router in HMFlow
uses a congestion avoidance technique. When a design is
first loaded in the router, it is analyzed for potential conflicts
(which are mostly architecture-specific) by looking for hot spot
routing switch boxes or certain input pins that have a unique
input path. In these cases, the routing resources are reserved
for the net which will require them most to complete the route.
This technique has been successful in all designs tested when
FPGA slice utilization has been 50% or less. Mixed results are
found when utilization exceeds half of the FPGA. Despite this
limitation, the router used in HMFlow has proven to be 3-10×
faster than the fastest configuration of the Xilinx router (par
-p) execution3 and allows for preservation of internal hard
macro routes. This router is also capable of routing arbitrary
designs and can be used for general purposes.

3Because of the limitation by which par can be timed for execution, the
performance comparison represents the time it takes to load a design from
disk, route the design and then save the routed design to disk for par and the
router used in HMFlow. It is expected that if file access times were removed,
the HMFlow router would be faster than this estimate.

TABLE I
BENCHMARK DESIGN CHARACTERISTICS

Benchmark V4 Part Slices BRAMs DSP48s HMs* /
Name Name Used Used Used HMIs**

pd control SX35 150 1 0 12/21
polyphaseFilter SX35 680 8 4 30/79

aliasingDDC SX35 806 1 3 25/78
dualDivider SX35 1832 0 6 39/542

computeMetric SX35 2551 56 40 64/332
fft1024 SX35 2553 8 12 48/313

filtersAndFFT SX35 5203 25 31 92/588
frequencyEst SX55 6988 31 72 249/757

dualFilter SX55 11173 33 26 93/901
trellisDecoder LX200 16973 61 53 196/1328
filterFFTCM LX200 18883 81 12 149/920

multibandCorr LX200 19732 52 23 90/1472
signalEst LX200 23841 126 47 390/1448

*HMs = Unique hard macros in the design
**HMIs = Total hard macro instances in the design

V. RESULTS

This section describes the efforts to ensure adequate bench-
mark designs that properly illustrate HMFlow’s capability to
scale to large designs and large commercial FPGAs. Using
these benchmarks, comparison data of the three placement
algorithms developed for HMFlow is put forth. Finally, com-
parison data of the benchmarks implemented with HMFlow
and conventional Xilinx tools is presented and analyzed.

All data presented in this section was measured on an
HP workstation running Windows XP SP3 32-bit, with an
Intel Core 2 Duo 3.0 GHz processor and 4GB RAM. All
FPGAs tested are from the Xilinx Virtex 4 series with a
speed grade of -10 and Xilinx ISE ver. 12.3 was used for all
experiments. RapidSmith and HMFlow Java implementations
used the Oracle JVM ver. 1.6.0 21.

A. Benchmark Designs

In order to adequately demonstrate the effectiveness of hard
macros on FPGA compilation time and their potential for
design size scalability, a wide variety of design types and sizes
were compiled and used. These designs, outlined in Table I,
contain a variety of algorithms, processing cores and data
paths. Some of the smaller designs include circuits such as
a PicoBlaze, FIR filters, polyphase filters, state machines and
1024-point FFTs/IFFTs. Most of the larger blocks were taken
from a very large experimental telemetry receiver design [21]
which required three large FPGAs for its implementation. The
telemetry receiver design was an excellent source of bench-
mark circuits because of its large size and also because the
design was originally implemented and optimized in System
Generator.

As shown in Table I, three different Virtex 4 devices were
targeted, the SX35, SX55 and LX200 which is the largest part
in the series. The table also shows that the 13 benchmark
designs range in size from 150 slices to over 23,000 slices.
BRAM and DSP48 primitive counts are representative of the
typical circuits used and are present to illustrate that HMFlow
and hard macros can be used with heterogeneous types of

TABLE II
HARD MACRO PLACER ALGORITHM COMPARISON

Benchmark Runtime (seconds) Clock Rate (MHz)
Name REC RAND FAST REC RAND FAST

pd control 0.266 0.047 0.016 92 65 129
polyphaseFilter 3.281 0.063 0.015 111 65 108

aliasingDDC 3.234 0.047 0.016 97 67 107
computeMetric 15.86 0.157 0.047 69 54 57

fft1024 11.703 0.094 0.047 67 47 74
frequencyEst 29.156 0.391 0.219 50 30 60
filterFFTCM 203.9 2.765 0.984 43 27 37

Averages 38.2 0.51 0.192 75.6 50.7 81.7

REC: Recursive bi-partitioning placer, RAND: Random placer, FAST: Fast
heuristic placer

primitives without issue. The final column of Table I shows
the number of unique hard macros the design contains and also
the total number of instances of hard macros in the design.
The latter number illustrates the number of objects the placer
must place whereas the former illustrates the number of hard
macros that exist in the cache and must be created. In most
cases, hard macros are reused on average between 2 and 10
times illustrating another reuse benefit of hard macros.

B. Hard Macro Placer Algorithms

As mentioned in Section IV-D, three placers were created
during the development of HMFlow: a recursive bi-partitioning
placer (REC), a random placer (RAND) and a fast heuristic
placer (FAST). The subset of benchmark designs available
during placer development were placed three times, once for
each placer as shown in Table II. Clock rates were obtained
after each placement was routed with the HMFlow router and
measured with the Xilinx tool, trce.

As can be seen from the listed averages at the bottom of
Table II, the FAST placer had the fastest execution of the three
placers and produced, on average, the highest quality circuit.
These results show that the custom heuristic designed for hard
macro placement is capable of producing higher quality results
than the RAND and REC placer yet still execute with speed
similar to that of the RAND placer.

C. HMFlow Performance

After the complete realization of HMFlow, all 13 benchmark
circuits were implemented with both the Xilinx tools and
HMFlow. Since the benchmark circuits were created as Xilinx
System Generator designs, the Xilinx tools runtime included
the time elapsed during the following steps:

• System Generator NGC generation (outputs netlist)
• NGDBuild (outputs NGD)
• map (outputs mapped circuit in NCD format)
• par (outputs placed and routed circuit)
In the steps of the Xilinx flow where the execution could

be optimized to reduce overall runtime, it was done so to
ensure that the comparison is made with the fastest execution
of the Xilinx tools to implement a placed and routed design.
Although theoretically possible, bitstream creation (.NCD to
.BIT) could not be legally accelerated by HMFlow due to

TABLE III
RUNTIME PERFORMANCE OF HMFLOW AND COMPARISON TO XILINX FLOW

Benchmark Simulink Mapper / Design Hard Macro Design XDL HMFlow Xilinx HMFlow XDL to
Name Parser HM Cache Stitcher Placer Router Export Runtime Runtime Speedup1 NCD

pd control 0.093s 0.735s 0.187s 0.016s 0.219s 0.062s 1.3s 65.6s 50× 2.8s
polyphaseFilter 0.094s 0.75s 0.219s 0.015s 1.406s 0.11s 2.6s 60.3s 23.2× 4s

aliasingDDC 0.11s 0.765s 0.219s 0.016s 1.453s 0.125s 2.7s 62.2s 23.1× 7.4s
dualDivider 0.313s 0.89s 0.203s 0.047s 2.407s 0.218s 4.1s 96.6s 23.7× 6.3s

computeMetric 0.281s 0.891s 0.641s 0.047s 6.359s 0.609s 8.8s 160.8s 18.2× 17.1s
fft1024 0.235s 0.937s 0.297s 0.047s 4.953s 0.375s 6.8s 119.3s 17.4× 10.3s

filtersAndFFT 0.328s 0.984s 0.797s 0.188s 12.312s 0.75s 15.4s 254.1s 16.5× 20.3s
frequencyEst 0.437s 1.5s 0.578s 0.219s 18.11s 1.171s 22s 373.5s 17× 107.3s

dualFilter 0.469s 1.313s 1.203s 0.437s 34.672s 1.656s 39.8s 469s 11.8× 140.4s
trellisDecoder 0.656s 1.719s 1.422s 0.547s 54.015s 2.5s 60.9s 824.6s 13.5× 115.1s
filterFFTCM 0.516s 1.937s 1.641s 0.984s 69.938s 3.046s 78.1s 1021.3s 13.1× 541.2s

multibandCorr 0.828s 1.797s 1.844s 1.859s 73.297s 5.781s 85.4s 786.2s 9.2× 506.7s
signalEst 0.843s 2.328s 2.157s 1.531s 107.547s 15.375s 129.8s 1508.7s 11.6× 869.2s

1We define HMFlow speedup as the time it takes Xilinx to create a placed and routed implementation divided by the time it takes HMFlow to create a placed and routed
implementation from the same System Generator design.

licensing issues, thus, it is omitted as the runtime of bitgen
would be identical for either of the design flows.

The total runtime of HMFlow is measured as the sum of
time elapsed during the following steps:

• Simulink Parser (reads/parses System Generator design)
• Mapper/Hard Macro Cache (maps/retrieves hard macros)
• Design Stitcher (combines hard macros together)
• Hard Macro Placer (places all hard macros)
• Design Router (routes all un-routed nets)
• XDL Export (outputs placed and routed XDL design file)
Table III contains the runtimes for the individual steps in

HMFlow, the total runtimes of HMFlow and Xilinx tools and
the speedup of HMFlow over the Xilinx tools. A preliminary
observation is that the speedup obtained by HMFlow is much
greater (23-50×) for the smaller designs than the larger
designs (9.2-13.5×). There are a few possible causes for this
phenomenon. First, the Xilinx tools write out intermediate
design files between each step of the design process and must
also load device database files for each step. This is in contrast
to HMFlow which loads design information once (during
Simulink parsing and hard macro cache accesses) and loads
the RapidSmith device files once for the entire execution of
HMFlow. Therefore, the Xilinx tools spend a disproportionate
amount of time reading/writing files for the smaller designs.
A second possible cause for the faster speedup of smaller
designs could be attributed to the algorithms used in the Xilinx
tools. As Xilinx must accommodate very large designs on very
large parts, their algorithms might be tuned for larger designs
and thus, perform better. However, our suspicions lie with the
former explanation rather than the latter.

If the runtimes of all benchmarks are averaged, Figure 5a
shows a pie chart illustrating the runtime distribution of
HMFlow. As can be seen from Figure 5a, the majority of
the time is spent in the router. This illustrates the speed at
which all the other steps in HMFlow operate. A completely
placed implementation can be obtained from HMFlow in a
matter of seconds for even the largest benchmarks. Although
the RapidSmith router runs 3-10× faster than the Xilinx router,
it is still the most time consuming process in HMFlow. This

Simulink
Parser

1%

Mapper/
HM Cache

4%

Stitcher
2%

Placer
1%

Router
85%

XDL Export
7%

HMFlow
16%

XDL
to

NCD
84%

(a) (b)

Fig. 5. (a) Average runtime distribution of HMFlow (b) HMFlow Runtime
as a percentage of total time to run HMFlow and create an NCD file

is likely because of the granularity of hard macros used in
the benchmark designs. The hard macros do not contain a
significant percentage of all nets in the final design, most of
the nets exist between the external ports of the hard macros.
For this reason, the router must route almost all of the nets
in the design in the final step of HMFlow. Future work on
HMFlow will concentrate on creating larger, more routing-
dense hard macros to help alleviate this problem.

One technical issue with HMFlow and the Xilinx tools is the
time it takes to create an NCD file from an XDL file. The file
formats are equivalent, however, Xilinx bitgen only accepts
as input NCD files and thus, in order to create a bitstream from
HMFlow, an NCD file must be created. The far right column
of Table III lists the runtime to generate an NCD file for
the resulting HMFlow benchmark implementation. As designs
get larger, the conversion time escalates. Figure 5b shows
the average runtime distribution if the runtime of HMFlow
and XDL conversion are combined. It is quite puzzling that
HMFlow can parse, assemble, stitch, place and route a design
in less than 1/5 the time it takes the Xilinx tools to convert
that implementation into a different format. However, this
illustrates the great efficiency which HMFlow has achieved
and the speed of implementation that can be had for FPGA
compilation.

In order to achieve the dramatic reduction in runtime,
HMFlow trades faster runtime for a lower maximum clock

0

50

100

150

200

250

300
M

a
x
 D

e
s
ig

n
 C

lo
c
k
 S

p
e
e
d

(M

H
z
)

Xilinx Implementation

HMFlow Implementation

Fig. 6. A comparison plot of the benchmark circuits maximum clock rates
when implemented with HMFlow and the Xilinx tools (the reader is reminded
that the Xilinx tools are likely to have produced a higher quality circuit,
however, these figures represent the fastest Xilinx tools configuration).

rate as shown in Figure 6. On average, HMFlow produces
implementations that are 2-4× slower than that of Xilinx. For
rapid prototyping purposes, this tradeoff is acceptable because
even though the design will run 2-4× slower, overall, it will
be executing 10,000s of times faster than simulation.

VI. CONCLUSION

The goal of this paper is to demonstrate the effectiveness of
using hard macros to reduce FPGA compilation runtime for
rapid prototyping. When a designer can sacrifice 2-4× in clock
rate and limit FPGA utilization to 50%, HMFlow is capable of
compiling designs 10-50× faster than the fastest Xilinx flow.
This ultimately translates into improved productivity for debug
and verification engineers. HMFlow is able to accomplish
this by leveraging non-traditional algorithms and a new XDL
framework for Xilinx FPGAs called RapidSmith.

Although HMFlow has been shown to reduce compilation
runtime by an order of magnitude or more, the long XDL
to NCD conversion time will ultimately limit the speedup
obtained. Even though efforts are being made to address this
issue, future work on HMFlow will focus on rapid compilation
for high QOR implementations. By focusing on high QOR,
XDL to NCD conversion time will become a smaller fraction
of the runtime in high QOR compilation. Hard macros will
continue to play an integral part of the new approach as they
have the capacity to capture timing closure information for
larger design blocks which ultimately can be reused from
run to run. HMFlow will also expand to include support for
newer Xilinx devices such as Virtex 5. We also plan to enable
HMFlow to accept as input designs created in other designs
tools besides System Generator.

REFERENCES

[1] C. Lavin, M. Padilla, S. Ghosh, B. Nelson, B. Hutchings, and M. Wirth-
lin, “Using Hard Macros to Reduce FPGA Compilation Time,” in
Proceedings of the 20th International Workshop on Field-Programmable
Logic and Applications (FPL’10), August 2010.

[2] P. K. Chan and M. D. F. Schlag, “New Parallelization And Convergence
Results For NC: A Negotiation-Based FPGA Router,” in FPGA ’00:
Proceedings of the 2000 ACM/SIGDA eighth international symposium
on Field programmable gate arrays. New York, NY, USA: ACM, 2000,
pp. 165–174.

[3] Y. Xu and M. Khalid, “QPF: Efficient Quadratic Placement For FP-
GAs,” in Proceedings of the IEEE International Conference on Field-
Programmable Logic and Applications. IEEE, Los Alamitos, CA, 2005.

[4] V. Betz and J. Rose, “VPR: A New Packing, Placement And Routing
Tool For FPGA Research,” in Proceedings of the 7th International
Workshop on Field-Programmable Logic and Applications. Springer-
Verlag London, UK, 1997, pp. 213–222.

[5] C. Mulpuri and S. Hauck, “Runtime And Quality Tradeoffs In FPGA
Placement And Routing,” in Proceedings of the 2001 ACM/SIGDA ninth
international symposium on Field programmable gate arrays. ACM
New York, NY, USA, 2001, pp. 29–36.

[6] R. Tessier, “Fast Placement Approaches for FPGAs,” ACM Trans. Des.
Autom. Electron. Syst., vol. 7, no. 2, pp. 284–305, 2002.

[7] Y. Sankar and J. Rose, “Trading Quality For Compile Time: Ultra-Fast
Placement For FPGAs,” in Proceedings of the 1999 ACM/SIGDA seventh
international symposium on Field programmable gate arrays. ACM
New York, NY, USA, 1999, pp. 157–166.

[8] J. S. Swartz, V. Betz, and J. Rose, “A Fast Routability-Driven Router
For FPGAs,” in FPGA ’98: Proceedings of the 1998 ACM/SIGDA sixth
international symposium on Field programmable gate arrays. New
York, NY, USA: ACM, 1998, pp. 140–149.

[9] E. L. Horta and J. W. Lockwood, “Automated Method to Generate
Bitstream Intellectual Property Cores for Virtex FPGAs,” in Proc. Field
Programmable Logic.2004, 2004.

[10] Y. E. Krasteva, F. Criado, E. d. l. Torre, and T. Riesgo, “A Fast
Emulation-Based NoC Prototyping Framework,” in RECONFIG ’08:
Proceedings of the 2008 International Conference on Reconfigurable
Computing and FPGAs. Washington, DC, USA: IEEE Computer
Society, 2008, pp. 211–216.

[11] J. Coole and G. Stitt, “Intermediate Fabrics: Virtual Architectures for
Circuit Portability and Fast Placement and Routing,” in Proceedings
of the Eighth IEEE/ACM/IFIP International Conference on Hard-
ware/software Codesign and System Synthesis, ser. CODES/ISSS ’10.
New York, NY, USA: ACM, 2010, pp. 13–22.

[12] N. Steiner, A. Wood, H. Shojaei, J. Couch, P. Athanas, and M. French,
“Torc: Towards an Open-Source Tool Flow,” in Proceedings of the 19th
Annual ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, ser. FPGA ’11. New York, NY, USA: ACM, 2011.

[13] A. A. Sohanghpurwala, “OpenPR: An Open-Source Partial Reconfig-
uration Tool-Kit for Xilinx FPGAs,” Master’s thesis, Virginia Tech,
December 2010.

[14] C. Lavin, M. Padilla, P. Lundrigan, B. Nelson, and B. Hutchings,
“Rapid Prototyping Tools for FPGA Designs: RapidSmith,” in Field-
Programmable Technology (FPT’10). International Conference on, De-
cember 2010.

[15] S. Ferguson and E. Ong, “Hessian 2.0 Serialization Protocol,”
http://hessian.caucho.com/doc/hessian-serialization.html, August 2007.

[16] C. Lavin, M. Padilla, P. Lundrigan, B. Nelson, B. Hutchings, and
M. Wirthlin, “RapidSmith: A Library for Low-level Manipulation of
Partially Placed-and-Routed FPGA Designs,” Brigham Young Univer-
sity, http://rapidsmith.sourceforge.net, Tech. Rep., 2010-2011.

[17] A. Lesea and A. Percey, “Negative-Bias Temperature
Instability (NBTI) Effects in 90 nm PMOS,” Xilinx Inc.,
http://www.xilinx.com/support/documentation/white papers/wp224.pdf,
White Paper 224, November 2005.

[18] P. Maidee, C. Ababei, and K. Bazargan, “Fast Timing-driven
Partitioning-based Placement for Island Style FPGAs,” Design Automa-
tion Conference, vol. 0, p. 598, 2003.

[19] B. W. Kernighan and S. Lin, “An Efficient Heuristic Procedure for
Partitioning Graphs,” The Bell System Technical Journal, vol. 49, no. 1,
pp. 291–307, 1970.

[20] L. McMurchie and C. Ebeling, “PathFinder: a Negotiation-based
Performance-driven Router for FPGAs,” in Proceedings of the 1995
ACM Third International Symposium on Field-programmable Gate Ar-
rays, ser. FPGA ’95. New York, NY, USA: ACM, 1995, pp. 111–117.

[21] C. Lavin, B. Nelson, J. Palmer, and M. Rice, “An FPGA-based Space-
time Coded Telemetry Receiver,” in Aerospace and Electronics Confer-
ence, 2008. NAECON 2008. IEEE National, July 2008, pp. 250–256.

