
Performance Characterization and Optimization of Atomic Operations

on AMD GPUs

Marwa Elteir, Heshan Lin, and Wu-chun Feng
Department of Computer Science

Virginia Tech

{maelteir, hlin2, feng}@cs.vt.edu

Abstract—Atomic operations are important building
blocks in supporting general-purpose computing on graphics
processing units (GPUs). For instance, they can be used to
coordinate execution between concurrent threads, and in turn,
assist in constructing complex data structures such as hash
tables or implementing GPU-wide barrier synchronization.

While the performance of atomic operations has improved
substantially on the latest NVIDIA Fermi-based GPUs,
system-provided atomic operations still incur significant
performance penalties on AMD GPUs. A memory-bound
kernel on an AMD GPU, for example, can suffer severe
performance degradation when including an atomic operation,
even if the atomic operation is never executed.

In this paper, we first quantify the performance impact
of atomic instructions to application kernels on AMD GPUs.
We then propose a novel software-based implementation of
atomic operations that can significantly improve the overall
kernel performance. We evaluate its performance against the
system-provided atomic using two micro-benchmarks and four
real applications. The results show that using our software-
based atomic operations on an AMD GPU can speedup an
application kernel by 67-fold over the same application kernel
but with the (default) system-provided atomic operations.

Keywords-atomic operations, GPU, GPGPU, heterogeneous
computing, MapReduce

I. INTRODUCTION

While graphics processing units (GPUs) were originally
designed to accelerate data-parallel, graphics-based
applications, the introduction of programming models such
as such as CUDA [13], Brook+ [1] and OpenCL [10] has
made general-purpose computing on the GPU (i.e., GPGPU)
a reality. One critical mechanism to support general-
purpose computing on GPUs is atomic operations. Atomic
operations allow different threads to safely manipulate
shared variables, and in turn, enable synchronization and
work sharing between threads on the GPU. For instance,
atomic operations have been used to implement barrier
synchronization on GPUs within a kernel [19]. These
operations are also useful in constructing complex data
structures such as hash tables [12] or building high-level
programming frameworks such as MapReduce [8], [9].

Although the performance of atomic operations has been
greatly improved on NVIDIA GPUs [16], using the atomic
operations on AMD GPUs e.g., AMD/ATI Radeon HD
5000 series, can lead to significant performance penalties.
As noted in the AMD OpenCL programming guide [3],
including an atomic operation in a kernel may force
all memory accesses to follow a slow CompletePath as

opposed to a much more efficient FastPath even if the atomic
operation is not executed at all.1 For example, the bandwidth
of a simple copy kernel, as shown in Figure 1, drops from 96
GB/s to 18 GB/s when an atomic add operation is included.

Figure 1. FastPath (blue) vs CompetePath (red) using float1 [3]

In this paper, we first seek to quantify the performance
impact of using atomic operations on AMD GPUs. We
then propose a novel software-based implementation of
the atomic add operation, which can significantly improve
application performance by preventing a kernel from using
the degraded memory-access path. Together with a detailed
discussion on the design of our software-based atomic add,
we present performance evaluation of our approach with
two micro-benchmarks and four representative applications.
The results show that our software-based atomic add
operations on an AMD/ATI Radeon HD 5870 GPU can
speedup an application kernel by 67-fold over that same
kernel but with the (native) system-provided atomic add.

II. BACKGROUND

In this section, we give some background on the AMD
GPU architecture with a focus on its memory access design.

A. AMD GPU Architecture

An AMD GPU comprises groups of compute units. Each
compute unit has several cores named stream cores, and
each stream core contains several processing elements.

1Details of the CompletePath and FastPath will be discussed in Section II.

These processing elements are the main computational
units that perform integer and floating-point operations.
All stream cores in a single compute unit execute the
same sequence of instructions; however, different compute
units can execute different instructions independently. A
stream core is a five-way VLIW processor that contains five
processing elements and one branch execution unit. As such,
up to five scalar operations can be issued in a single VLIW
instruction. Double-precision, floating-point operations are
executed by connecting two or four processing elements.

The AMD GPU has off-chip device memory called
global memory; data from the host is transferred to this
memory via PCIe. The global memory consists of several
memory channels, each having its own memory controller.
Each memory channel has a L2 cache shared between
different compute units. Moreover, all stream cores in
a single compute unit share an on-chip memory named
“Local Data Store” (LDS), whose bandwidth is significantly
higher, i.e., more than 14 times higher on the AMD/ATI
Radeon HD 5870, than global memory. LDS is connected
to the L1 cache, as shown in Figure 2. In addition, there
are two other on-chip memories called texture memory and
constant memory that are shared by all compute units.

The Radeon HD 5870 GPU consists of 20 compute
units, where each compute unit has 16 stream cores. Each
stream core in turn has five processing elements. The global
memory is divided into 8 memory channels that have an
interleave of 256 bytes, so a linear burst switches channels
every 256 bytes. The LDS per compute unit is 32KB; L1
cache is 8KB per compute unit; and L2 cache is 512KB.

B. FastPath vs. CompletePath

On AMD GPUs, specifically the Radeon HD 5000 se-
ries [3], two independent memory paths connect the compute
units to global memory: CompletePath and FastPath, as
shown in Figure 2. The effective bandwidth of the FastPath
is significantly higher than that of the CompletePath. In
addition, each path is responsible for different memory
operations; FastPath performs loads and stores to data whose
sizes are multiples of 32 bits, whereas the CompletePath per-
forms advanced memory operations, e.g., atomic operations
and accesses to data types that are not 32 bits in length.

Executing a memory load through the FastPath is done
directly by issuing a single machine-level instruction.
However, a memory load through the CompletePath is
done through a split-phase operation. First, the old value
is atomically copied into a special buffer. The executing
thread is then suspended until the read is done, which may
take hundreds of cycles. Finally, a normal load is executed
to read the value from the special buffer.

The selection of memory path is statically done by the
compiler on AMD GPUs. The strategy used by the compiler
maps all data accesses by a kernel to a single “Unordered
Access View” (UAV) to enable the compute units to store
results in any arbitrary location. As a result, including one
atomic operation in the kernel may force the compiler to
use the CompletePath for all loads and stores in the kernel.

SIMD Engine
LDS, Registers

Compute Unit to Memory X-bar

Global Memory Channel

L1 Cache

L2 Cache Write Cache

Atomic Path

Figure 2. AMD GPU Memory Architecture

C. GPGPU with AMD

Currently, OpenCL [10] is the main programming
language for AMD GPUs. Consequently, we choose
OpenCL as our implementation tool in this paper. Using
OpenCL terminology, each instance of a kernel running
on a compute unit is called a workitem. All workitems are
grouped into several groups named workgroups. Workitems
in a workgroup are executed in wavefronts. Several
wavefronts are executed concurrently on each compute unit
to hide memory latency. Specifically, the resource scheduler
switches the executing wavefront whenever the active
wavefront is waiting for a memory access to complete.

III. QUANTIFYING THE IMPACT OF ATOMIC OPERATIONS

To quantify the performance impact of atomic operations
on memory access time, we run the simple kernel code,
shown in Figure 3, on the Radeon HD 5870 GPU. The code
includes only two instructions; the first is an atomic add
operation to a global variable, and the second is a memory
transaction that reads the value of the global variable and
writes it to an element of an array.

__kernel void Benchmark (__global uint *out,
 __global uint *outArray)

{
 int tid = get_global_id(0);

 // Safely incrementing a global variable
 atom_add(out,tid);

 /* Writing the value of the global variable

 to an array element */
 outarray[tid]=*out;
}

Figure 3. A simple copy kernel with atomic add operation

We measure the kernel execution time of three versions
of the aforementioned kernel, as shown in Figure 4. The
first version contains only the atomic operation. The second
contains only the memory transaction. The third contains

both. Ideal represents the sum of the execution times of the
atomic-only and the memory transaction-only versions.

By analyzing the ISA code, we found that the number of
CompletePath memory accesses is 0 and 3 for the second
and third versions, respectively. As a result, the memory
access time increases significantly by 2.9-fold and 69.4-fold
for 8 and 256 workgroups, respectively, when including
the atomic operation. Note that, as the number of memory
transactions in the kernel increases, the impact of accessing
the memory through the CompletePath is exacerbated, as
discussed in Section VI.

Figure 4. Kernel execution time of the simple copy kernel

Based on the above results, our goal in this paper is to
develop an efficient software-based atomic operation that
can efficiently and safely update a shared variable, and at
the same time, does not affect the performance of other
memory transactions.

IV. SOFTWARE-BASED ATOMIC ADD

Here we present the design details of our software-based
atomic add operation.

A. Overview

In Khronos’s OpenCL specification [10], atomic
operations have six types: add, subtract, increment,
decrement, exchange, and compare then exchange. Two
atomic operations, add and compare then exchange, can be
viewed as the core for the other operations.

In this paper, we only propose a software-based version
of atomic add and leave the rest for the future work.
However, the subtract, increment, and decrement atomic
operations can be implemented using an approach similar
to our proposed method.

Implementing atomic add on GPUs is tricky because of
the lack of efficient synchronization primitives on GPUs.
One straightforward approach uses a master-slave model to
coordinate concurrent updates at the granularity of threads.
As shown in Figure 5, three arrays, i.e., address array,
increment array, and shared variable array, are maintained
in global memory. Each thread executing the software atomic
add operation writes the increment values to a shared vari-
able to the increment array and the address of the shared

variable to the address array. Note that storing the address
of a shared variable enables support for multiple shared
variables in a kernel. A dedicated master/coordinator thread,
which can be run in a separate workgroup, continuously
spins on the address array. Once the master thread detects
any thread executing the atomic operation, it updates the
corresponding shared variable using the address and the in-
crement value stored. Once the update is finished, the master
thread resets the corresponding element of the address array
to 0, signaling the waiting thread, busy waits on its corre-
sponding element until the update is finished. Since only one
thread is doing the update, the atomicity is guaranteed.

t1

t2

t3

t4

t5

t6

t7

T8

t0

R
e
q

u
e

s
ti

n
g

 t
h

re
a
d

s

Master/ Coordinator
thread

Address/
Increment Arrays

Shared variables

Step1

Step2

Step3

Step1: Requesting thread registers the address and the increment
 of the shared variables.
Step2: Coordinator thread reads the registered addresses and increments
 and generates the global increment of each unique address.
Step3: Coordinator thread safely updates the shared variables

Figure 5. High level illustration of handling the software atomic operation

However, in this basic implementation described above,
the master thread can easily become a performance bottle-
neck because of the serialization of update calculation as
well as the excess number of global memory accesses. In ad-
dition, maintaining one element per thread in the address and
increment arrays can incur space overhead for a large num-
ber of threads. To address these issues, we introduce a hierar-
chal design that performs coordination at the level of wave-
fronts and parallelizes the update calculation across the cur-
rent threads executing the software atomic add. Specifically,
the increment array maintains one element per wavefront, so
does the address array. Each wavefront first calculates a local
sum of the increment values requested by the participant
threads in the fast local memory,2 then it stores the local
sum to the increment array in the global memory. The
first workgroup is reserved as the coordinator workgroup.
Threads in the coordinator workgroup read the address and
increment arrays in parallel and collaboratively calculate the
update value. Note that the coordinator workgroup does not
participate in the kernel computation, otherwise deadlocks
may occur when threads diverge in the coordinator group.
Such a hierarchical design can greatly reduce global memory
transactions as well as parallelize the update computation.

2Local memory in OpenCL is equivalent to shared memory in CUDA.

One challenge in the hierarchal design is to support
divergent kernels, in which case not all threads participate
in the software atomic add. In this case, care must be
taken to avoid potential deadlocks and race conditions. As
we will explain in Section IV-B, we use system-provided
atomic operations on local variables to coordinate between
threads within a wavefront, leveraging the fact that atomic
operations on local variables will not force memory access
to take the CompletePath.

To guarantee that the coordinator will always be
executed, our current implementation assumes that the
number of workgroups used in the kernel does not exceed
the maximum number of concurrently running workgroups.
For the Radeon HD 5870, we have found that for a simple
kernel, each compute unit (of the 20 compute units) can
run up to seven workgroups, so the maximum number of
workgroups supported by our implementation in this case is
140. This value can be easily calculated following a similar
methodology to the one proposed by the CUDA occupancy
calculator [14]. While we leave support for an arbitrary
number of workgroups for future work, the current design
is useful in practice by adopting a large number of threads.

B. Implementation Details

By default, the atomic add operation returns the old
value of the global variable just before executing the
atomic operation. To support this feature, in addition to the
hierarchical design described in Section IV-A, an old value
of the shared variable is returned to each wavefront, which
then calculates a return value for each participating thread
with backtracking.

1) Data Structures: Four global arrays are used in our
implementation. The number of elements of each array
equals the number of wavefronts of the kernel, so each
wavefront reads or writes to its corresponding element of
these arrays. The first array is the WavefrontsAddresses

array; whenever a wavefront executes an atomic operation
to a shared variable, it writes the address of this variable to
its corresponding element in this array. The second array
is the WavefrontsSums array, which holds the increment
of every wavefront to the shared variable. The third array
is the WavefrontsPrefixsums array, which contains the
old value of the global variable just before executing the
atomic operation and is used by the requesting wavefront to
generate the return value from the atomic add operation i.e.,
to mimic the system-provided atomic. The final array is the
Finished array. Whenever a wavefront finishes its execution,
it sets its corresponding element of this array to one.

2) Requesting Wavefront: Any thread executing our
software-based atomic add operation passes through four
steps, as shown in Figure 6. In the first step, the thread
collaborates with other threads concurrently executing the
atomic add operation to safely increment the wavefront’s
increment using local atomic add (line 13, 15, 16, and
18). In the second step, only one thread called the
dominant thread writes the increment and address of the
shared variable to the global memory (lines 22-26), i.e.,

WavefrontsSums, and WavefrontsAddresses, respectively.
Since threads of any wavefront may diverge, the atomic
operation may not be executed by all threads in the
wavefront. Consequently, instead of fixing the first thread of
the wavefront to write to the global memory, the first thread
executing the local atomic add operation is chosen to be the
dominant thread (line 14, 15, 17, and 18). In the third step,
the thread waits until the coordinator workgroup handles
the atomic operation and resets the corresponding element
of the WavefrontssAddresses array (lines 29-32). Once this
is done, the WavefrontsPrefixsums array contains the prefix
sum of this wavefront, and every thread in the wavefront
then generates its prefix sum and returns (line 36).

1 int software_atom_add(__global int *X, int Y,
2 __local int *LocalSum, __local int *ThreadsNum,
3 __global int *WavefrontsAddresses,
4 __global int *WavefrontsSum,
5 __global int *WavefrontsPrefixsum)
6 {
7 //Get the wavefront global and local ID
8 int wid = get_global_id(0) >> 6;
9 int localwid = get_local_id(0) >> 6;
10
11 /* Safely incrementing the wavefront increment and
12 threads number */
13 LocalSum [localwid] = 0;
14 ThreadsNum [localwid] = 0;
15 mem_fence (CLK_LOCAL_MEM_FENCE);
16 int threadSum = atom_add(&LocalSum [localwid],Y);
17 int virtualLid = atom_inc(&ThreadsNum [localwid]);
18 mem_fence(CLK_LOCAL_MEM_FENCE);
19
20 /* The first thread only writes the sum back to the
21 global memory */
22 if (virtualLid == 0) {
23 WavefrontsSum[wid] = LocalSum[localwid];
24 WavefrontsAddresses [wid] = X;
25 }
26 mem_fence(CLK_GLOBAL_MEM_FENCE);
27
28 //Wait until the coordinator handles this wavefront
29 while(1) {
30 mem_fence(CLK_GLOBAL_MEM_FENCE);
31 if (WavefrontsAddresses [wid] == 0) break;
32 }
33
34 /* Generate the retrun value and re-initialize the
35 variables */
36 int ret = WavefrontsPrefixSum[wid] + threadSum;
37 if (virtualLid == 0) {
38 LocalSum [localwid] = 0;
39 ThreadsNum [localwid] = 0;
40 mem_fence(CLK_LOCAL_MEM_FENCE);
41 }
42 return ret;
43 }

Figure 6. Code snapshot of software atomic add operation

3) Coordinator Workgroup: For convenience, the
functionality of the coordinator workgroup is described
assuming the number of wavefronts of the kernel equals
to the number of threads of the coordinator workgroup.
However, the proposed atomic operation handles any
number of wavefronts that is less than or equal to the
maximum number of concurrent wavefronts. Each thread
of the coordinator workgroup is responsible for handling
atomic operations executed by a specific wavefront. All
threads in the coordinator group keep executing four
consequent steps until all other wavefronts are done.

As shown in Figure 7, in the first step (lines 16-19),
each thread loads the status of its wavefront into the local
memory. The thread lid reads the status of the wavefront
lid. More specifically, it reads WavefrontsAddresses[lid],
and WavefrontsSums[lid] and stores these variables into

the local memory, i.e., Address[lid] and LocalSum[lid],
respectively, as shown in lines 16, and 17. All threads are
then synchronized (line 19) before the next step to ensure
that the status of all wavefronts have been loaded.

In the second step (lines 23-36), the prefix sum of each
wavefront and the increment of each unique address are
generated. Each thread lid checks whether the wavefront
lid executes the atomic operation or not by examining the
address Address[lid] (line 23). If it is the only wavefront
executing atomic operation to this address, the prefix sum is
simply the value of this address (line 34), and the increment
is the wavefront’s increment represented by LocalSum[lid].
If there are several wavefronts concurrently executing atomic
add for this address, the prefix sum of each wavefront and
the increment of this address are generated using local
atomic add operation i.e., atomic add to a local memory
variable (lines 25-33). Note that the increment of the first
of these wavefronts called dominant wavefront holds the in-
crement of this address and the other wavefronts increments
are set to zero (line 29) to ensure correctly incrementing
the shared variable. All threads are again synchronized (line
36) to ensure that the increments of all wavefronts are used
to calculate the increments of the global variables.

In the third step (lines 40-46), the global variables are
safely updated and the blocked wavefronts are released.
Specifically, each thread lid checks whether the wavefront
lid executes the atomic operation or not by examining the
address Address[lid] again (line 40). If it is a requesting
wavefront, the thread lid sets WavefrontsAddresses[lid] to
zero (line 44) to release this wavefront. If it is a dominant

wavefront, its global variable is safely updated (line 41).
Also, the local address and increment of this workgroup
are reinitialized (line 42, and 43).

Finally, each thread re-evaluates the termination condition
by calculating the number of the finished wavefronts (lines
50-54). If all wavefronts are done, the thread terminates.

C. Discussion

We have taken great care in our design to ensure its
correctness. Within a requesting wavefront (Figure 6), one
design challenge is to select the dominant thread in divergent
kernels. Since all threads within a wavefront are executed
in a lock-step manner, using atom inc on a variable in local
memory can guarantee only one thread is chosen as the dom-
inant thread. Our implementation also maintains separate
local sums for different wavefronts; if a local sum is shared
between wavefronts, a race condition can occur when threads
from different wavefronts try to update the same local sum.

Another design challenge is to ensure that data is correctly
exchanged between different workgroups. According to [17]
and [19], the correctness of implementing a GPU primitive
that requires inter-workgroup communication cannot be
guaranteed until a consistency model is assumed. Xiao et
al. [19] solved that by using threadfence() function that
ensures the writes to global memory by any thread is visible
to threads in other blocks (i.e., workgroup in OpenCL).
OpenCL does not have an equivalent to the threadfence

1 void AtomicCoordinator(__local int *Address,
2 __local int *LocalSums,
3 __global int *WavefrontsAddresses,
4 __global int *WavefrontsSums,
5 __global int *WavefrontsPrefixsums,
6 __global int *Finished)
7 {
8 //Get thread ID in workgroup, and number of wavefronts
9 int lid = get_local_id(0);
10 int wavefrontsPerWorkgroup = get_local_size(0) >> 6;
11 int wavefrontsNum = get_num_groups(0) *
12 wavefrontsPerWorkgroup;
13
14 while (1) {
15 //1- Read the status of the wavefronts
16 Address[lid] = WavefrontsAddresses [lid];
17 LocalSum[lid] = WavefrontsSums[lid];
18 __global int * X = (__global int*)Address[lid];
19 barrier(CLK_LOCAL_MEM_FENCE);
20
21 /* 2- Safely generate the wavefronts prefixsums and
22 the increment of each unique variable */
23 if ((lid < wavefrontsNum) && (Address[lid] > 0)){
24 int replaced = 0;
25 for (int k = 1; k < lid ; k++){
26 if (Address[lid] == Address[k]) {
27 int temp = atom_add(&LocalSum[k], LocalSum[lid]);
28 WavefrontsPrefixSum[lid] = *X + temp;
29 LocalSum[lid] = 0;
30 Replaced = 1;
31 break;
32 }
33 }
34 if (replaced == 0) WavefrontsPrefixsum[lid] = *X;
35 }
36 barrier(CLK_LOCAL_MEM_FENCE);
37
38 /* 3- Safely increment the global variable and
39 release the blocked wavefronts */
40 if (Address[lid] > 0) {
41 if (LocalSum[lid] > 0) *X += LocalSum[lid];
42 Address[lid] = 0;
43 LocalSum[lid] = 0;
44 WavefrontsAddresses [lid] = 0;
45 }
46 mem_fence(CLK_GLOBAL_MEM_FENCE);
47
48 //4- Check for exiting
49 int count = 0;
50 for(int i = wavefrontsPerWorkgroup; i <
51 wavefrontsNum; i++)
52 if (Finished[i] == 1) count++;
53 if (count == wavefrontsNum - wavefrontsPerWorkgroup)
54 break; //All wavefronts are done
55 }
56 }

Figure 7. Code snapshot of coordinator workgroup function

function. The mem fence function in OpenCL only
ensures that the write of a thread is visible to threads within
the same workgroup. Fortunately, mem fence guarantees
the order that the memory operations are committed [10].
That means, for two consecutive memory operations A and
B issued by a thread to a variable in the global memory,
if mem fence is called between them, once B is visible
to threads in other workgroups, A will be visible as well
because A is committed to the global memory before B.
The correctness of our implementation in data exchange
between different workgroups is achieved by the memory
consistency provided by mem fence.

Finally, although our implementation allows different
wavefronts to concurrently execute atomic operation to
different variables, threads within the same wavefront
should concurrently execute the atomic operation to the
same variable, since the status of each wavefront is
represented by only one element in the global arrays.
We believe that this requirement can be satisfied by
restructuring the code and utilizing the shared memory.

V. MODEL FOR SPEEDUP

In this section, we derive a model representing the
speedup of our software-based atomic over the system-
provided atomic for both divergent and non-divergent
kernels. For simplicity, this model assumes that there is
only one wavefront per workgroup.

In general, any GPU kernel involves three main steps;
reading the input data from the global memory, doing some
computations, and writing the results back to the global
memory. The first and third steps are memory accesses,
the second step can be divided into general computations
and atomic-based computations. So the total execution
time of atomic-based kernels is composed mainly of
three components: memory access time, atomic execution
time, and computation time. The software-based atomic
operation affect only the first and second terms. Due to
space limitations, we discuss only the atomic operation
speedup that affect the second term, because the speedup
of the memory access can be easily derived.

To derive the speedup of atomic operations, we need to
consider the details of handling atomic operations using
system-based and software-based approaches. Executing
one system-provided atomic operation concurrently by
several threads is done serially, and hence requires N · t1,
where N is the number of threads concurrently executing
the atomic operation. For non-divergent kernels, N equals
the total number of threads in the kernel. Moreover, t1 is the
time to modify a global variable through the CompletePath.
By neglecting the computations embedded within the
atomic operation, t1 can be replaced with tcomp, where
tcomp is the time to execute a memory transaction through
the CompletePath. So, the time required to execute the
system-provided atomic, tasystem

, can be represented as:

tasystem
= N · tcomp (1)

Executing a software-based atomic operation can be
represented by:

tasoftware
= tRWGI + tCWG + tRWGP (2)

Where tRWGI is the time needed for the requesting
workgroup to generate its increment and updates the global
arrays (section IV-B2), TCWG is the time required by the
coordinator workgroup to generate the prefix sums and
update the shared variables (section IV-B3), and finally
tRWGP is the time needed by the requesting workgroup
to generate the prefix sum and return from the atomic
operation (section IV-B2).

Since the wavefront’s increment is calculated using atomic
add operation to shared memory (lines 13-18 in Figure 6),
then tRWGI can be represented by 2 ·Nc ·tl+2 ·tfast, where
Nc is the number of threads per workgroup concurrently
executing the atomic; tl is the time to modify a variable in
the shared memory; and tfast is the time to execute memory
transaction through the FastPath. And 2 ·tfast is the time for
writing the address and the increment to the global arrays
(line 22-26 in Figure 6). Moreover, tCWG can be represented

by 5 · tfast + Ncwg · tl +
Nwg

2
· tl, the first term corre-

sponds to reading the workgroups increments, and addresses,
writing the prefix sums to the global memory, updating the
workgroup’s address and shared variable. The second term
corresponds to the time needed to generate the global incre-
ment using atomic add operation to the shared memory (line
27 in Figure 7), where Ncwg is the number of concurrent
workgroups executing the atomic operation. The third term
is time needed to check the value of local addresses (lines

25 and 26 in Figure 7), where
Nwg

2
is the average number of

comparisons until reaching the dominant wavefront. Finally,
tRWGP equals 2 · tfast because it requires only reading the
address and the prefix sum from the global memory.

From the above discussion:

tasoftware

= ((2 ·Nc +Ncwg +
Nwg

2
) · xl + 9) · tfast (3)

where xl=
tl

tfast
and it is less than one by definition.

For non-divergent kernels, we can substitute N in equation

1 with Nc · Ncwg and tcomp by x · tfast,where x =
tcomp

tfast

is the speedup of a single memory access when using
FastPath relative to the CompletePath. Then tasystem

can
be represented by:

tasystem
= Nc ·Ncwg · x · tfast (4)

By comparing equation 3 by equation 4, we can see that

the atomic operations speedup
tasystem

tasoftware

increases signifi-

cantly as the number of workgroups increases. Furthermore,
for divergent kernels, the speedup is smaller than that of
non-divergent kernels, because tasystem

is proportion to
the number of threads concurrently executing the atomic
operation, but tasoftware

remains almost the same.

VI. PERFORMANCE EVALUATION

All of the experiments are conducted on a 64-bit server
with Intel Xeon e5405 x2 CPU and 3GB RAM. The
attached GPU device is ATI Radeon HD 5870(Cypress)
with 512MB of device memory. The server is running the
GNU/Linux operating system with kernel version 2.6.28-19.
The test applications are implemented using OpenCL 1.1
and built with AMD APP SDK v2.4.

In all experiments, three performance measures are
collected. The first is the total execution time in nano-
seconds. The second is the ratio of FastPath to CompletePath
memory transactions, and the third is the ALU:Fetch ratio
that indicates whether the kernel is memory-bound or
compute-bound. Stream kernel analyzer 1.7 is used to get
the second and third metrics. For the second metric, the
equivalent ISA code of the OpenCL kernel is generated,
then all memory transaction are counted. MEM RAT, and
MEM RAT CACHELESS transactions are considered as
CompletePath and FastPath transactions respectively [3].
Note that these metrics do not capture runtime information.
For instance, the absolute numbers of memory transactions
following different paths are not revealed by these metrics.

Each run is conducted using 64, 128, and 256 threads per
workgroup, and the best performance is used to generate
the graphs.

Applications Divergence Atomic
granularity

MatrixMultiplication No thread, wavefront
(MapReduce)
KMeans(MapReduce) No thread, wavefront
ScalarProduct No thread
StringMatch Yes thread

Table I
APPLICATIONS SUITE

A. Micro Benchmarks

The first micro benchmark aims at identifying the over-
head of executing the system-provided atomic operation. The
code of this microbenchmark is simple. Each thread only
executes the atomic operation to increment a global variable
by the global index of the thread. The kernel does not
include any memory transaction, for our goal is to measure
the overhead of executing the atomic operation by itself.

0

20000

40000

60000

80000

100000

120000

140000

160000

2 4 8 16 32 64 128

Workgroups

K
e
rn

e
l

e
x
e
c
u

ti
o

n
 t

im
e
 (

n
s
e
c
)

atom_add software_atom_add

Figure 8. The execution time of system and software-based atomic

As shown in Figure 8, for small numbers of workgroups,
(e.g., less than 32 workgroups), the performance of our
software-based atomic is slower than the system-provided
atomic by 0.5 fold on the average. As the number of
workgroups increases, the speedup of our atomic increases
until reaching 1.9 folds for 128 workgroups. This can
be explained by the model discussed in Section V. As
indicated in equations 3 and 4, the execution time of the
system atomic operation increases linearly with the number
of concurrent threads. However, the execution time of the
software-based atomic is proportional to the number of
concurrent wavefronts. Consequently, as the number of
workgroups increases, our atomic add implementation can
significantly outperforms the system one.

The second micro benchmark aims at studying the effect
the impact of atomic operations on the performance of the
memory transactions. The code of this micro benchmark
looks very similar to the previous one, with another memory
instruction being added.

0

50000

100000

150000

200000

250000

300000

350000

4 8 16 32 64 128

Workgroups

K
e
rn

e
l

e
x
e
c
u

ti
o

n
 t

im
e
 (

n
s
e
c
)

atom_add software_atom_add

Figure 9. The execution time of system and software-based atomic when
associated with memory transactions

As shown in Figure 9, the speedup of our atomic add
implementation with regard to the system-provided atomic
add operation increases significantly as as the number
workgroups grows. This is due to that the performance
of CompletePath is much worse than FastPath. Although
our atomic add implementaiton performs more loads and
stores to global memory compared to the system atomic
add. Also, the ratio of complete to FastPath transactions is
3:0 and 0:10 for the system-provided atomic add and our
software-based atomic add, respectively.

B. Applications Suite

1) MapReduce: MapReduce is a programming model that
is originally proposed by Google to simplify parallel data
processing on commodity clusters [5]. With MapReduce,
programmers need to write only two functions, i.e., map
and reduce. The parallel execution and fault tolerance will
be handled by the MapReduce framework. MapReduce has
been ported to GPUs in 2008 [7] by B. He et al. Since atomic
operations were not available on GPUs when Mars was in-
troduced, Mars uses a two-pass algorithm to coordinate out-
put from different threads. In the first pass, the map/reduce
function is executed to calculate the sizes of output records.
Based on the size information, Mars can decide the write
location of each output record using prefix summing. In the
second pass, the map/reduce function is executed again to
write the output records to global memory based on the
calculated write locations. Such a two-pass design is not
efficient because it introduces redundant computation. Con-
sequently, state-of-the-arts implementations of MapReduce
on GPUs [8], [9] rely on atomic add operations to safely
write the intermediate and final output to global buffers.

In order to evaluate the performance impact of using
atomic operations in MapReduce design, we first
implemented a baseline MapReduce framework based
on Mars. We then implement a single-pass output writing
design using atomic operations. The atomic operations are
applied in both the thread level and the wavefront level. In
addition, we have implemented two applications over this
framework: matrix multiplication and KMeans.

Matrix multiplication accepts two matrices X and Y as
input, and produces matrix Z as output. Every element zi,j
in Z is calculated by multiplying every element in row i
of X with every element in column j of Y and summing
these products. Implementing matrix multiplication over
MapReduce framework requires implementing only the map
function. Each map task corresponds to one thread, and it is
responsible for emitting one element of the Z matrix. Since
all map threads access the same number of elements of X
and Y and executes the same number of operations, then
matrix multiplication is an example of non-divergent kernels
whose threads execute the atomic operation at the same time.

KMeans iteratively clusters a set of points. It accepts an
initial set of clusters and a set of points. At each iteration,
the distance between each point and the centroid of each
cluster is calculated. The points are then assigned to the
closest centroid, and a set of new centroids are calculated
based on the point assignments. The above process
is repeated until the results are converged. Implementing
KMeans over MapReduce framework requires implementing
both the map and reduce functions. Each map and reduce
task corresponds to one thread. The map task determines the
best cluster for one point, and the reduce task calculates the
new centroid of each cluster based on the points attached
to it. The Map phase consumes more than 50% of the total
execution time, so in this experiment we only measure the
execution time of the map phase. Note that, KMeans also is
an example of non-divergent kernels whose threads execute
the atomic operation at the same time.

2) Scalar Product: Scalar product is a simple vector
arithmetic operation. Given two vectors X and Y, the scalar
product X·Y is computed by multiplying every component of
X with every component of Y and summing those products.
In our implementation, every thread multiplies one compo-
nent of X with one component of Y, then it executes atomic
add operation to safely add the product to a global variable.

3) String Match: String match is an application that is
extensively used in building search tools and search engines.
Given a document containing text of any format and a key-
word, string match searches for this keyword in the whole
document and returns the occurring locations. In our imple-
mentation, each thread processes a trunk of the input file.
Once a match is found between the keyword and the input,
the thread writes the location of this word to a global output
buffer shared among all threads. The global buffer is guarded
by atomic add operations to avoid write conflicts from differ-
ent threads. String match is an example of divergent kernels.

C. Application Performance

1) MapReduce: Matrix multiplication performance is
shown in Figure 10. As we can see, the speedup of using
software-based atomic add over the system atomic add
increases as the input matrices get larger. Specifically, the
speedup is improves from 0.62 folds for a 8X8 input 13.55
folds for a 256X256 input. The main reason is that for larger
inputs, there will be more memory access, exacerbating
the memory performance of using CompletePath. By

analyzing the ISA, we realize that the ratio of the FastPath
to CompletePath memory accesses is 30:0 and 3:28
for software-based atomic and system-provided atomic
implementations, respectively.

Note that, since the number of workgroups is constrained
by the maximum number of concurrent workgroups, for
matrices of dimensions greater than 64X64, every thread
manipulates several elements in the output matrix instead
of one element.

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

8X8 16X16 32X32 64X64 128X128

Matrix Dimension
K

e
rn

e
l

E
x
e
c
u

ti
o

n
 T

im
e
 (

n
s
e
c
)

PerThread Atomic PerWavefrontAtomic software_atom_add

0

5E+07

1E+08

2E+08

2E+08

128X128 256X256

Figure 10. The execution time of Matrix multiplication using system and
software-based atomic operation

For KMeans, we run it for different number of points
ranging from 512 to 8192. As shown in Figure 11, the
speedup gets improved from 15.52 folds for 512 points to
67.3 folds for 8192 points. Again, this is because of there
are more memory accesses for larger inputs, amortizing the
overhead of the software atomic add.

0

5000000

10000000

15000000

20000000

25000000

512 1024 2048 4096 6144

Number of Points

K
e
rn

e
l

e
x
e
c
u

ti
o

n
 t

im
e
 (

n
s
e
c
)

PerThread Atomic PerWavefrontAtomic software_atom_add

0

1E+07

2E+07

3E+07

4E+07

8192

Figure 11. The execution time of map phase of KMeans using system
and software-based atomic operation

2) Scalar Product: As shown in Figure 12, this applica-
tion does not benefit from the use of software-based atomic.
The average speedup of the software-based atomic compared
to system-provided atomic is 0.61 fold. This is because of
two main reasons. First, the number of memory transactions

is very small, i.e., only 3 according to the ISA. Second,
the ALU:Fetch ration of this application is 2.88, suggesting
that this application is not memory bound. As a result,
the overhead of the software atomic add is not able to be
compensated by improvement of memory access efficiency.
Nonetheless, the speedup increases as the number of work-
groups increases. Specifically, the speedup increases from
0.4 fold for 2 workgroups to 0.92 fold for 128 workgroups.

Scalar product can be viewed as a core operation that is
used as a primitive to build more complex kernels. As the
number of memory accesses in the kernel increases, the
benefits of using the software-based atomic can be greater.

0

100000

200000

300000

400000

500000

600000

700000

2 3 4 6 8 12 16 24 32 48 64 96 128

Number of work groups

K
e
rn

e
l

e
x
e
c
u

ti
o

n
 t

im
e
 (

n
s
e
c
)

atom_add software_atom_add

Figure 12. The execution time of scalar product using system and
software-based atomic

3) String Match: We run String match using a dataset
of size 4 MB [18] to search different keywords. For each
keyword, we vary the number of workgroups from 32
to 128. As shown in Figure 13, the performance of the
software-based atomic is better than that of the system-
provided atomic in almost all cases for the first three queries.
More specifically, the average speedup is 1.48 folds.

However, for the fourth query, the performance of our
atomic is significantly worse than the system-provided
atomic. This query returns significantly higher number
of matches compared to the other queries. Specifically,
the number of matches is 7, 87, 1413, and 20234 for
first, second, third, and fourth query respectively. A larger
number of matches requires more memory transactions to
write the matches as well as more computations. We realize
that writing the matches are done through the FastPath
even when system-provided atomic is used, so increasing
the number of matches only contributes to increase of
the compute-boundness of the application. Note that the
number of read operations are the same for four queries.
In other words, the software atomic approach does help
improve the memory read performance, thus we observe
performance improvements for the first and second queries
with less computation. For the fourth query, with more
amounts of computation, the overhead incurred by the
software atomic approach for writing results start to offset
the benefit of using FastPath for read accesses.

By analyzing the ISA of both kernels using the software-
based atomic and the system-driven atomic, we realize that

the ratio of FastPath to CompletePath memory accesses is
12:0 and 1:19 for the software-based atomic and the system-
provided atomic respectively. This result also reveals one
important fact that is not explicitly mentioned in the AMD
OpenCL Guide [3]; although in [3], they mentioned that non-
32 bits memory transaction are executed through the Com-
pletePath, in the kernel that uses the software-based atomic,
all transactions are executed through the FastPath although
input file is read character by character. In-depth mapping of
OpenCL kernel instructions to ISA instructions have shown
that only stores of char are executed through the Com-
pletePath (loads of char are executed through the FastPath).

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

3
2

6
4

1
2

8

3
2

6
4

1
2

8

3
2

6
4

1
2

8

3
2

6
4

1
2

8

Q1 Q2 Q3 Q4

Workgroups

K
e

rn
e

l
E

x
e

c
u

ti
o

n
 T

im
e

 (
n

s
e

c
)

atom_add software_atom_add

Figure 13. The execution time of string match using system and
software-based atomic

D. Discussion

As we can see previously, the speedup of the non-
divergent applications differs significantly from scalar
product to matrix multiplication and KMeans. We realized
that the speedup of these applications is directly proportional
to two metrics. The first one is the number of memory
accesses through the CompletePath. The CompletePath
memory accesses are 3, 28, and 37 for scalar product, matrix
multiplication, and KMeans, respectively. The second one
is the ALU:Fetch ratio that reflects the contribution of
memory accesses on the total execution time. As shown
in Figure 14, the more memory-bound is an application,
the better is the speedup of using software atomic add
compared to the system atomic add.

Based on the above results, we believe that the application
that can benefit from our software-based atomic should
satisfy two conditions. First, the application’s ALU:Fetch
ratio should be relatively low. Second the number of memory
transactions executed through the CompletePath should be
large to compensate the overhead of the software-based
atomic. We plan to investigate this more in our future work.

VII. RELATED WORK

Our work is closely related to research studying the
atomic behavior on GPUs and CPUs. In [17], Volkov et

0

0.5

1

1.5

2

2.5

3

3.5

Scalar profuct Matrix

multiplication

Kmeans

Applications

A
L

U
:F

e
tc

h

Compute-bound

Memory-bound

Figure 14. Ratio of CompletePath to FastPath memory accesses

al. proposed a global barrier synchronization on GPUs in
order to accelerate dense linear algebra computations. Their
approach does not use atomic operations. Instead, each
thread manipulates one private variable, arrival, to indicate
its arrival to the synchronization point. The first thread
acts as the coordinator thread that spins on the arrival

variables of all threads and announces the completion of
the global synchronization. In [19], Xiao et al. improved
the performance of Volkov’s approach by using all threads
in the first workgroup to simultaneously spin on the arrival

variables. Furthermore, they proposed another lock-based
synchronization that uses global atomic operations.

Suryakant et al. [15] proposed an efficient and scalable
implementation of the split primitive for GPUs that use
atomic operations to shared memory instead of using
atomic operations to the global memory. To guarantee the
correctness of their implementation, the ordering of threads
executing atomic operations should be preserved. Since
this is not supported by the system-provided atomics, they
simulate ordered atomic operation by serializing the threads
of a warp. However, its performance is 5 to 10 times slower
than the hardware atomics in NVIDIA GPUs.

In addition to the above studies, another related research
area is supporting mutual exclusive access to a critical
section on CPUs. The classical problem of guaranteeing
mutually exclusive access among a number of competing
processes is originally presented in 1970 by Dijkstra
[6], which depends on using system-provided atomic
operations. There are also several studies that enable mutual
exclusion on processors that do not have atomic test and
set operations [11], [2], [4].

VIII. CONCLUSION AND FUTURE WORK

In this paper, we first quantify the effects of using the
system-provided atomic operations on the performance
of kernels designed for AMD GPUs. Then we propose a
novel software-based atomic operation that can significantly
improve the performance of memory-bound kernels. We
evaluate the proposed design of atomic add using four
representative applications that follow different divergence
patterns and ALU:Fetch ratio. The experimental results
show that for memory-bound kernels, our software-based
atomic add can deliver an application kernel speedup of
67-fold compared to one with a system-provided atomic add.

As for future work, we will further investigate a set
of guidelines to decide when to use our software-based
atomic operation. Second, we will study other approaches
for implementing software-based atomic operations that
support any number of workgroups.

ACKNOWLEDGMENT

This work was supported in part by NSF grant IIP-
0804155 and an AMD Research Faculty Fellowship.

REFERENCES

[1] AMD. Stream Computing User Guide. Website, April 2009.
http://developer.amd.com/gpu assets/Stream Computing
User Guide.pdf.

[2] T. Anderson, H. Levy, B. Bershad, and E. Lazowska. The
Interaction of Architecture and Operating System Design,
volume 26. ACM, 1991.

[3] ATI Stream Computing. OpenCL Programming Guide.
Website, August 2010. http://developer.amd.com/gpu assets/.

[4] B. Bershad, D. Redell, and J. Ellis. Fast Mutual Exclusion
for Uniprocessors. In 5th Int’l Conf. on Architectural Support
for Programming Languages and Operating Systems, pages
223–233. ACM, 1992.

[5] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In 6th Symposium on
Operating Systems, Design & Implementation, OSDI, 2004.

[6] E. Dijkstra. Solutions of a Problem in Concurrent Program-
ming Control. Communications of the ACM, 8(9):569, 1965.

[7] B. He, W. Fang, Q. Luo, N. Govindaraju, and T. Wang.
Mars: A MapReduce Framework on Graphics Processors. In
17th Int’l Conf. on Parallel Architectures and Compilation
Techniques, pages 260–269. ACM, 2008.

[8] C. Hong, D. Chen, W. Chen, W. Zheng, and H. Lin.
MapCG: Writing Parallel Program Portable between CPU
and GPU. In 19th Int’l Conf. on Parallel Architectures and
Compilation Techniques, pages 217–226. ACM, 2010.

[9] F. Ji and X. Ma. Using Shared Memory to Accelerate
MapReduce on Graphics Processing Units. In 25th IEEE
Int’l Parallel & Distributed Processing Symp. (IPDPS), 2011.

[10] Khronos Group. The Khronos Group Releases OpenCL 1.0
Specification. http://www.khronos.org/news/press/releases,
2008.

[11] L. Lamport. A Fast Mutual Exclusion Algorithm. ACM
Transactions on Computer Systems (TOCS), 5(1):1–11, 1987.

[12] M. Michael. High Performance Dynamic Lock-Free Hash
Tables and List-Based Sets. In 14th ACM Symp. on Parallel
algorithms and Architectures, pages 73–82. ACM, 2002.

[13] NVIDIA. NVIDIA CUDA Programming Guide-2.2. Website,
2009. http://developer.download.nvidia.com/compute/cuda/.

[14] NVIDIA CUDA. CUDA Occupancy Calculator. Website,
2007. http://developer.download.nvidia.com/compute/cuda/
CUDA Occupancy calculator.xls.

[15] S. Patidar and P. Narayanan. Scalable Split and Gather
Primitives for the Gpu. Technical Report Tech. Rep.
IIIT/TR/2009/99, 2009.

[16] D. Patterson. The Top 10 Innovations in the New NVIDIA
Fermi Architecture, and the Top 3 Next Challenges. NVIDIA
Whitepaper, 2009.

[17] V. Volkov and J. Demmel. Benchmarking GPUs to Tune
Dense Linear Algebra. In ACM/IEEE SC 2008, 2008.

[18] Wikimedia Foundation Project. English-LanguageWikipedia.
http://download.wikimedia.org/, 2010.

[19] S. Xiao and W. Feng. Inter-Block GPU Communication via
Fast Barrier Synchronization. In 24th IEEE Int’l Parallel &
Distributed Processing Symp. (IPDPS), 2010.

