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Denial of Service Detection & Mitigation Scheme
using Responsive Autonomic Virtual Networks

(RAvN)
Allen Starke, Zixiang Nie, Morgan Hodges, Corey Baker, and Janise McNair

Abstract—In this paper, we propose a responsive autonomic
and data-driven adaptive virtual networking framework (RAvN)
that integrates the adaptive reconfigurable features of a popular
SDN platform called open networking operating system (ONOS),
the network performance statistics provided by traffic monitoring
tools such as T-shark or sflow-RT, and analytics and decision
making skills provided from new and current machine learning
techniques to detect and mitigate anomalous behavior. For this
paper, we focus on the development of novel detection schemes
using a developed Centroid-based clustering technique and the
Intragroup variance of data features within network traffic
(C.Intra), with a multivariate gaussian distribution model fitted
to the constant changes in the IP addresses of the network to
accurately assist in the detection of low rate and high rate denial
of service (DoS) attacks. We briefly discuss our ideas on the
development of the decision-making, and execution component
using the concept of generating adaptive policy updates (i.e.
anomalous mitigation solutions) on-the-fly to the ONOS SDN
controller for updating network configurations and flows. In
addition, we provide the analysis on anomaly detection schemes
used for detecting low rate and high rate DoS attacks versus
a commonly used unsupervised machine learning technique
Kmeans. The proposed schemes outperformed Kmeans signifi-
cantly. The multivariate clustering method and the intragroup
variance recorded 80.54% and 96.13% accuracy respectively,
while Kmeans recorded 72.38% accuracy.

Index Terms—machine learning, software-defined networks

I. INTRODUCTION

THE interconnected world is evolving exponentially. De-
vices connected to the internet are becoming pervasive

and/or intelligent. Serving a wide range of devices requires
the interconnected system to maintain heterogeneous network
resource constraints (i.e networking protocols, consistent avail-
able bandwidth, low latency requirements, etc.) to function
properly. On the other hand, the increased interconnected state
of the world brings an increased opportunity for malicious
users to manipulate network resources to deny service to or
from various interconnected nodes or networks. Successful
management for large-scale heterogeneous networks requires
that the network be robust and adaptive to maintain a produc-
tive and reliable networking environment, especially during
faults or cyber attacks. In recent past to present day, manual
reconfiguration was a response to cyber attacks, but it incurs a
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Fig. 1. Responsive Autonomic Virtual Network (RAvN) Framework

significant delay between the detection and healing (reconfig-
uration) of the network. Software-oriented networks provide
the potential of realizing automated networks that can detect
and mitigate faults or cyber attacks within the system.

Software-defined networking (SDN) is the evolving option
for managing the future standard of dynamically evolving
networks versus traditional static networking systems. Recent
research has focused on integrating machine intelligence and
machine learning (ML) into SDN networking architectures.
Data-driven network (DDN) are proposed in [1] to auto-
matically tune routing algorithms and protocols based on
decisions deduced from the data collected in real time. A
knowledge plane is proposed in [1] to process data from
network performance statistics and make intelligent actions
to manage the network.. Knowledge-centric networking is
proposed in [2] where ML can extract useful information from
sensors at the edge of an Internet-of-Things (IoT) network to
reduce the burden in the core of the network. The authors of
proposed cognitive networks that explicitly rely on learning
and data gathering to adapt the configurable parameters of a
network. As discussed in recent research, e.g., [3], a crucial
component needed in realizing the vision of the intelligent
adaptive network is a feedback signal. In the case of SDN, a
signal tied to the SDN controller’s northbound interface that
relays QoS statistics of the connected host’s applications.

In general, developing an adaptive network involves three
main components including detection and efficiently catego-
rizing traffic between significant anomalous changes in the
network environment and normal fluctuations considered to be
anomalous;using decision-making to develop optimal solutions
to mitigate anomalous behavior without effecting performance
in the rest of the network; and a northbound feedback interface
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to trigger execution of adaptive update policies [4], [5], [6],
[7].

In this paper, we propose a responsive autonomic data-
driven adaptive virtual networking framework (RAvN) that in-
tegrates the adaptive reconfigurable features of a popular SDN
platform called open networking operating system (ONOS),
network performance statistics provided by traffic monitor-
ing tools, and analytics and decision making skills provided
from machine learning techniques. The rest of the paper
is structured as follows: section II provides related works,
and section III dives into detail of our proposed anomaly
detection scheme and description of our RAvN architecture.
Section IV and V include the experimental setup and results
with discussions. Section VI and VII are the background
information and conclusions respectively.

II. RELATED WORK

In the literature, ML methods have been used within a
cross-layer security framework to monitor for malicious be-
havior. Methods for monitoring traffic in SDNs have included
Deep Packet Inspection, Support Vector Machines, Neural
Networks, and Decision Trees [8], [9]. In [9], behavior
was classified using a Maximum Likelihood (MLE) approach.
However, this approach, and most supervised machine learning
methods in general assume that every possible class and the
distribution of possible samples for each of these classes are
appropriately characterized by training data.

The author of [10], [11] utilized supervised machine learn-
ing approaches, using SVM and neural network classifiers for
classifying and preventing network security attacks in an SDN
architecture. Authors of [12] use machine learning to predict
the most vulnerable host that could be attacked in the SDN
environment. Using supervised machine learning methods to
provide security in SDN can be shunned as not a realistic
approach since network traffic will not have labels for training
the supervised mode and bad data in the training sample
will have a negative impact in detection and classification
performance. The authors of [13] utilize security policies on
the SDN controller for segment routing in the presence of
anomalies. These security policies are initialized during the
network setup phase and do not change while the network is
operating.

Recently, application-specific QoS management has become
more significant. Authors of [14] designed a method to link
IP addresses in DNS responses to application names derived
from the OS, to classify the applications running on the host
machines. Authors imply integrating this with QoS systems
in SDNs to control bandwidth allocation for services at the
application level. The work [3] translate network metrics
into an application metric for the idea of having a structured
and extensible connection between applications and the SDN
controller. Most application-aware networking research, such
as [3], [14], only hint at how information can be shared
with an SDN from the data plane for network re-configuration
leaving the realization as future work.

Our contributions in this paper are as follows:
• Most supervised machine learning assume that every

possible class and the distribution of possible samples for

each of these classes are appropriately characterized by
training data. We remove this assumption and implement
a system that can adapt to changes in communication
behavior based on cross-feature information and can
robustly detect and classify anomalous communication
packets in real time. The intragroup variance method
works well with any number of selected features from
the network traffic (i.e. meaning it does not require im-
plementing methods such as PCA for feature selection).

• Recent research on application-aware networking focus
on developing methods to detecting and classify flows of
greedy bandwidth applications for the purpose of QoS
management and only hint at how the information can
be shared with an SDN for re-configuration. Our work
establishes the necessary feedback loop successfully up-
dating new policies to ONOS SDN controller northbound
interface for network re-configuration (i.e. flow updates,
re-routing, network QoS management, etc.) based on
analysis of gathered network performance statistics.

• Unlike previous works, we generate adaptive policies
based on results from our proposed clustering and intra-
group variance anomaly detection scheme, and utilize the
connection to ONOS rest API for dynamic mitigations to
the anomalous behavior.

III. ANOMALY DETECTION & MITIGATION SCHEMES

Currently, unsupervised machine learning techniques are
used to detect changes in unlabelled real-time network traffic.
(Unsupervised machine learning, denial of service and other
background definitions are provided in Section VI.) However,
DoS attacks are becoming more intelligent and are able to
disguise themselves as normal traffic. Networks can no longer
rely on unsupervised machine learning techniques which use
distance calculations, such as clustering, to identify anomalous
changes within the network.

A. Slow Rate DoS Detection Scheme

Through observational analysis, attacked network traffic
demonstrates similar patterns across all of it’s network traffic
features. Selected feature sets in the attacked network traffic
demonstrated the same or similar values as previous packets
transmitted in succession. Taking advantage of this, detection
schemes that are able to determine how closely related or
sparse the feature values of the current packet under inves-
tigation is compared to past packets transmitted can detect
slow-rate DoS attacks. For this reason, a sliding window-
based anomaly detection scheme utilizing the optimal number
of cluster groups within a sample dataset and the intragroup
variance between the selected network traffic features,C.Intra,
is explored for identifying sparse or closely related network
traffic.

1) Clustering Technique: The simple clustering technique
compares the variance and mean of a sample data set to
optimally cluster single array data. If the variance of the
sample is greater than the mean, then we split the sample into
two parts using the mean as the point of separation; providing
two new groups of elements. We continue this process for each
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Algorithm 1: C.Intra method - Finding the intragroup
variance and average cluster number of each window

windowCluster = []
windowVariance = []
testData = ”input network traffic data”
normData = normalize(testData)
for i in range(length(testData)) do

tempList = testData[:,i]
clusters = []
tempChunks = split(tempList,4)
for j in range(length(tempChunks)) do

x = tempChunks[j]
clusNum = cluster(x)
clusters.append(clusNum)

end for
end for
for i in range(length(normData)) do

tempList = normData[:,i]
windowV = []
tempChunks = split(tempList,4)
for j in range(length(tempChunks)) do

x = tempChunks[j]
var = variance(x)
windowV.append(var)

end for
windowCluster.append(clusters)
windowVariance.append(windowV)

end for
windowClusterT = transpose(windowCluster)
windowVarianceT = transpose(windowVariance)
averageWindowCluster = mean(windowClusterT)
IntraV = mean(windowVarianceT)

Result: average window cluster, intragroup variance

new group, and stop when the variance of each cluster group
is lower than the mean of the respective group. The scheme
provides the optimal number of clusters within the sample.

2) Intragroup Variance: The intragroup variance is calcu-
lated using equation 4 and the process is shown in Algorithm
1. First steps include, normalizing the original data set and
separating the network traffic into groups using the sliding
window. For each network feature (i.e the columns in the
matrix data set) the variance is calculated and stored.. Taking
the average between the stored variances of each network
feature results in the intragroup variance of the network
traffic within the sliding window. Sample data sets with low
intragroup variances demonstrate closeness of the data within
the sliding window.

B. High Rate DoS Detection Scheme

Most high-rate DoS attacks involve flooding network pack-
ets to the victim node in-order to reduce available bandwidth
and disconnect them from the rest of the network. During
high-rate DoS attacks, there is a halt to alternating source
and destination IP addresses (i.e. IP addresss for both source

(c) (d)

Fig. 2. (a) Source IP (window size = 2000) (b) Source IP (window size = 40).
The histogram demonstrates the probability of change in subsequent network
packet IP addresses for different window sizes.

and destination repeat for a huge batch of successive packets
captured).

1) Transforming IPs to Binary Options: For the purpose
of detecting high-rate DoS, we adopt a technique used in
[15] to transform the source and destination IP addresses into
binary options.

In,p =

{
0, if Pn = Pn − 1.

1, if Pn 6= Pn − 1.
(1)

As states in equation 1, if the IP address is repeated in
succession then we append a ’0’. When the IP address of
the current packet changes from the previous packet then we
append a ’1’).

2) Multivariate Gaussian Distribution Model: Normal
gaussian distribution is the most commonly recognized
distribution observed in most processes. Single and
multivariate gaussian distribution is defined in the equations
below [16], [17]:

N(x;µ, σ2) =
1√

2πσ2
e−(x−µ)2/2σ2

(2)

where µ represents the mean and σ2 represents the variance.
Adding to this equation for multivariate Gaussian distributions
we have [17]:

p(x) =

k∑
j=1

φjN(x;µj ,Σj) (3)

where φj is the assigned weight of the respective Gaussian
(i.e. strength of Gaussian curve) and Σj is the covariance
matrix. The next step is splitting the array into user specified
sliding-window sizes. Throughout our experiments the sliding-
window size was varied to find the optimal window size that
provided the best results. Recording the occurrence of the ’0’
value for each window segment and plotting the distribution
resulted in the histogram, shown in figure 2 for the source
IP (destination IP distribution model followed similar trend
as source IP model). Increasing the window size assisted in
creating a cleaner separation for the multivariate Gaussian
distribution, while decreasing the window size resulted in the
two peaks mixing making it harder to distinguish. Fitting these
histograms to multimodal gaussian distribution provided the
parameters shown in table I.
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TABLE I
MULTIVARIATE GAUSSIAN DISTRIBUTION PARAMETERS (WINDOW = 40)

Gaussian
Multivariate
Parameters

Mean Variance Weight

Source IP 1.281 2.303 0.5504
17.09 44.3 0.4496

Destination IP 1.477 3.102 0.5784
23.61 54.77 0.4216

C. Responsive Autonomic Virtual Networking Framework

To develop an autonomous adaptive SDN the three major
components (i.e detection, decision-making, and execution)
must be realized and put in a coherent system. The detec-
tion component with some of the novel clustering detection
schemes is presented in the previous sub-sections. To develop
the other two components; monitoring of the data plane
network, analysis of the network performance statistics, and a
reliable feedback loop to the SDN controller must be in-place.

1) Decision-making: It is proven in recent work [18] that
supervised deep learning is the best option in accurately
categorizing network traffic based on which type of cyber
attack or fault is occurring in the network environment. Raw
telemetry data from communication networks is usually not la-
beled [19], therefore, it is often necessary to use unsupervised
algorithms in networking applications. Implementing a hybrid
unsupervised and supervised machine learning solution grants
the opportunity of generating optimal mitigations, created by
automation of javascripts and python shell scripts, to attacks.
In our case, adaptive policy updates are generated with the
primary task of disconnecting the attack nodes from the victim.
Other secondary task can be implemented to re-route the traffic
of the victim node to its destination using segment routing.
Network performance statistics can be monitored from the data
plane using the ONOS SDN internal packet processors, or third
party entities such as T-shark and sflow-RT [20].

2) Execution: The feedback loop to the SDN controller
is the most crucial piece of the puzzle. Without it there
are no adaptive updates sent to the controller autonomously,
resulting in the state of the network remaining the same as
the initial configuration. Adaptive policies can be sent to the
ONOS northbound interface using javascript to connect to the
rest api provided from the open-source networking platform
[21]. Devices connected to the SDN southbound interface (i.e.
data plane) are open networking technologies, such as open
virtual switch (OVS), that support utilizing virtual networking
components and grants SDN controller entities access to repro-
gramming packet processing, and handling capabilities using
a network programming language ”programming protocol-
independent packet processors” (P4).

IV. PERFORMANCE ANALYSIS

The proposed RAvN environment was simulated in Mininet.
Developers included classes that support the inclusion of
wireless devices in the Mininet environment [22], so a het-
erogeneous wired and wireless networking architecture can
be studied. In addition, we deployed an instant virtual net-
work on a stand-alone computer and were able to expand

TABLE II
ANOMALY DETECTION PERFORMANCE EVALUATION

Anomaly Detection
Schemes TPR TNR PPV ACC

C.Intra Method 33.49% 98.89% 96.79% 96.12%
Multivariate Gaussian

Clustering 43.42% 88.91% 79.66% 80.54%

Kmeans+norm+PCA 34.29% 95.47% 73.97% 76.28%
Kmeans 35.78% 88.41% 75.54% 73.38%

this network by allowing the connection of multiple exter-
nal nodes and other computation resources, including other
PCs, mobile devices, VMs, etc. The SDN controller used
was the open-source network operating system ONOS [21].
For experimentation purposes, the cluster algorithms were
trained and tested using the Intrusion Detection Evaluation
Dataset (CICIDS2017) developed by the Canadian Institute
for Cybersecurity. This dataset contains realistic network cyber
attacks generated from the top automated cyber attack tools
available [18]. The IDS data set uses CICFlowMeter, a
network traffic flow generator and analyzer used to generate
bidirectional flows. More than 80 statistical network traffic
features such as Duration, Number of packets, Number of
bytes, Length of packets, etc. are recorded for the forward and
backward packet transmissions [23], [24]. Network traffic and
performance statistics collected by third party monitoring tools
are stored in a database (InfluxDB, AWS, etc.) for analysis.
For comparison the popular unsupervised machine learning
technique, Kmeans, is implemented. In previous works [25],
Kmeans has proven to be reliable on old datasets emulating
intrusions on military networks [26].

A. Evaluation Methods

The size of the data set was n = 172,785 and the size of the
training and testing set was n = 86,568, and 86,199 respec-
tively. The network traffic consisted of 4 types of traffic includ-
ing benign, DoS slowloris, DoS slowhttp, and DoS hulk. We
recorded true positive (TP), true negative (TN), false positive
(FP), and false negative (FN) results. Using these values we
calculated true positive rate: TPR = TP

(TN+FP ) (sensitivity),
true negative rate: TNR = TN

(TN+FP ) (specificity), positive
predictive value: PPV = TP

(TP+FP ) (precision), and overall
accuracy: ACC = TP+TN

(TP+FP+FN+TN) .

V. NUMERICAL RESULTS

For this work, we recorded the accuracy of the proposed
algorithms, and compared them to the most commonly used
unsupervised machine learning algorithm k-means. We also
demonstrate the impact of our anomaly detection and mitiga-
tion framework.

A. Clustering Schemes Performance Comparison

As can be seen in table II, the accuracy’s of the pro-
posed algorithms outperformed the popular k-means algo-
rithm. Both k-means clustering algorithms (i.e. k-means, k-
means+norm+PCA) achieved an accuracy of 73.37% and
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Fig. 3. Network throughput during normal, DDoS attack, and mitigated
network traffic

76.28% respectively. The k-means algorithm clusters data
points by alternatively assigning data points to clusters and
updating cluster representatives. Data points are assigned to
the cluster in which they have the minimum Euclidean distance
from the cluster centers. The networking data set produced
by replicating state-of-the-art DoS attacks on normal traffic
proves to be a challenge for the popular unsupervised learn-
ing approach of implementing kmeans+normalization+PCA.
Another downfall of k-means algorithm is information on the
dataset must be known prior to execution (i.e. the optimal
number of clusters in the data is needed).

The multivariate clustering method recorded 80.54% accu-
racy rating. This method is very good at detecting consisten-
cies in IP addresses (i.e. no changes in source or destination
IP addresses from previous packets). For this reason, this
method has a high percent chance of detecting high rate
DoS attacks such as ”DoS hulk” which floods large amounts
of packets to victim devices. This method is also good for
detecting greedy-bandwidth applications which portray similar
consistent characteristics in the source and destination IP
address, thus resulting in false alarms being triggered.

The clustering intragroup variance method, C.Intra, per-
formed the best out of the three with 96.13% accuracy due
to the fact that DoS traffic portrays similar or identical feature
characteristics in successive packet transmissions. C.Intra is
good at detecting these window segments of successive net-
work features that tend to have a small deviation or repeat
themselves from previous packets. Signs of DoS included
low average cluster numbers accompanied by a very low
or consistent intragroup variance. In our case a sequence of
values < 2.0 with a slight deviation of ± 0.175 between
values, whilst their respective intragroup variance values <
0.01. Even though this method performed the best, it still has a
challenging time with detecting attacked network traffic that is
not successive and evenly distributed within normal traffic (i.e.
single packet attacks aimed at disrupting the application layer).
From our knowledge and through reviewing this data set, only
injection-based cyber attacks demonstrate the characteristics of
the challenging network traffic, and will be addressed in future
work.

B. Impact of attack detection & mitigation framework

In this section, we analyze the impact of the attack detection
strategy proposed in this paper on network performance, using
the Mininet-WiFi network simulator. In this simulation, the
controller monitors the node and flows within the network,
extracts the features needed by the RavN to detect attacks,
generate the mitigation solution and enforce the mitigation
mechanism by refreshing the flow tables in switches. The
simulation environment consists of N = 100 nodes randomly
placed in an area of 100× 100 meters with each node having
a range of R = 10 meters.

We simulate a targeted cyber attack on 5 nodes in the
network by sending large number of TCP SYN packets to the
attacked nodes to drain their resources. By using the RavN
framework we were able to detect this TCP cyber attack
and request the controller to take an action by starting the
mitigation mechanism. The controller limits the flow of TCP
SYN packets to the attacked nodes, which improves the net-
work performance considerably. During the attack, the average
throughput of the network initially decreased by 32% but due
to the RavN-initiated response, it was increased by 24%. It
is noted the impact on the network traffic from the cyber
attack spanned 30-50 seconds before the mitigation process
took effect, indicating a quick response to the anomalous
behaviour.

VI. BACKGROUND INFORMATION

A. Network Cyber Attacks

Today, there are many automated tools developed to carry
out a plethora of cyber attacks on target servers, such as Low
Orbit Ion Canon (LOIC), High Orbit Ion Canon (HOIC), Hulk,
GoldenEye, Slowloris, Slowhttptest, and Damn Vulnerable
Web App (DVWA) [18]. There are two common types
of DoS attacks including low-rate DoS and high-rate DoS
aimed at depleting different resources of the victim. In low-
rate DoS, attackers attempt to exhaust memory resources of
victim devices by sending few packets to attack the application
level directly. In high-rate DoS, attackers attempt to exhaust
available bandwidth by flooding multiple packets from ”bots”
to the victim [27].

B. Unsupervised Machine Learning & Clustering Techniques

In implementation, it is infeasible to assume that all possible
behaviors can be identified and characterized in training data
prior to implementation of a system malicious attacks and
their associated behaviors on the communication grid can and
will be re-imagined and re-implemented. Thus, a system is
needed that can adapt to changes in communication behavior
based on cross-layer information and can robustly detect and
classify anomalous communication packets in real time.

Clustering algorithms are catergorized as one of the four
types including connectivity, centroid, distribution, and density
based-models. For the purpose of this work, we adopt the cen-
troid and distribution model of clustering for DoS detection,
and we compare our new scheme to the centroid-based K-
means approach computed using the equation: d(pn, ck) =
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(∑D
d=1(pn − ck)2

)1/2

where pn = [p1, p2, . . . , pD] ∈ RD is
a D dimensional vector containing the the features associated
with the nth data point (in our case, a network packet) and
ck = [c1, c2, . . . , dD] ∈ RD is a D dimensional vector of the
kth cluster representative.

C. Variance & IntraGroup Variance

The variance (σ2) is the expectation of the squared deviation
of a random variable from its mean (µ): σ2 = Σ(X−µ)2

N .
The variance is proportional to the scatter of the data, i.e.,
it is small when the data set is clustered together, and large
when the data set is widely scattered. Intragroup variance,
also known as within-group variance or intracluster variance,
refers to variations caused by differences within individual
cluster groups. The intragroup variance, S2

p or σ2
p, calculates

the variance of each individual cluster/group then finds the
average, as shown in Equation (4) [28].

S2
p =

Σ(yi1 − µ1)2 + Σ(yi2 − µ2)2 + ...+ Σ(yig − µg)2

N − g
(4)

where yi1 represents each observation in a group, µi represents
the mean for that group, N is the sample size and g is the
number of groups.

VII. CONCLUSION

In conclusion, the benefits of implementing our proposed
responsive autonomic virtual network (RAvN) architecture in
place of the common networking architectures or in place of
traditional SDN strategies has been discussed. It was discussed
how implementing the RAvN architecture can provide secure
communications, detection and mitigation of cyber attacks,
and additional resilience in the presence of faulty or attacked
data or communication nodes within the network. The paper
also evaluated the use of various clustering methods. We’ve
experimented with the popular unsupervised machine learning
k-means algorithm for detecting DoS anomaly within realistic
network traffic. We’ve experimented with clustering using a
multivariate Gaussian distribution model fitted to the constant
changes in the IP addresses of the network, and we also
introduce a new method of detecting DoS attacks within
network traffic using a simple clustering algorithm and in-
tragroup variance (C.Intra). The purposed intragroup variance
and multivariate gaussian methods out perform the common
k-means method by 19.84% and 4.26% respectively.
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