Acceleration of FPGA Fault Injection
through Multi-Bit Testing

Grzegorz G. Cieslewski, Alan D. George, and Adamldtobs
NSF Center for High-Performance Reconfigurable Qaimg (CHREC)
ECE Department, University of Florida, Gainesvili, USA

Abstract—SRAM-based FPGA devices are an attractive option
for data processing on space-based platforms, dueo thigh
computational capabilities and a lower power envejge than
traditional processing devices. These devices pesg unique
fault-testing challenges as single-event effectsrcérigger changes
in functionality by changing the configuration memay of the
device. With each new generation, FPGA configuratn
memories increase in size and designs increase inmplexity,
making it very difficult, if not impossible, to perform exhaustive
fault-injection testing to verify design reliability. We propose a
novel methodology for fault injection in FPGAs usig multi-bit
testing that can significantly accelerate the procs.
Traditionally, each bit in configuration memory is tested
separately; by testing multiple bits during one tes speedups of
more than 10x can be achieved.

. INTRODUCTION

A high degree of on-board data processing is asségeor
next-generation space satellites. This need isog}y true for
platforms which employ new sensor technologiesabbgp of
collecting more data than a spacecraft’s abilitgrémsmit that
data to its destination. This downlink bottleneckused by
transmitter power and bandwidth limitation, targeibility,
and high latency can be mitigated by performing ighdr
degree of on-board data processing. As traditi@illU-based
technologies struggle to provide high-performanomjuting
in space, Field-Programmable Gate Arrays (FPGA®)ige an
attractive and powerful replacement. The inheesiantages
in performance, energy efficiency, size, and adalitia
facilitated by reconfigurable logic can help answemands of
next-generation, space-based platforms.

Radiation-hardened FPGAs are common components
space-based platforms. However, due to the naifirthe
radiation-hardening process they are typically snaklower
and more expensive than their commercial-off-thelfsh
(COTS) counterparts. By contrast, commercial FR{&Rices
provide unprecedented levels of efficiency for gpatssions,
but are highly susceptible to single-event efféSBEs) caused
by high-energy particles. To maintain high systetability,
traditional and innovative fault-tolerant (FT) dgsimethods
are required. An effective testing method is ndddeevaluate
these devices and FT design methods to expeditesghee
qualification process. @ The approach should -effitye
introduce faults, test behavior, and estimate epleerror rates
without the need for expensive radiation testingaath step of
the development cycle.

Numerous fault-injection techniques have been wegdan
the past, ranging from simulation approaches toatiad
testing, but no single method has provided thengdtsolution
to the problem. The predominant method of emujatime
effects of single-event upsets (SEUs) on FPGA dsvis by
programming a modified bitstream into the configiom@a
memory of the device, which accounts for the majgi] of
all susceptible bits. Bitstream modification adtethe
functionality of the device and allows one to obsethe
potential effects of an SEU. The total amountaifiguration
memory required to define the behavior of the réigonable
logic in FPGAs is constantly increasing as the sfethe
devices increases. Additionally, to effectivelyiga the effects
of SEUs on a design, a comprehensive set of tagbneeis
required. For large designs, such sets are diffioucalculate
and can be prohibitively large to use in testinthese trends
make it difficult, if not impossible, to perform egprehensive
fault-injection testing of the whole device. Aneahative to
testing the entire configuration memory of an FPiSA0 use
statistical sampling methods to select a subsebitf to
investigate and use confidence intervals to showntls on the
susceptibility estimate of a given design. An aatel
prediction of susceptibility with a tight confidemdnterval
requires a large number of samples and can inlohgtesting
times.

In this paper we propose and demonstrate a nopebaph
to FPGA fault injection through multi-bit testinghieh allows
acceleration of the testing process while maintginihe
correctness of the results. Our Simple, Portdfde]t Injector
platform for FPGAs (SPFI-FPGA) [5] supports fauljeiction
for Xilinx Virtex-4 FPGAs through partial reconfigation
{®R). This injection mode minimizes the time regdi to
modify configuration memory and further improvegeation
speed. In this paper, we present a traditionaleihit and
augmented multi-bit injection methodology and dgscuhe
performance of the proposed fault-injection apphoat the
context of relevant case studies.

The remaining sections of this paper are organiasd
follows. Section 2 surveys previous work relatedHis topic.
Section 3 provides an overview of SPFI-FPGA as weall
single-bit fault-injection and testing methodolagieSection 4
details the new fault-injection approach and addal methods
for improving the performance of the proposed sahenin
Section 5, we present performance results of fajdttion
testing. Finally, Section 6 provides conclusiomsl autlines
directions for future work.

. BACKGROUND

The Xilinx Research Test Consortium (XRTC) systéh [

Modern SRAM-based FPGAs are constructed fronS€S @ base motherboard from SEAKR Engineering with

collections of configurable logic blocks (CLBs) aedstom
cores (multipliers, processors,
connected by a programmable network allowing fayhlyi
intricate designs. CLBs consist of relatively dncaimponents
including look-up tables (LUT), multiplexers, flitops (FF),
and supporting structures composed of AND-OR gaaising
them capable of implementing complex logic functionThe
on-chip programmable interconnect consists of gafl
switchboxes bonded to wire segments of variousttengEach
switchbox integrates a large number of programmabitches

allowing for custom routing of signals between CLBs

Information used to set the function of switchbgXxesBs and
other components is stored in the configuration orgm

While all space-based electronics are susceptibliauilts
caused by radiation, SRAM-based FPGAs have a urgquef
additional concerns due to their reconfigurableureat SEUs,
which cause faults in FFs or BlockRAMSs, are closelated to
the upsets on non-reconfigurable platforms andeaoh to data
corruption or single-event functional interrupt€f3s), where
a device or design can enter an unexpected stdtmvever,
upsets which occur in a device’s configuration mgnare in
part unique to reconfigurable FPGAs, as the condition
memory controls the function of the logic and intemect.
This type of fault can lead to broken nets, foromatof new
connections, or other effects resulting in unpriadile behavior
of the circuit.

The effects of SEUs on FPGASs can be studied by amgl
how radiation affects the underlying silicon stures through
modifying bits in the configuration memory of thevite. It
was shown in [1] that the vast majority of errotsilauted to
SEUs are results of changes in the configuratiomong and
not to the embedded FFs, as the cross-section tifeaFFs is
only a small fraction of the cross-section of ailshin the
configuration memory. In case of a Virtex-4 SX8ie size of
configuration memory (not counting BRAM) is 15.4llion
bits and the total number of FFs attached to slites
approximately 49 thousand bits, making the confitian
memory upsets over 300 times more likely [6].

Multiple approaches to FPGA fault injection haveetbe
studied in recent years. Most of them targetedbpmance of
fault injection above other tradeoffs, which caadeo limited
portability and reusability.

Johnson et al. [1], [2] proposed a specializedbeskt
SLAAC-1V, for fault-injection experiments. It casts of two
identical FPGAs (Virtex XCV1000) in a parallel canfration.
Outputs are connected to a voter which constartimpares
outputs of both FPGAs. The testing procedure dafl®ne of
the FPGAs to be programmed with a corrupt bitstreahile
the other remains in its original state. The desigre cycled
with inputs, and outputs compared by the votereteignine if
the given change in configuration memory has umdbl
effects. Due to the custom parallel architecttive,system has
a very high performance and is capable of rapiekyimg faults
without the need for a golden standard data set.

BlockRAMs) which e ar

daughter-card containing an FPGA as device undeDaJT).
The motherboard contains two FPGAs which are resiptn
for function monitoring of the DUT by providing tegectors
and verifying outputs against a golden standawlltfnjection
is performed through the JTAG interface using ateraal
computer or, in later versions, is integrated withe
motherboard over a SelectMap port [6]. The XRTGtan
offers excellent performance, but requires the afs&nown
data sets, or a two-step testing approach whese tfie run
establishes correct outputs and the second rumndets the
effects of the fault. Unfortunately, like the SLEALV testbed,
since the design uses specific hardware and custards, it
cannot be used with any other FPGA devices withedesign.

Sterpone et al. [3] have proposed a different nuktiinat
uses a System-on-Chip (SoC) approach. The FPGrdes
divided (both physically and logically) into theiuonder test
(UUT) and the supporting logic consisting of embextid
PowerPC, a timing unit, and an Internal ConfigumnatAccess
Port (ICAP) controller. The logic that the useshes to test is
placed in the UUT and constrained to a portion mfF®GA.
The support logic is responsible for fault injeatigroviding
test vectors and collecting results. This methfhalt testing
performs even better than the previous two appemas it
uses the high-speed ICAP controller for partiabrdiguration
and stores the test vectors directly on the FP@khough this
approach is uniquely suitable for testing desigmpgonents, its
split design restricts adaptability and does nlmwafor testing
standalone systems. Moreover, the size of theviegbrs is
restricted to memory available, and the UUT is t@imsed to
resources not used by supporting logic.

The Virtex-Il SEU Emulator (V2SE) briefly describéd
[4] uses yet another configuration approach. Simib the
XRTC testbed, it uses the SelectMap configurationt ffor
high-speed injections in combination with COTS andtom-
designed hardware. Whereas the SelectMap ponvalfor
rapid reconfiguration, it is not as popular as iié&G port and
is not present on all platforms.

. SPFI-FPGATooL

As briefly introduced in [5], SPFI-FPGA is a flelébfault-
injection tool devised for use with Virtex-4 FPGAg test
behavior of designs when subjected to faults infigaration
memory. It is a part of a larger SPFI framewonigéded at
system-level testing encompassing not only FPGASaR0
CPUs (PowerPC) and
platforms (TILE64). The primary motivation for SPE to
provide maximum portability in order to support a&range
of systems and enable in-system testing. Whiléopeance of
the tool is important, custom approaches limitinge t
applicability of the tool to a particular device platform are
intentionally avoided whenever possible.

A. SPFI-FPGA System Architecture

Figure 1 shows the high-level architecture of tHeFS
FPGA tool. The architecture is divided into threwjor

reconfigurable many-core-based

components: Campaign Generator (CG), Managemenhé&ng
(ME), and Test Generator (TG).

User
Parameters

Campaign
Generator (CG)

Campaign
Params.

Injection
Sites

Fault Injection
Campaign

SPFI-FPGA
Params.

Results
Database

Management
Engine (ME)

Prog. Interface
ITAG

FPGA
(Virtex-4)

Generator (TG)

Test Interface
USB, PClI, Serial...

Figure 1. Block diagram of SPFI-FPGA system architecture

The CG is used to generate the campaign file, based
user-specified parameters such as injection aesaprce type,
and number of bits to be tested. The campaigncfiletains
frame address and bit offsets describing the saldotation of
faults to be injected. To obtain those locatidhs, CG uses a
debug bitstream file, generated by the Xilinx BitGleol [8],
which contains addresses of each data frame ibiteream
and is stripped of padding frames required in arsmwf full
reconfiguration. This mechanism of bitstream asialy
uncovers details about the geometry of the dewdgeired for
fault injection and removes the need for a deviedalohse
describing each supported device.

The ME is the main workhorse of the system, and it

responsible for campaign management, FPGA mongprin
fault insertion and removal, and data logging. nry inputs
for the management engine are the bitstream fileghe given
design and a campaign file that contains a desmnipif the
experiment. FPGA monitoring and programming islitated
by use of the JTAG port, which is used as the pyma
programming channel due to its high availabilitydan
accessibility on most of the platforms. Fault itise and
removal is achieved by automatically generating tigar
bitstream files, which contain data frames to appately
modify the configuration memory of the FPGA [7]. IlA
injection results and events are logged in a taidlthse which
can be used for detailed statistical analysis.

The TG verifies the operation of the design for HRGA
and provides that information back to the ME. Taximize
flexibility, this component is a user-defined, plngapplication
that communicates with the FPGA using the Testrimte

(T1). The complexity of this component can vanagity due
to design choices and system architecture. Theplesn
version would trigger a built-in self-test (BIST)rfction which
could verify the operation of the system withouy arteraction
with the TG. After the completion of the BIST, thi& would
be naotified of the results. On the other end efcsum, the TG
can generate a random set of test vectors to bsféraed over
a Tl to the DUT. The result would consist of amotiset of
vectors which would be verified against the cormatputs in
the TG. To increase the performance of the TGait be
partially hosted on the FPGA in a form of a wrappeat
communicates with the design.

B. Fault-Injection Methodology

The fault-injection methodology developed in comjtion
with SPFI-FPGA considers portability and performaas well
as correctness and repeatability. The main pditabi
consideration is the type of configuration integfacAs cited
previously, the JTAG port was chosen as the primary
programming channel due to its availability on mostthe
platforms. The high level of abstraction in theFEFPGA’s
architecture allows adding specialized programniiterfaces,
such as SelectMap, in a modular fashion.

Generate campaign file
(in CG)

Y

——————————————3p Get next fault location |-
| Insert fault
Craft partial bitstream

Designate fault as
malicious

Y

Inject fault through PR

Y

Test 2

Test 1

Run TG

Repair fault via full
reconfiguration

Errors detected?

Repair fault via PR

Y

Designate fault as benign

Figure 2. Single-bit fault-injection methodology

To increase the speed of fault injection, SPFI-FRGAs a
mixture of partial- and full-reconfiguration techoes as
shown in Figure 2. After the fault location is deftom the
campaign file, the ME selects a frame with the egponding
address and inverts the specified bit. The frasmben used to

create a crafted partial bitstream which is progreth onto the
device. The TG is used to verify the correct fiorality of
the FPGA, and based on the outcome an appropdatyery
procedure is taken. In cases where an observabledoes not
occur, the configuration memory is repaired by paogming
the original frame on to the device. When theatijm does

cause an observable error, the full reconfiguraitioperformed

to reset the FPGA to a nominal state. The siteetissted to
remove any bias introduced by false positives tfaat occur
due to multiple partial reconfigurations as welliasonsistent
behavior of other components of the system (boar
components, TI).

The mean time per injection is strongly dependeoinuthe
performance of the TG as well as the speed of th
programming interface. It can be modeled as

tsbfi :tpr +tt + pe(thr +tpr +tt)+(l_ pe)tpr +tc (1)

wheretgy represents the average elapsed time for executic
of one injection.t; andt, represent the time needed to perform
full and partial reconfiguratior, denotes execution time of the
TG programp is the probability that the injected fault will be
manifested as an observable error, dpds the constant
software overhead per injection.

C. Testing Methodology

When considering fault injection, one must accdonthe
general architecture of the design being testacth@&n FPGA
design can be classified as a module that reqdia¢s to be
provided for it, or as standalone system that fates with
external resources. We propose classifying thgseerss in
one of two categories, module-level testing andesydevel
testing.

Module-level testing as shown in Figure 3 is mostly
suitable for smaller designs which occupy only & pé the
chip, so that the remaining part of the chip canubed to
provide fault-injection facilities. In such casesignificant part
of the TG can be shifted from the attached PC tmd-PGA.
The test vectors required for testing the modulddtbe placed
in the spare BlockRAMs, mitigating the delay of Gétween
the TG and the FPGA.

System Board

Management
Engine

Module Design

Wrapper and

Test
Interface

control logic

Test Generator

Figure 3. Module-level testing

As shown in Figure 4 system-level testing is beied for
designs that occupy the majority of the chip areliategrated
with other components (SDRAM, network, ADCs). luck

case, the TG program might not be directly attactwedhe
FPGA but communicate through some other systenmight
be required to provide and receive test vectorstart the
system’s BIST.

System Board

Management
Engine

System
Design
Test =
Interface
Test Generator Other Other Other
Comp. Comp. Comp.

Figure 4. System-level testing

D. Fault-Injection Bottlenecks

The driving methodology in the SPFI design is tohéect
a tool that is portable across a variety of FPGpess and
systems. As a result, there are many tradeoffsiwloiwer the
fault-injection performance. The primary bottlekeis the
JTAG port. Due to its serial nature it can delivanly
moderate performance, which is constrained by fha&
clock speed supported by the system and softwadsiaae
characteristics of the programming cable.

Another limiting factor is performance of the TG.
Generating a representative set of test vectorsafoomplex
module can be a difficult and daunting task. Iditon, such a
comprehensive set may be very large and requina@ period
of time to test. In some cases, testing time @amhbany orders
of magnitude greater than the injection time [3}isTtime can
be mitigated by storing the test data on the FPGrerwthe
module-level testing approach is taken.

The error rate also influences performance of SFHKBA,
since different recovery procedures are taken dépgron the
outcome of TG run. In the case of an observahlerethe
FPGA has to be fully reconfigured in addition te tretesting
procedure. Full reconfiguration is very expensias,it takes
significantly longer time to execute. This problésnnot as
prominent when testing the susceptibility of faolerant
designs, as the error rate is usually very smallsimg few full
reconfigurations.

IV. MULTI-BIT TESTING

One of the major goals of any fault-injection systes a
high-injection rate to allow for an accurate susitdjsy
characterization of a given design and device. otduhately,
there are many tradeoffs affecting the injectiate @chievable
by the tools. The usual solutions involve modifyia part of

the system, particularly the programming interfanegrder to
improve the overall performance. This approachallgu
involves major changes to the system componentsramany

cases yields specialized hardware which is tigtiegarticular
platform. Consequently, this method decreases Ipbtyaand

applicability to a narrow set of platforms. Anealiate way of
viewing the problem is to decrease the total numbgér
injections in order to achieve better performancéilev
maintaining the quality and fidelity of results. uch an
alternative is infeasible when testing one bit atirae but
becomes practical when this condition is relax&a. achieve
this goal, we propose a new tactic for fault-in@ettesting,
which will decrease the total number of injectidns testing
multiple bits or batches at a time.

The general premise behind multi-bit testing isject and
test multiple faults at a time to decrease thel tatanber of
injections and consequently decrease the totattioje time.
We assume that the probability of two or more randaults
masking each other’s effects and yielding a colyasbrking
circuit is incredibly small and will not affect tmesults of fault-
injection testing. To further strengthen this asgtion, we
impose constraints on the location of random fawhgch are
to be jointly tested. None of the jointly testealulfs can
occupy an identical CLB. This approach is relateMultiple-
Bit Upset (MBU) testing [10] with the exception lotation of
the upsets. MBUs caused by cosmic rays are clasedyered,
whereas our approach disperses faults througlestieq space
to minimize possibility of masking.

The proposed fault-testing methodology incorporages
combination of both single-bit and multi-bit faiffection
methods. This new approach yields identical infatian to the
single-bit approach while significantly reducingethime
required for fault testing.

A. Multi-Bit Testing Injection Methodology

In order to test the proposed injection methodologe
have modified the SPFI system. Similar to the indb
approach, the CG is used to design a campaigninowgdault
locations to be injected. Special care is takemadie sure that
bits in a particular batch are not part of the s&@h®. This
step is accomplished by comparing the addressdsawfes
containing faults (excluding minor address bitsjl anaking
sure that none are identical within the selectéd se

As presented in Figure 5, after the fault locatiare
known, the ME selects a batch of faults for thetfitest. The
bits specified by the campaign file are corrupted i
corresponding frames and combined into a craftediapa
bitstream that is programmed onto the device. h# TG
determines that the resulting configuration hasntidal
functionality to the original, all of the testedufts in the set are
deemed to be benign. When errors are reportedy fzadt
location is tested separately by using the singlefdult-
injection approach to determine which bits caubsedetrors.

B. Campaign Sequence Optimization
Through the course of our investigation of faujeation

techniques, we have observed much higher incideheerors
caused by ‘1’ to ‘0’ transition faults than ‘0’ t@’ transition

faults. The majority of the configuration bits tine FPGA is
responsible for routing of the signals and coulcbat for this
observation. In the case of Xilinx FPGAs, confafion of an
empty switchbox consists of only ‘0’ bits. If @ysal is running
through a switchbox, then some configuration bits set to
‘1’. This situation translates to the ‘0’ to ‘Iransition creating
possible short circuits, while the ‘1’ to ‘0’ tratiens create
possible open circuits. On average, a bitstreansists of
more ‘0’ bits than ‘1’ bits because very few desigran take
full advantage of the interconnect fabric.

Generate campaign file
(in CG)

Y

Same CLBs in
the batch?

Reorder fault injection
campaign

Get next batch

Y

Insert faults
Craft partial bitstream

Y

Inject faults through PR

Y

Test each fault
individually

A

Run TG

Repair faults via PR Errors detected?

Repair faults via PR

Y

Designate faults in the
batch as benign

Figure 5. Multi-bit fault-injection methodology

Such fault incidence suggests a possible optinoiradf the
campaign structure which would take an advantageviudt
order the faults are tested. By grouping the ‘@’ ‘0’
transitions at the beginning of the campaign, a®idto ‘1’
transitions at the end, it is possible to skewdtstribution of
faults from uniform throughout the campaign to shert, high-
concentration area, where the ‘1’ to ‘0’ transiscare located
the large, low-concentration area. Campaign reordewill
allow for selecting larger batch sizes and resaolthigher
speedups. The campaign-reordering process tateeadnount
the location of the faults to prevent having muéifaults in the

same CLB.
possible, members of the other set are used.

C. BatchSze

The optimal batch size is difficult to calculatedarequires
a detailed timing model of the fault-injection st and prior
knowledge of the design’s FT characteristics. Fault-
mitigated designs, the situation is even more caratgd, as a
detailed knowledge of design partitioning and spsbdéities
of each subcomponent is needed.

An additional issue with selecting an optimal bastte is
the occurrence of false-positive batch tests. &lases occur
when a batch test fails but no constituent indigichit causes a
fault by itself. By decreasing the batch size,ca@ minimize
the occurrence of MBU-like effects which are respble for
the false positives. This problem is especiallgnginent in
replicated designs where a combination of faultedgiired in
order for an observable error to appear.

Additional complications are also introduced whesing
reordered campaigns where susceptible bits ardiswibuted
uniformly throughout the campaign. It is foresdeahat use
of different batch sizes for each part of the cagmpaould
yield results nearing optimal, but prior knowledge
susceptibilities would be required for both typégransitions.

V. RESULTS

To showcase this new injection technique, we have 13

modified our SPFI-FPGA tool to support multi-bijeation as
well as campaign sorting. The experimental testimatbists of
a Linux-based computer connected to an ML-401 agweént
board with a Xilinx Virtex-4 LX25 FPGA. The JTAG
programming interface consists of a Xilinx Platfoi@able
USB Il, and the Tl uses a FTDI 232R USB-to-ser@hverter
cable to interface with FPGA logic. The programgnif the

FPGA takes approximately 3.6 seconds for a complete §7

bitstream and 110-180 milliseconds for partial thésms
depending on the number of faults being injected.

The kernel developed for the following experiments

performs matrix multiplication (MM) on two 9x9 mates of
16-bit integer or fixed-point values. Matrix mplication is a
common kernel in signal and image processing agiphics.
Although FPGA area constraints limit the size ofsiagle
matrix multiplication, larger matrix sizes can beqessed by
dividing them into blocks. The MM algorithm is pdelized
overn processing units, which allows for the calculatadrihe
dot product in a single clock cycle therefore rexgc
computational time fromO(n%) to O(n?) clock cycles. The

design makes use of embedded BlockRAM and DSP meseu

available on the Virtex-4.

In order to assess the performance of the augmestsibn
of SPFI-FPGA, the execution time required to te8{0Q0
faults is compared, both with and without campaprdering.
The batch size is varied in the range of 2 to 4§, Im order to
determine area of the best performance. The TG agare-
computed set of 50 randomly generated vectors tifyve
correct operation of the core. Based on testipgraimately

In cases where such an arrangement tis nb.6% of bits are susceptible to SEUs for the cdthout fault-

tolerance features.

4 ¥ " x
x’ TxX
3.5 o "
o 3 i - X
3 ?/r—" e = *y
8 25 »
o s
15 ; —e—No FT
j --x-- No FT w/ reordering
1 ; : : : :
0 5 10 15 20 25 30
Batch Size

Figure 6. Fault-injection speedup for MM without FT features

Figure 6 illustrates the execution speedup attaloye8PFI-
FPGA versus the batch size while testing the MMeasithout
FT features. The optimal batch size for the uesbdampaign
is 10 and achieves speedup of %02Zersus the single-bit
injection method. For the sorted campaign, thénggdtbatch
size is 14 with a speedup of 3:91Runtime of the experiments
is summarized in Table I.

X X Ly =% .
, ol X
1 x X "%
x .. ‘ .
4 X .. e . g
20 /s;(.i
S ¢'.4 ‘, + . 2
S . ° ‘e.0’
3 / N
n
5 a
—e— Coarse TMR '
3 - - ®-- Coarse TMR w/ reordering
——Fine TMR
- - x- - Fine TMR w/ reordering
1 | 1 1
0 10 20 30 40
Batch Size

Figure 7. Fault-injection speedup for MM using coarse ané finain TMR

Designs that exploit FT features show a more dramat
performance improvement. Figure 7 shows speedUpPéfl-
FPGA for the MM core with two different TMR apprdess.
The design labeled Coarse TMR [11] consists of ralyu
instantiated, triplicated MM cores. The voter,dted in the
wrapper part of the design, selects correct outpat bitwise
fashion.
replication tool developed at BYU [12], which regaltes low-
level components of the core and inserts interat@rg into the
design. Fault injection on Coarse TMR achievesdpps of

The design labeled Fine TMR uses the EDIF

8.33x and 10.08, for batch sizes of 14 and 22, with regular
and sorted campaigns, respectively. Injection ore HMR
achieves speedups of 8:9and 12.88, with batch sizes of 16
and 22, for regular and sorted campaigns, respdgtivThe
testing performance of Fine TMR is better than GeafMR
due to lesser occurrence of false-positive batsts tihat cause
significant performance degradation. Similarlyordered
campaigns show improved performance with higherchat
sizes, because of significant decrease in the enciel of false-
positive batch tests in the ‘0’ to ‘1’ phase of ttreampaign.

TABLE I. SUMMARY OF THE RESULTS
crperimen. | Sle S [Optal [WULSI Ty
Name Runtime Size Runtime Speedup
No FT 420 h 10 1.39h 3
No FT w/ reord. 4.15h 14 1.06 h 4

Coarse TMR 3.79h 14 0.45h 8

Coarse TMR w/ reord,| 3.79h 22 0.38 h 10
Fine TMR 3.80h 16 0.43 h 9

Fine TMR w/ reord. 3.80 h 22 0.30 h 13

VI. CONCLUSIONS ANDFUTURE WORK

Use of FPGAs on space-based platforms is highicéffe
for increasing computational power of the system peit
energy, but appropriate measures must be takeettynline
reliability of the design. By using our novel niift injection
methodology in conjunction with reordering of fainjection
campaigns, high speedups are possible when testawgsign.
On our testbed, we were able to achieve speedups 4pfor
unmitigated designs and up toxL%or designs employing a
form of TMR. Such high testing speedups can dreaift
decrease the time required to test complex designs
preparation for space deployment.

Future work in this direction may explore further
optimizations to the proposed methodology. In ipaldr,
adaptively controlling the batch size during rumei would
increase performance and usability of the faultedtgr.
Another campaign optimization strategy would ineolv
separating bits belonging to the switchboxes froits b
belonging to other components in
Campaigns optimized with this information in mindowid
yield even better results than the statistical apgin based on
transitions proposed in the paper. Unfortunatslych an
approach would require in-depth knowledge of hststn
structure, which is vendor-proprietary and thus pablicly
available.

(2]

(3]

(4]

(5]

(6]

(7]

(9]

(20]

(11]

(12]

the FPGA fabric.

ACKNOWLEDGMENTS
This work was supported in part by the /UCRC Paogof
the National Science Foundation under Grant No.
EEC0642422. The authors gratefully acknowledgeduen

equipment and/or tools provided by Xilinx.

REFERENCES

E. Johnson, M. J. Wirthlin, and M. Caffrey, “Singleent upset
simulation on an FPGA,” Proc. Int. Conf. Engineering of

(1

Reconfigurable Systems and Algorithms (ERSA), Las Vegas, NV, 24-27
Jun. 2002.

E. Johnson, M. Caffrey; P. Graham, N. Rollins, M.irttin,
“Accelerator validation of an FPGA SEU simulatotEEE Trans. on
Nuclear Science, vol.50, no.6, pp. 2147-2157, Dec. 2003.

L. Sterpone, M. Violante, "A New Partial Reconfigtion-Based Fault-
Injection System to Evaluate SEU Effects in SRAMs&#h FPGAS,"
IEEE Trans. on Nuclear Science, vol.54, no.4, pp.965-970, Aug. 2007.

M. French. P. Graham, M. Wirthlin, L. Wang, and Garchev,
“Radiation Mitigation and Power Optimization Desighools for
Reconfigurable Hardware in OrbitProc. Earth-Sun System Technology
Conference, Hyattsville, MD, 28-30 Jun. 2005.

G. Cieslewski, A. D. George, “SPFFI — Simple PdeaBPGA Fault
Injector,” Military and Aerospace Programmable Logic Devices
(MAPLD) Conference, Greenbelt, MD, Aug. 31-Sep. 3. 2009.

G. Allen, G. Swift, and C. Carmichael, “Virtex-4VQ@tatic SEU
characterization summary,” Xilinx Radiation TestrSortium, Tech.
Rep. 1, 2008.

“Virtex-4 Configuration Guide,” Tech. Doc. UG071 1(%), Xilinx
Corporation, San Jose, CA, pp. 1-116, 2007.

“Command Line Tools User Guide,” Tech. Doc. UG6281.4), Xilinx
Corporation, San Jose, CA, pp. 1-380, 2009.

D. Petrick, W. Powell, J. Howard Jr., K. LaBel, fi#éx-1l Pro PowerPC
SEE Characterization Test Methods and Resultdlijitary and
Aerospace Programmable Logic Devices (MAPLD) Conference,
Washington D.C., 7-9 Sep. 2005.

H. Quinn, P. Graham, J. Krone, M. Caffrey, and 8zdrii, “Radiation
induced multi-bit upsets in SRAM-based FPGAS$EEE Trans. on
Nuclear Science, vol. 52, no. 6, pp. 2455-2461, Dec. 2005.

C. Carmichael, “Triple module redundancy desigmmégues for Virtex
FPGAs,” Tech. Doc. XAPP197, Xilinx Corporation, N@0O01.
B. Pratt, M. Caffrey, J. Carroll, P. Graham, K. idan, and M. Wirthlin,

“Fine-grain SEU mitigation for FPGAs using partid@dMR,” |IEEE
Trans. on Nuclear Science, vol. 55, pp. 2274-2280, Aug. 2008.

