
1594 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 68, NO. 8, AUGUST 2021

Emulating Radiation-Induced Multicell Upset
Patterns in SRAM FPGAs With Fault Injection

Andrés Pérez-Celis , Corbin Thurlow, and Michael Wirthlin , Senior Member, IEEE

Abstract— Radiation-induced multiple-cell upsets (MCUs) are
events that account for more than 50% of failures on triple
modular redundancy (TMR) designs in SRAM field program-
mable gate array (FPGA). It is important to understand these
events and their impact on FPGA designs to develop improved
fault mitigation techniques. This article describes an enhanced
fault injection (FI) method for SRAM-based FPGAs that injects
MCUs within the configuration memory of an FPGA based
on MCU information extracted from previous radiation tests.
The improved FI technique uncovers 3× more failures than is
observable in conventional single-bit FI approaches. The results
from several MCU FI experiments also show that injecting MCUs
can replicate the failures observed in the radiation beam test and
identify new failure mechanisms.

Index Terms— Fault injection, field programmable gate arrays
(FPGA), multiple-cell upsets (MCUs), reliability, single event
upsets.

I. INTRODUCTION

ELECTRONIC circuits are susceptible to
radiation-induced effects known as single-event effects

(SEEs) [1]. These events occur when a high-energy particle
strikes and transfers some of its energy to elements of the cir-
cuit. This energy is commonly transferred in the form of cur-
rent. The induced currents from this energy transfer can be suf-
ficient to cause a change in the state of a memory element [2].
This change of state is known as a single-event upset (SEU)
and can cause a variety of problems in electronic circuits.

SRAM-based electronic devices are susceptible to SEUs
that can change the values stored within SRAM cells leading
to data corruption. In an SRAM-based FPGA, the configu-
ration memory (CRAM) is implemented as SRAM memory
and contains the device configuration information: routing,
interconnections, and logic functions. Since specific CRAM
bits implement the logic functions within the FPGA, data
corruption in these SRAM cells can lead to FPGA design
failure or malfunction.

Manuscript received February 4, 2021; revised March 19, 2021 and
March 26, 2021; accepted March 30, 2021. Date of publication April 7,
2021; date of current version August 16, 2021. This work was supported
by the Brigham Young University (BYU) site of the National Science
Foundation (NSF) Center for Space, High-Performance, and Resilient Com-
puting (SHREC) under Proposal NS-2018-8031-A. The radiation testing
was supported by the Los Alamos Neutron Science Center (LANSCE) in
December 2018, under Proposal NS-2018-8031-A.

The authors are with the Department of Electrical and Computer Engi-
neering, NSF Center for Space, High-Performance, and Resilient Comput-
ing (SHREC), Brigham Young University, Provo, UT 84602 USA (e-mail:
pcelis@byu.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNS.2021.3071704.

Digital Object Identifier 10.1109/TNS.2021.3071704

Like other SRAM-based devices, ionizing particles can
affect more than one memory cell in the CRAM array [3].
An upset in more than one memory cell could happen for two
reasons. First, an energized particle may spread the charge
over more than one memory cell, causing them to upset. This
event is known as a multiple-cell upset (MCU). In a previous
neutron test, these MCUs account for 30% of all observed
events. Second, an upset may happen in a memory cell that
controls the functionality of other elements within the FPGA,
causing the other related bits to change their value. This
event is known as a micro single-event functional interrupt
(micro-SEFI).

Several strategies have been proposed to mitigate SEUs
within FPGA configuration memory. A technique widely used
on FPGAs is triple modular redundancy (TMR) implemented
with configuration scrubbing [4]. While TMR coupled with
scrubbing is an effective approach for mitigating against
single-event upsets, this approach may not tolerate multiple
CRAM upsets caused by a single ionizing particle. The effect
of MCUs is important to study because MCUs can overcome
the protection from TMR and other techniques such as error
detection and correction (EDAC) codes. Researchers have
shown that MCUs are a significant contributor to the failures
presented in FPGAs protected with TMR. Cannon et al. [5]
estimated that 50% to 81% of the failures in their TMR designs
were attributed to MCUs. With MCUs becoming a major
cause of TMR failure, it is important to better understand
these events and how they impact FPGA designs using TMR.
With this knowledge, improved mitigation techniques can be
developed.

Faults can be artificially introduced into an FPGA design
to estimate the design sensitivity to SEUs. One commonly
used method is fault injection (FI). FI is a technique that
emulates SEUs by intentionally changing the content of the
FPGA CRAM [6]. FI is usually performed one bit at a time
to simulate radiation-induced SEUs.

This article introduces a novel approach for understanding
the impact of MCUs on SRAM FPGA designs by injecting
multiple cell upsets within the CRAM memory. The approach
presented in this article relies on fault injection to inject MCU
events into the SRAM FPGA that match representative MCU
events seen in previous radiation testing. This enhanced FI
technique can be used to evaluate the impact of MCUs on
mitigation techniques such as TMR and EDAC and provide a
more accurate understanding of FPGA design failure.

This article will begin by reviewing previous efforts to
identify MCU events within FPGAs in radiation testing. Next,

0018-9499 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Brigham Young University. Downloaded on May 12,2022 at 16:26:30 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0328-6713
https://orcid.org/0000-0003-0931-4260

PÉREZ-CELIS et al.: EMULATING RADIATION-INDUCED MULTICELL UPSET PATTERNS 1595

this article describes general FI approaches used for SRAM
FPGAs. The novel MCU FI is described, followed by the
results of several experiments conducted using this approach.

II. FI FOR SRAM FPGAS

FI is a process where upsets are introduced artificially into
the CRAM of the FPGA. The purpose of these upsets is to test
the response of specific designs when they occur. This process
can be done using hardware, software, or simulation tools.
Although the mechanism for inserting faults into the CRAM
is different from radiation testing, FI can provide essential
information on the sensitivity of FPGA designs to CRAM
upsets and provide early estimates on the effectiveness of SEU
mitigation techniques [7]. In many cases, FI is often used to
prepare for radiation testing.

Before performing a beam test, it is helpful to perform FI
to understand how the design will respond to upsets present
in the system. FI may expose undesirable responses to failure.
For example, the design may experience failures too often to
be a suitable candidate for beam testing. Another example is
that an automatic recovery method might not detect specific
failures, leading the system to fail to recover as intended.
Without performing FI before a radiation test, tests can result
in missing data, misspent money, and wasted beam time.

Most FPGA FI systems include the following steps:
1) intentionally inject a fault into the CRAM of an FPGA
configured with a specific design, 2) operate the FPGA design
under the fault condition with test vectors, 3) identify design
or system failures, 4) repair the injected fault, and 5) log
FPGA design behavior under faulty conditions. This basic
approach seeks to understand how faults affect the behavior
of FPGA designs when subjected to radiation-induced faults.
In most cases, only a single CRAM bit is altered to estimate
the sensitivity of a design to single-event upsets.

Although FI can provide insights into the behavior of FPGA
designs affected by radiation-induced upsets, it has some
important limitations. First, not all internal state elements and
CRAM bits in the device can be upset during FI. Many state
bits are not user-accessible and thus cannot be artificially
upset. As such, FI will not be able to expose a variety of
circuit behaviors that may be seen in radiation testing [8].

Second, FI does not insert faults in the same manner as
radiation testing. In most approaches, FI involves upsetting a
single CRAM bit [9], [10]. This single-bit injection is unlike
the behavior seen in radiation testing in which multiple bit
upsets are often observed. Because of this limitation, most FI
approaches fail to emulate the actual upset behavior seen in
radiation testing and radiation environments.

Another challenge with FI is that faults generally do not
arrive in the same temporal manner as in a radiation beam
test. Faure et al. [11] have described an approach to reproduce
ground testing results of a microprocessor using FI. In this
work, the temporal nature of fault insertion is not a concern
as the intent is to allow the fault to propagate throughout the
design. By injecting faults before starting the execution of a
program, this FI approach allows for maximum propagation
of each fault and facilitates reproducibility of the results.

Fig. 1. Example of a 3-bit MCU in the logical view of a CRAM.

Fabero et al. [12] extracted MCUs from a neutron beam
test. Based on the shapes, they mention that it is possible
to perform an FI test that follows the beam distribution to
improve the statistics gathered by FI. This work did not
use these MCU data for subsequent FI or use these data to
demonstrate MCU-specific failure modes.

III. MCU IN FPGAS

Most of the cells that upset in a radiation environment
are single-bit upsets or SBUs. These upsets involve a single
particle causing a single cell to upset. These upsets involve
only one cell and have no impact on other cells in the device.
Other events in the radiation test will have a single particle
upset multiple cells. These events are called multicell upsets
or MCUs, and for a previous neutron testing experiment, they
account for 30% of the number of upset events. MCU events
are caused by the charge of a single particle spreading to more
than one memory cell.

Fig. 1 demonstrates an example of an MCU within a 1-D
array CRAM within an FPGA. The x-axis represents the
frame number1 and the y-axis represents the bit number within
the frame. This figure includes a 3-bit MCU (represented in
orange) with upsets in logical locations (A,0), (A,1), and (C,2).

The work in [3] demonstrates the feasibility of extracting
MCU events from radiation test data. This approach analyzes
the CRAM upset data within discrete “scrub cycles” that
contain multiple upsets that are either unrelated or caused
by the same ionizing event. After analyzing these data, MCU
events are extracted and specified with both their shape of
MCUs and logical location.

Table I shows an example of two MCUs extracted using the
method mentioned before for a neutron test at Los Alamos
Neutron Science Center. The first column ScrubID shows an
identification number of the readback of the CRAM. The
following three columns specify the exact location in CRAM
of the upsets comprising the MCU. With enough radiation
test data, the cross section and distribution of various MCU
sizes and their shapes can be estimated. These parameters
can be used to perform FI of MCUs that provides additional
information on the failure modes of the design.

The method introduced in [3] to extract MCUs from a list
of unique upset bits involves identifying common patterns on

1Frame is the name that Xilinx gives to the smallest addressable unit
comprised by a group of words in the logical organization of the CRAM

Authorized licensed use limited to: Brigham Young University. Downloaded on May 12,2022 at 16:26:30 UTC from IEEE Xplore. Restrictions apply.

1596 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 68, NO. 8, AUGUST 2021

TABLE I

3-BIT MCU AND A 2-BIT MCU EXTRACTED
FROM NEUTRON BEAM TEST DATA

Fig. 2. MCU reconstruction example. (a) Observed upsets in the scrub cycle.
(b) Grouping of MCUs after processing the first MCO (0,−1). (c) Updated
grouping of MCUs after running through all MCOs.

the positional difference of upsets. These common patterns
are then combined and analyzed to identify statistically likely
MCUs. This method consists of the following steps:

1) Gather SRAM upset data,
2) Remove contamination from the data,
3) Compute the offsets between the upset locations and

generate a histogram of offsets,
4) Select the most common offsets (MCOs) using Poisson

statistics, and
5) Reconstruct MCUs based on MCOs.

This MCU extraction technique is based on identifying
upset patterns that occur within a scrubbing interval during
radiation testing. These patterns are identified by using Poisson
statistics to select the pairs of upsets that occur far more
frequently than they would if upsets were distributed randomly.
The MCOs are selected and used to reconstruct the MCUs.

The reconstruction of MCUs is an iterative process that
iterates through each scrub cycle and groups two-bit upset
pairs that have the same offset as any of the MCOs. Consider
the example in Fig. 2, where a scrub cycle experienced five
individual bit upsets. Also, consider that the adjacency model
has only two MCOs: (0,−1), (1, 0). Fig. 2(a) shows the data
in the scrub cycle. The algorithm takes the first MCO on the
adjacency model, (0,−1) for this case, and groups the bits
into MCUs. The result is shown in Fig. 2(b). The algorithm
goes through all the MCOs of the adjacency model and groups
the upsets into MCUs. For this example, the resulting MCUs
are shown in Fig. 2(c). Then, the algorithm continues with the
next scrub cycle.

IV. MCU FI

Results from the MCU extraction process can be used to
generate a database of MCU shapes and their distribution. With
this information, it is possible to perform different types of

MCU FI tests. One test can follow the distribution of SBU
and MCUs as seen in a radiation environment or during a
beam test. Another type of test can exercise the design and
monitor the response to uncover failure modes that only occur
when exposed to MCUs. This article focuses on the latter.

A straightforward way to exercise the response behavior
to MCUs of a given design is to pick an MCU shape from
the database generated with the extraction of MCUs using the
technique in [3]. From this database, it is possible to pick a
random MCU and inject it into the design. Since the MCU
injected was previously seen in the beam, we can assume that
the MCU is a valid MCU that could be observed in radiation
environments. For this work, MCUs injected during FI are
those that were previously seen in the neutron beam.

Performing FI of MCUs involves additional challenges,
given that MCUs are related to the physical layout of the
device. First, it might not be possible to inject the desired
MCU shape in the desired location. This obstacle could happen
due to an invalid logical bit location that restricts the user from
accessing the bit. Consider the example in Fig. 1, where the
black squares indicate bits that are not addressable to the user.
It is not possible to inject the same MCU shape at bits (B,0),
(B,1), and (D,2) because bit (D,2) is an invalid bit.

Second, even though the user can attempt to inject any MCU
shape in random bits of the device, this could violate the nature
of MCUs. To avoid this violation, the injected MCU shape
must be a determined product of a single charged particle.
Potentially, the selected bits are not physically close to each
other. To overcome this challenge, it is necessary to perform
statistical analysis on the locations of the MCUs and restrict
the valid location to inject an MCU.

Injecting MCUs presents different challenges than single-bit
FI. To inject an MCU successfully, the logical locations of bits
to be injected must be constrained to a range of user-accessible
locations within the device CRAM. Additionally, MCU injec-
tion requires that all upsets are injected and propagate through
the system before any repair to the upset CRAM bits is
performed. This particular aspect of injecting MCUs requires
a change to the normal FI flow.

When injecting an MCU, the smallest amount of delay pos-
sible between injections is used to inject the bits that compose
the MCU. The FI system keeps track of all the injected bits
to repair them after injection. Similar to the normal FI flow,
the system status is monitored while the injections occur, and
system failures are reported. The FI algorithm then needs to
repair all injected faults as part of the MCU to avoid the
accumulation of upsets in the design.

V. EXPERIMENTAL SETUP

Several experiments were conducted to show the bene-
fits of emulating MCUs during FI tests. The MCU events
injected during these experiments were based on radiation
test data from previous neutron radiation testing at LANSCE.
The MCUs were identified from the CRAM upset data by
following the process described in Section IV.

All of the FI experiments were conducted on the TURTLE
FI system [6], as shown in Fig. 3. This system uses two Xilinx
XC7A200T devices—one acts as the design under test (DUT)

Authorized licensed use limited to: Brigham Young University. Downloaded on May 12,2022 at 16:26:30 UTC from IEEE Xplore. Restrictions apply.

PÉREZ-CELIS et al.: EMULATING RADIATION-INDUCED MULTICELL UPSET PATTERNS 1597

Fig. 3. Multiple TURTLE FI platform featuring two XC7A200T devices per
layer.

and the other as the golden device. Faults are injected into
the DUT while the golden device carefully monitors the DUT
behavior. DUT failures due to CRAM faults are reported to a
host system.

The MCU FI was performed using the JTAG Configuration
Manager (JCM) [13]. The JCM configures both devices, injects
faults into the CRAM of the DUT, compares the output of the
golden and DUT designs, reports any failures, and corrects
the failure by either scrubbing or reconfiguring the device.
For these experiments, a 1 ms delay was allowed between
each injected MCU to allow 8 000 test vectors to be evaluated.
In this experiment, the delay between each injection in a single
MCU was 9.05 × 10−4 s.

For these experiments, the JCM-injected faults based on
the MCU patterns extracted from a neutron beam test of the
XC7A200T device at LANSCE using the technique on [3].
The collected data from the beam tests are divided into
individual scrub cycles. These scrub cycles contain both the
logical address location of 1 210 370 upsets and an indication
to denote if a failure was detected in the scrub cycle. With
these data, two FI experiments were performed on eight
different FPGA designs using the TURTLE system.

The FPGA designs used for these experiments were all
based on the B13 benchmark circuit (a simple state machine
design [14]). The B13 state machine was replicated 256 times
within a single FPGA design to utilize a significant number of
resources on the device. This base design was then modified
with various SEU mitigation techniques to create eight total
design variations for testing. These designs are:

Non-TMR The original circuit with no mitigation tech-
niques applied to it.

Common-IO The original circuit with TMR applied to it but
without any of the input or output pins being
triplicated.

Split-clock The common-io three-voter circuit with
a split-clock mitigation technique applied.
Unlike the common-io design, the split-clock
mitigation technique triplicates internal clock
buffers in the DUT design.

Trip-IO The original circuit with TMR applied to it,
and where all the input and output pins are
triplicated.

SPF-PCMF The triplicated-io circuit with single point of
failure (SPF) and Place Common Mode Fail-
ure (PCMF) applied. The PCMF technique
alters the placement of the design to increase
the reliability of the design [15].

SPF-TMR This circuit implements both split-clock and
split-io mitigation techniques. Split-io tripli-
cates IO buffers within the design rather than
triplicating input pins to the design.

SPF-PCMF This is the SPF circuit with PCMF added for
increased reliability.

Striped-TMR The trip-io circuit with striping applied.
Striping is a technique that constrains each
TMR domain to separate columns within the
device [5].

The primary goal of all experiments described in this article
is to quantify the design failures that are caused MCUs (i.e.,
not caused by SBUs). When MCU failures are observed during
FI, the CRAM cells that make up the MCU are injected one
at a time to verify that the fault is caused by the union of
CRAM upsets and not due to any one of the CRAM cells by
itself.

VI. EXPERIMENTAL RESULTS

Three experiments were performed to better understand
MCU-induced design failures. In the first experiment, MCU
FI was performed to categorize faults seen in the radiation
test as caused by either SBUs or an MCU. In the second
experiment, MCUs were injected into the most reliable designs
to identify MCU design failures within the designs using
the most effective SEU mitigation techniques. In the third
experiment, MCU data observed from multiple radiation tests
are combined and applied to uncover new failure mechanisms
not seen during radiation testing.

A. Experiment 1: Comparison of SBU Failures to MCU
Failures

The first experiment was designed to show that some
failures will only occur in a design if multiple upsets are
present in the system during operation, that is, if an MCU
has occurred. For this experiment, each of the eight designs
was injected with SBUs. These bits were the upsets recorded
during a previous beam test that is part of a scrub cycle
with a failure. All upsets were injected as single bits even
if the upset was previously determined to be part of an MCU.
During FI, all upsets that caused a failure on the design
were recorded for further analysis. After injecting all single-bit
upsets, each design was injected with the corresponding MCUs
of the selected scrub cycles. The first experiment concluded
by determining the number of MCUs that caused a failure in
each design.

The first experiment shows that there is an additional
number of failures that can only occur in the presence of
an MCU. The results of this experiment are summarized

Authorized licensed use limited to: Brigham Young University. Downloaded on May 12,2022 at 16:26:30 UTC from IEEE Xplore. Restrictions apply.

1598 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 68, NO. 8, AUGUST 2021

TABLE II

SUMMARY OF RESULTS FOR SINGLE-BIT AND MCU FIS FOR
EXPERIMENT 1, WITH ONLY SELECTED MCUS INJECTED

in Table II. The designs are sorted based on the number of
failures shown during the single-bit FI. It is interesting to
note that the percentage of additional failures seen during
MCU FI passed 100% in three of the eight designs. Not
only does this translate into more total failures, but also the
additional statistics gathered could tighten the error bounds
for the computation of the sensitivity of the design [16] if the
injected events were following the distribution of the beam.

Two of the designs, pcmf-tmr and striped-tmr, had no failure
for either single-bit FIs and MCU FIs. These two designs also
had the least number of failures during beam testing and are
the two designs under test for the second experiment.

B. Experiment 2: MCU FI Failure Analysis

The second experiment performed additional MCU FI on
the two designs with the lowest number of recorded failures
during the beam tests. This additional FI was an exhaustive
MCU test where all the scrub cycles, regardless if it contained
a failure or not, were considered to extract the MCUs to
inject. The goal of injecting MCUs in this experiment was
to demonstrate the need to test designs that have added SEU
mitigation techniques. This experiment helps understand the
behavior and failure modes of these mitigated designs. For
this experiment, over 107 000 MCUs corresponding to 284 000
upsets were injected between the striped and PCMF designs.
The MCUs injected corresponded to all the MCUs that were
detected for each design during beam tests.

Table III shows the results of the second experiment. The
first column shows the number of failures that happened on
the designs during beam testing. When injecting the extracted
MCUs, the number of failures increased for both designs.
Interestingly, we were able to replicate and even add one
additional failure with the injection of all the MCUs to
the striped-tmr design. The results also show that we were
exceeded the number of failures for the pcmf-tmr design by
7. Since the MCUs were injected in the same location as they
appeared in the beam test data, this experiment shows that even
replaying the data can yield tighter bounds on the sensitivity
of beam-tested designs.

TABLE III

RESULTS FOR THE SECOND EXPERIMENT

TABLE IV

RESULTS FOR THE THIRD EXPERIMENT

C. Experiment 3: Reusability of MCUs to Test
TMR Designs

This experiment injected MCUs from other radiation tests
into the pcmf and striped TMR designs. The goal was to
demonstrate that MCUs extracted from other radiation tests
and MCU FI can be used to gather more statistics on the design
failures. As noted before, the two designs chosen for this
experiment are the most robust. During all the neutron beam
tests, pcmf only had two failures, which yielded a large error
bound in the design sensitivity. Using MCU FI can decrease
those bounds and provide additional information on the failure
modes of the design.

Table IV shows the results of the third experiment. The
first column specifies the test design. The second shows the
number of failures during the beam test. The third column is
the number of additional failures experienced by the design
when injecting MCUs from other radiation tests. It is worth
noting that this experiment is not trying to replay the data but
instead uses other MCU data comprised of valid MCU shapes
to make the design fail. The fourth column has the percentage
increase of additional failures. Finally, the last column shows
the number of injected MCUs.

Results from this experiment show that using data from
other beam tests can be beneficial to help uncover fail-
ures in robust TMR techniques. This experiment encourages
the reusability of data and demonstrates a straightforward,
low-cost FI approach to test SEU mitigated designs with valid
MCUs. This experiment can be performed as part of the FI
routine before going to a beam test or as an alternative when
a beam test is not an option.

VII. CONCLUSION AND FUTURE WORK

This article shows an enhanced FI testing method that
includes MCUs for their injection. Using MCUs during FI
helps uncover possible unwanted behaviors of a design. Addi-
tionally, it helps to produce failures on designs protected with
robust fault-tolerant techniques. Furthermore, injecting MCUs
provides an alternative method to test designs for projects
when access to a beam may not be possible.

Authorized licensed use limited to: Brigham Young University. Downloaded on May 12,2022 at 16:26:30 UTC from IEEE Xplore. Restrictions apply.

PÉREZ-CELIS et al.: EMULATING RADIATION-INDUCED MULTICELL UPSET PATTERNS 1599

The results show that MCUs cause additional failures that
cannot be replicated with the injection of a single bit. For our
designs, this resulted in 300% more failures. For the second
experiment, our FI method produced, for one of the designs,
more than 3× more failures. This result is interesting because
even without moving the location of the extracted MCUs,
or without generating MCUs, it is possible to induce more fail-
ures in the design than the ones experienced under the beam.
This insight shows the importance of at least replaying the
beam results. Finally, for both experiments, having additional
failures translates into tighter bounds for the computation of
the device cross section.

A possible explanation for the difference in results between
the neutron and FI tests could be that during beam tests, faults
can occur directly after the checking of the device status or
during a scrub cycle of the CRAM. The maximum time for a
fault to propagate in the beam test is determined by the scrub
cycle, which is 0.25 ms. For MCU FI, the time is 1 ms plus
0.1 ms for each bit in the MCU. In contrast, the timing of
the injection is controlled in FI. This controlled environment
ensures that every injected fault is present in the device for
the duration of one entire scrub cycle. This delay propagates
the fault throughout the system and allows the failure or
other behavior to reach the output before the device status is
checked.

For future work, we want to achieve the goal of modeling
real-world radiation environments. For this goal, we would
adjust the MCU shapes and locations based on the fluence
distribution of the radiation environment. Then, we want
to explore generating new shapes based on the extracted
patterns of the beam test. Finally, we want to combine these
data with the constraining of MCU shapes to create an FI
technique capable of producing results that more closely
mimic ones expected during the exposure to a radiation
environment.

REFERENCES

[1] M. Ceschia et al., “Identification and classification of single-event upsets
in the configuration memory of SRAM-based FPGAS,” IEEE Trans.
Nucl. Sci., vol. 50, no. 6, pp. 2088–2094, Dec. 2003.

[2] H. Quinn, P. S. Graham, K. Morgan, J. Krone, M. P. Caffrey, and
M. J. Wirthlin, “An introduction to radiation-induced failure modes and
related mitigation methods for Xilinx SRAM FPGAs,” in Proc. ERSA,
2008, pp. 139–145.

[3] A. Perez-Celis and M. J. Wirthlin, “Statistical method to extract
radiation-induced multiple-cell upsets in SRAM-based FPGAs,” IEEE
Trans. Nucl. Sci., vol. 67, no. 1, pp. 50–56, Jan. 2020.

[4] K. S. Morgan, D. L. Mcmurtrey, B. H. Pratt, and M. J. Wirthlin,
“A comparison of TMR with alternative fault-tolerant design techniques
for FPGAs,” IEEE Trans. Nucl. Sci., vol. 54, no. 6, pp. 2065–2072,
Dec. 2007.

[5] M. J. Cannon, A. M. Keller, H. C. Rowberry, C. A. Thurlow,
A. Perez-Celis, and M. J. Wirthlin, “Strategies for removing common
mode failures from TMR designs deployed on SRAM FPGAs,” IEEE
Trans. Nucl. Sci., vol. 66, no. 1, pp. 207–215, Jan. 2019.

[6] C. Thurlow, H. Rowberry, and M. Wirthlin, “TURTLE: A low-cost
fault injection platform for SRAM-based FPGAs,” in Proc. Int. Conf.
ReConFigurable Comput. FPGAs (ReConFig), Dec. 2019, pp. 238–245.

[7] H. M. Quinn, D. A. Black, W. H. Robinson, and S. P. Buchner,
“Fault simulation and emulation tools to augment radiation-hardness
assurance testing,” IEEE Trans. Nucl. Sci., vol. 60, no. 3, pp. 2119–2142,
Jun. 2013.

[8] M. Alderighi et al., “Evaluation of single event upset mitigation schemes
for SRAM based FPGAs using the FLIPPER fault injection platform,”
in Proc. 22nd IEEE Int. Symp. Defect Fault-Tolerance VLSI Syst. (DFT),
Sep. 2007, pp. 105–113.

[9] M. Alderighi, S. D’Angelo, M. Mancini, and G. R. Sechi, “A fault
injection tool for SRAM-based FPGAs,” in Proc. 9th IEEE On-Line
Test. Symp. (IOLTS), Jul. 2003, pp. 129–133.

[10] F. Lima, C. Carmichael, J. Fabula, R. Padovani, and R. Reis, “A fault
injection analysis of virtex FPGA TMR design methodology,” in Proc.
6th Eur. Conf. Radiat. Its Effects Compon. Syst. (RADECS), 2001,
pp. 275–282.

[11] F. Faure, R. Velazco, and P. Peronnard, “Single-event-upset-like fault
injection: A comprehensive framework,” IEEE Trans. Nucl. Sci., vol. 52,
no. 6, pp. 2205–2209, Dec. 2005.

[12] J. C. Fabero et al., “Single event upsets under 14-MeV neutrons in a
28-nm SRAM-based FPGA in static mode,” IEEE Trans. Nucl. Sci.,
vol. 67, no. 7, pp. 1461–1469, Jul. 2020.

[13] A. Gruwell, P. Zabriskie, and M. Wirthlin, “High-speed programmable
FPGA configuration through JTAG,” in Proc. 26th Int. Conf. Field
Program. Log. Appl. (FPL), Aug. 2016, pp. 257–260.

[14] F. Corno, M. S. Reorda, and G. Squillero, “RT-level ITC’99 benchmarks
and first ATPG results,” IEEE Des. Test. IEEE Des. Test. Comput.
Comput., vol. 17, no. 3, pp. 44–53, Jul. 2000.

[15] M. Cannon, A. Keller, and M. Wirthlin, “Improving the effectiveness
of TMR designs on FPGAs with SEU-aware incremental placement,”
in Proc. IEEE 26th Annu. Int. Symp. Field-Program. Custom Comput.
Mach. (FCCM), Apr. 2018, pp. 141–148.

[16] W. E. Ricker, “The concept of confidence or fiducial limits applied to the
Poisson frequency distribution,” J. Amer. Stat. Assoc., vol. 32, no. 198,
pp. 349–356, Jun. 1937.

Authorized licensed use limited to: Brigham Young University. Downloaded on May 12,2022 at 16:26:30 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

