
Acceleration of FPGA Fault Injection
through Multi-Bit Testing

Grzegorz G. Cieslewski, Alan D. George, and Adam M. Jacobs

NSF Center for High-Performance Reconfigurable Computing (CHREC)
ECE Department, University of Florida, Gainesville, FL, USA

Abstract—SRAM-based FPGA devices are an attractive option
for data processing on space-based platforms, due to high
computational capabilities and a lower power envelope than
traditional processing devices. These devices present unique
fault-testing challenges as single-event effects can trigger changes
in functionality by changing the configuration memory of the
device. With each new generation, FPGA configuration
memories increase in size and designs increase in complexity,
making it very difficult, if not impossible, to perform exhaustive
fault-injection testing to verify design reliability. We propose a
novel methodology for fault injection in FPGAs using multi-bit
testing that can significantly accelerate the process.
Traditionally, each bit in configuration memory is tested
separately; by testing multiple bits during one test, speedups of
more than 10× can be achieved.

I. INTRODUCTION

A high degree of on-board data processing is a necessity for
next-generation space satellites. This need is especially true for
platforms which employ new sensor technologies, capable of
collecting more data than a spacecraft’s ability to transmit that
data to its destination. This downlink bottleneck, caused by
transmitter power and bandwidth limitation, target visibility,
and high latency can be mitigated by performing a higher
degree of on-board data processing. As traditional CPU-based
technologies struggle to provide high-performance computing
in space, Field-Programmable Gate Arrays (FPGAs) provide an
attractive and powerful replacement. The inherent advantages
in performance, energy efficiency, size, and adaptability
facilitated by reconfigurable logic can help answer demands of
next-generation, space-based platforms.

Radiation-hardened FPGAs are common components in
space-based platforms. However, due to the nature of the
radiation-hardening process they are typically smaller, slower
and more expensive than their commercial-off-the-shelf
(COTS) counterparts. By contrast, commercial FPGA devices
provide unprecedented levels of efficiency for space missions,
but are highly susceptible to single-event effects (SEEs) caused
by high-energy particles. To maintain high system reliability,
traditional and innovative fault-tolerant (FT) design methods
are required. An effective testing method is needed to evaluate
these devices and FT design methods to expedite the space
qualification process. The approach should efficiently
introduce faults, test behavior, and estimate expected error rates
without the need for expensive radiation testing at each step of
the development cycle.

Numerous fault-injection techniques have been proposed in
the past, ranging from simulation approaches to radiation
testing, but no single method has provided the optimal solution
to the problem. The predominant method of emulating the
effects of single-event upsets (SEUs) on FPGA devices is by
programming a modified bitstream into the configuration
memory of the device, which accounts for the majority [1] of
all susceptible bits. Bitstream modification alters the
functionality of the device and allows one to observe the
potential effects of an SEU. The total amount of configuration
memory required to define the behavior of the reconfigurable
logic in FPGAs is constantly increasing as the size of the
devices increases. Additionally, to effectively gauge the effects
of SEUs on a design, a comprehensive set of test vectors is
required. For large designs, such sets are difficult to calculate
and can be prohibitively large to use in testing. These trends
make it difficult, if not impossible, to perform comprehensive
fault-injection testing of the whole device. An alternative to
testing the entire configuration memory of an FPGA is to use
statistical sampling methods to select a subset of bits to
investigate and use confidence intervals to show bounds on the
susceptibility estimate of a given design. An accurate
prediction of susceptibility with a tight confidence interval
requires a large number of samples and can involve long testing
times.

In this paper we propose and demonstrate a novel approach
to FPGA fault injection through multi-bit testing which allows
acceleration of the testing process while maintaining the
correctness of the results. Our Simple, Portable, Fault Injector
platform for FPGAs (SPFI-FPGA) [5] supports fault injection
for Xilinx Virtex-4 FPGAs through partial reconfiguration
(PR). This injection mode minimizes the time required to
modify configuration memory and further improves injection
speed. In this paper, we present a traditional single-bit and
augmented multi-bit injection methodology and discuss the
performance of the proposed fault-injection approach in the
context of relevant case studies.

The remaining sections of this paper are organized as
follows. Section 2 surveys previous work related to this topic.
Section 3 provides an overview of SPFI-FPGA as well as
single-bit fault-injection and testing methodologies. Section 4
details the new fault-injection approach and additional methods
for improving the performance of the proposed scheme. In
Section 5, we present performance results of fault-injection
testing. Finally, Section 6 provides conclusions and outlines
directions for future work.

II. BACKGROUND

Modern SRAM-based FPGAs are constructed from
collections of configurable logic blocks (CLBs) and custom
cores (multipliers, processors, BlockRAMs) which are
connected by a programmable network allowing for highly
intricate designs. CLBs consist of relatively small components
including look-up tables (LUT), multiplexers, flip-flops (FF),
and supporting structures composed of AND-OR gates making
them capable of implementing complex logic functions. The
on-chip programmable interconnect consists of grid of
switchboxes bonded to wire segments of various lengths. Each
switchbox integrates a large number of programmable switches
allowing for custom routing of signals between CLBs.
Information used to set the function of switchboxes, CLBs and
other components is stored in the configuration memory.

While all space-based electronics are susceptible to faults
caused by radiation, SRAM-based FPGAs have a unique set of
additional concerns due to their reconfigurable nature. SEUs,
which cause faults in FFs or BlockRAMs, are closely related to
the upsets on non-reconfigurable platforms and can lead to data
corruption or single-event functional interrupts (SEFIs), where
a device or design can enter an unexpected state. However,
upsets which occur in a device’s configuration memory are in
part unique to reconfigurable FPGAs, as the configuration
memory controls the function of the logic and interconnect.
This type of fault can lead to broken nets, formation of new
connections, or other effects resulting in unpredictable behavior
of the circuit.

The effects of SEUs on FPGAs can be studied by emulating
how radiation affects the underlying silicon structures through
modifying bits in the configuration memory of the device. It
was shown in [1] that the vast majority of errors attributed to
SEUs are results of changes in the configuration memory and
not to the embedded FFs, as the cross-section of all the FFs is
only a small fraction of the cross-section of all bits in the
configuration memory. In case of a Virtex-4 SX55, the size of
configuration memory (not counting BRAM) is 15.4 million
bits and the total number of FFs attached to slices is
approximately 49 thousand bits, making the configuration
memory upsets over 300 times more likely [6].

Multiple approaches to FPGA fault injection have been
studied in recent years. Most of them targeted performance of
fault injection above other tradeoffs, which can lead to limited
portability and reusability.

Johnson et al. [1], [2] proposed a specialized testbed,
SLAAC-1V, for fault-injection experiments. It consists of two
identical FPGAs (Virtex XCV1000) in a parallel configuration.
Outputs are connected to a voter which constantly compares
outputs of both FPGAs. The testing procedure calls for one of
the FPGAs to be programmed with a corrupt bitstream, while
the other remains in its original state. The designs are cycled
with inputs, and outputs compared by the voter to determine if
the given change in configuration memory has undesirable
effects. Due to the custom parallel architecture, the system has
a very high performance and is capable of rapidly testing faults
without the need for a golden standard data set.

The Xilinx Research Test Consortium (XRTC) system [9]
uses a base motherboard from SEAKR Engineering with a
daughter-card containing an FPGA as device under test (DUT).
The motherboard contains two FPGAs which are responsible
for function monitoring of the DUT by providing test vectors
and verifying outputs against a golden standard. Fault injection
is performed through the JTAG interface using an external
computer or, in later versions, is integrated with the
motherboard over a SelectMap port [6]. The XRTC system
offers excellent performance, but requires the use of known
data sets, or a two-step testing approach where first the run
establishes correct outputs and the second run determines the
effects of the fault. Unfortunately, like the SLAAC-1V testbed,
since the design uses specific hardware and custom boards, it
cannot be used with any other FPGA devices without redesign.

Sterpone et al. [3] have proposed a different method that
uses a System-on-Chip (SoC) approach. The FPGA design is
divided (both physically and logically) into the unit under test
(UUT) and the supporting logic consisting of embedded
PowerPC, a timing unit, and an Internal Configuration Access
Port (ICAP) controller. The logic that the user wishes to test is
placed in the UUT and constrained to a portion of an FPGA.
The support logic is responsible for fault injection, providing
test vectors and collecting results. This method of fault testing
performs even better than the previous two approaches as it
uses the high-speed ICAP controller for partial reconfiguration
and stores the test vectors directly on the FPGA. Although this
approach is uniquely suitable for testing design components, its
split design restricts adaptability and does not allow for testing
standalone systems. Moreover, the size of the test vectors is
restricted to memory available, and the UUT is constrained to
resources not used by supporting logic.

The Virtex-II SEU Emulator (V2SE) briefly described in
[4] uses yet another configuration approach. Similar to the
XRTC testbed, it uses the SelectMap configuration port for
high-speed injections in combination with COTS and custom-
designed hardware. Whereas the SelectMap port allows for
rapid reconfiguration, it is not as popular as the JTAG port and
is not present on all platforms.

III. SPFI-FPGA TOOL

As briefly introduced in [5], SPFI-FPGA is a flexible fault-
injection tool devised for use with Virtex-4 FPGAs to test
behavior of designs when subjected to faults in configuration
memory. It is a part of a larger SPFI framework targeted at
system-level testing encompassing not only FPGAs but also
CPUs (PowerPC) and reconfigurable many-core-based
platforms (TILE64). The primary motivation for SPFI is to
provide maximum portability in order to support a wide range
of systems and enable in-system testing. While performance of
the tool is important, custom approaches limiting the
applicability of the tool to a particular device or platform are
intentionally avoided whenever possible.

A. SPFI-FPGA System Architecture

Figure 1 shows the high-level architecture of the SPFI-
FPGA tool. The architecture is divided into three major

components: Campaign Generator (CG), Management Engine
(ME), and Test Generator (TG).

Figure 1. Block diagram of SPFI-FPGA system architecture

The CG is used to generate the campaign file, based on
user-specified parameters such as injection area, resource type,
and number of bits to be tested. The campaign file contains
frame address and bit offsets describing the selected location of
faults to be injected. To obtain those locations, the CG uses a
debug bitstream file, generated by the Xilinx BitGen tool [8],
which contains addresses of each data frame in the bitstream
and is stripped of padding frames required in a course of full
reconfiguration. This mechanism of bitstream analysis
uncovers details about the geometry of the device required for
fault injection and removes the need for a device database
describing each supported device.

The ME is the main workhorse of the system, and is
responsible for campaign management, FPGA monitoring,
fault insertion and removal, and data logging. Primary inputs
for the management engine are the bitstream files for the given
design and a campaign file that contains a description of the
experiment. FPGA monitoring and programming is facilitated
by use of the JTAG port, which is used as the primary
programming channel due to its high availability and
accessibility on most of the platforms. Fault insertion and
removal is achieved by automatically generating partial-
bitstream files, which contain data frames to appropriately
modify the configuration memory of the FPGA [7]. All
injection results and events are logged in a text database which
can be used for detailed statistical analysis.

The TG verifies the operation of the design for the FPGA
and provides that information back to the ME. To maximize
flexibility, this component is a user-defined, plug-in application
that communicates with the FPGA using the Test Interface

(TI). The complexity of this component can vary sharply due
to design choices and system architecture. The simplest
version would trigger a built-in self-test (BIST) function which
could verify the operation of the system without any interaction
with the TG. After the completion of the BIST, the TG would
be notified of the results. On the other end of spectrum, the TG
can generate a random set of test vectors to be transferred over
a TI to the DUT. The result would consist of another set of
vectors which would be verified against the correct outputs in
the TG. To increase the performance of the TG, it can be
partially hosted on the FPGA in a form of a wrapper that
communicates with the design.

B. Fault-Injection Methodology

The fault-injection methodology developed in conjunction
with SPFI-FPGA considers portability and performance as well
as correctness and repeatability. The main portability
consideration is the type of configuration interface. As cited
previously, the JTAG port was chosen as the primary
programming channel due to its availability on most of the
platforms. The high level of abstraction in the SPFI-FPGA’s
architecture allows adding specialized programming interfaces,
such as SelectMap, in a modular fashion.

Figure 2. Single-bit fault-injection methodology

To increase the speed of fault injection, SPFI-FPGA uses a
mixture of partial- and full-reconfiguration techniques as
shown in Figure 2. After the fault location is read from the
campaign file, the ME selects a frame with the corresponding
address and inverts the specified bit. The frame is then used to

create a crafted partial bitstream which is programmed onto the
device. The TG is used to verify the correct functionality of
the FPGA, and based on the outcome an appropriate recovery
procedure is taken. In cases where an observable error does not
occur, the configuration memory is repaired by programming
the original frame on to the device. When the injection does
cause an observable error, the full reconfiguration is performed
to reset the FPGA to a nominal state. The site is retested to
remove any bias introduced by false positives that can occur
due to multiple partial reconfigurations as well as inconsistent
behavior of other components of the system (board
components, TI).

The mean time per injection is strongly dependent upon the
performance of the TG as well as the speed of the
programming interface. It can be modeled as

 () () cpretprfretprsbfi ttptttpttt +−+++++= 12 (1)

where tsbfi represents the average elapsed time for execution
of one injection. tfr and tpr represent the time needed to perform
full and partial reconfiguration. tt denotes execution time of the
TG program, pe is the probability that the injected fault will be
manifested as an observable error, and tc is the constant
software overhead per injection.

C. Testing Methodology

When considering fault injection, one must account for the
general architecture of the design being tested. Such an FPGA
design can be classified as a module that requires data to be
provided for it, or as standalone system that interfaces with
external resources. We propose classifying these systems in
one of two categories, module-level testing and system-level
testing.

Module-level testing as shown in Figure 3 is mostly
suitable for smaller designs which occupy only a part of the
chip, so that the remaining part of the chip can be used to
provide fault-injection facilities. In such case, a significant part
of the TG can be shifted from the attached PC onto the FPGA.
The test vectors required for testing the module could be placed
in the spare BlockRAMs, mitigating the delay of TI between
the TG and the FPGA.

Figure 3. Module-level testing

As shown in Figure 4 system-level testing is best suited for
designs that occupy the majority of the chip and are integrated
with other components (SDRAM, network, ADCs). In such
case, the TG program might not be directly attached to the
FPGA but communicate through some other system. It might
be required to provide and receive test vectors or start the
system’s BIST.

Figure 4. System-level testing

D. Fault-Injection Bottlenecks

The driving methodology in the SPFI design is to architect
a tool that is portable across a variety of FPGA types and
systems. As a result, there are many tradeoffs which lower the
fault-injection performance. The primary bottleneck is the
JTAG port. Due to its serial nature it can deliver only
moderate performance, which is constrained by the JTAG
clock speed supported by the system and software/hardware
characteristics of the programming cable.

Another limiting factor is performance of the TG.
Generating a representative set of test vectors for a complex
module can be a difficult and daunting task. In addition, such a
comprehensive set may be very large and require a long period
of time to test. In some cases, testing time can be many orders
of magnitude greater than the injection time [3]. This time can
be mitigated by storing the test data on the FPGA when the
module-level testing approach is taken.

The error rate also influences performance of SPFI-FPGA,
since different recovery procedures are taken depending on the
outcome of TG run. In the case of an observable error, the
FPGA has to be fully reconfigured in addition to the retesting
procedure. Full reconfiguration is very expensive, as it takes
significantly longer time to execute. This problem is not as
prominent when testing the susceptibility of fault-tolerant
designs, as the error rate is usually very small, causing few full
reconfigurations.

IV. MULTI-BIT TESTING

One of the major goals of any fault-injection system is a
high-injection rate to allow for an accurate susceptibility
characterization of a given design and device. Unfortunately,
there are many tradeoffs affecting the injection rate achievable
by the tools. The usual solutions involve modifying a part of

the system, particularly the programming interface, in order to
improve the overall performance. This approach usually
involves major changes to the system components and in many
cases yields specialized hardware which is tied to the particular
platform. Consequently, this method decreases portability and
applicability to a narrow set of platforms. An alternate way of
viewing the problem is to decrease the total number of
injections in order to achieve better performance while
maintaining the quality and fidelity of results. Such an
alternative is infeasible when testing one bit at a time but
becomes practical when this condition is relaxed. To achieve
this goal, we propose a new tactic for fault-injection testing,
which will decrease the total number of injections by testing
multiple bits or batches at a time.

The general premise behind multi-bit testing is to inject and
test multiple faults at a time to decrease the total number of
injections and consequently decrease the total injection time.
We assume that the probability of two or more random faults
masking each other’s effects and yielding a correctly working
circuit is incredibly small and will not affect the results of fault-
injection testing. To further strengthen this assumption, we
impose constraints on the location of random faults which are
to be jointly tested. None of the jointly tested faults can
occupy an identical CLB. This approach is related to Multiple-
Bit Upset (MBU) testing [10] with the exception of location of
the upsets. MBUs caused by cosmic rays are closely clustered,
whereas our approach disperses faults through the testing space
to minimize possibility of masking.

The proposed fault-testing methodology incorporates a
combination of both single-bit and multi-bit fault-injection
methods. This new approach yields identical information to the
single-bit approach while significantly reducing the time
required for fault testing.

A. Multi-Bit Testing Injection Methodology

In order to test the proposed injection methodology, we
have modified the SPFI system. Similar to the original
approach, the CG is used to design a campaign containing fault
locations to be injected. Special care is taken to make sure that
bits in a particular batch are not part of the same CLB. This
step is accomplished by comparing the addresses of frames
containing faults (excluding minor address bits) and making
sure that none are identical within the selected set.

As presented in Figure 5, after the fault locations are
known, the ME selects a batch of faults for the first test. The
bits specified by the campaign file are corrupted in
corresponding frames and combined into a crafted partial
bitstream that is programmed onto the device. If the TG
determines that the resulting configuration has identical
functionality to the original, all of the tested faults in the set are
deemed to be benign. When errors are reported, each fault
location is tested separately by using the single-bit fault-
injection approach to determine which bits caused the errors.

B. Campaign Sequence Optimization

Through the course of our investigation of fault-injection
techniques, we have observed much higher incidence of errors
caused by ‘1’ to ‘0’ transition faults than ‘0’ to ‘1’ transition

faults. The majority of the configuration bits in the FPGA is
responsible for routing of the signals and could account for this
observation. In the case of Xilinx FPGAs, configuration of an
empty switchbox consists of only ‘0’ bits. If a signal is running
through a switchbox, then some configuration bits are set to
‘1’. This situation translates to the ‘0’ to ‘1’ transition creating
possible short circuits, while the ‘1’ to ‘0’ transitions create
possible open circuits. On average, a bitstream consists of
more ‘0’ bits than ‘1’ bits because very few designs can take
full advantage of the interconnect fabric.

Figure 5. Multi-bit fault-injection methodology

Such fault incidence suggests a possible optimization of the
campaign structure which would take an advantage of what
order the faults are tested. By grouping the ‘1’ to ‘0’
transitions at the beginning of the campaign, and ‘0’ to ‘1’
transitions at the end, it is possible to skew the distribution of
faults from uniform throughout the campaign to the short, high-
concentration area, where the ‘1’ to ‘0’ transitions are located
the large, low-concentration area. Campaign reordering will
allow for selecting larger batch sizes and result in higher
speedups. The campaign-reordering process takes into account
the location of the faults to prevent having multiple faults in the

same CLB. In cases where such an arrangement is not
possible, members of the other set are used.

C. Batch Size

The optimal batch size is difficult to calculate and requires
a detailed timing model of the fault-injection system and prior
knowledge of the design’s FT characteristics. For fault-
mitigated designs, the situation is even more complicated, as a
detailed knowledge of design partitioning and susceptibilities
of each subcomponent is needed.

An additional issue with selecting an optimal batch size is
the occurrence of false-positive batch tests. These cases occur
when a batch test fails but no constituent individual bit causes a
fault by itself. By decreasing the batch size, we can minimize
the occurrence of MBU-like effects which are responsible for
the false positives. This problem is especially prominent in
replicated designs where a combination of faults is required in
order for an observable error to appear.

Additional complications are also introduced when using
reordered campaigns where susceptible bits are not distributed
uniformly throughout the campaign. It is foreseeable that use
of different batch sizes for each part of the campaign could
yield results nearing optimal, but prior knowledge of
susceptibilities would be required for both types of transitions.

V. RESULTS

To showcase this new injection technique, we have
modified our SPFI-FPGA tool to support multi-bit injection as
well as campaign sorting. The experimental testbed consists of
a Linux-based computer connected to an ML-401 development
board with a Xilinx Virtex-4 LX25 FPGA. The JTAG
programming interface consists of a Xilinx Platform Cable
USB II, and the TI uses a FTDI 232R USB-to-serial converter
cable to interface with FPGA logic. The programming of the
FPGA takes approximately 3.6 seconds for a complete
bitstream and 110-180 milliseconds for partial bitstreams
depending on the number of faults being injected.

The kernel developed for the following experiments
performs matrix multiplication (MM) on two 9×9 matrices of
16-bit integer or fixed-point values. Matrix multiplication is a
common kernel in signal and image processing applications.
Although FPGA area constraints limit the size of a single
matrix multiplication, larger matrix sizes can be processed by
dividing them into blocks. The MM algorithm is parallelized
over n processing units, which allows for the calculation of the
dot product in a single clock cycle therefore reducing
computational time from O(n3) to O(n2) clock cycles. The
design makes use of embedded BlockRAM and DSP resources
available on the Virtex-4.

In order to assess the performance of the augmented version
of SPFI-FPGA, the execution time required to test 10,000
faults is compared, both with and without campaign reordering.
The batch size is varied in the range of 2 to 40 bits, in order to
determine area of the best performance. The TG uses a pre-
computed set of 50 randomly generated vectors to verify
correct operation of the core. Based on testing, approximately

1.6% of bits are susceptible to SEUs for the core without fault-
tolerance features.

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30
Batch Size

S
p

e
e

du
p

No FT
No FT w/ reordering

Figure 6. Fault-injection speedup for MM without FT features

Figure 6 illustrates the execution speedup attained by SPFI-
FPGA versus the batch size while testing the MM core without
FT features. The optimal batch size for the unsorted campaign
is 10 and achieves speedup of 3.02× versus the single-bit
injection method. For the sorted campaign, the optimal batch
size is 14 with a speedup of 3.91×. Runtime of the experiments
is summarized in Table I.

1

3

5

7

9

11

13

0 10 20 30 40
Batch Size

S
p

e
e

du
p

Coarse TMR
Coarse TMR w/ reordering
Fine TMR
Fine TMR w/ reordering

Figure 7. Fault-injection speedup for MM using coarse and fine grain TMR

Designs that exploit FT features show a more dramatic
performance improvement. Figure 7 shows speedup of SPFI-
FPGA for the MM core with two different TMR approaches.
The design labeled Coarse TMR [11] consists of manually
instantiated, triplicated MM cores. The voter, located in the
wrapper part of the design, selects correct output in a bitwise
fashion. The design labeled Fine TMR uses the EDIF
replication tool developed at BYU [12], which replicates low-
level components of the core and inserts internal voters into the
design. Fault injection on Coarse TMR achieves speedups of

8.33× and 10.03×, for batch sizes of 14 and 22, with regular
and sorted campaigns, respectively. Injection on Fine TMR
achieves speedups of 8.93× and 12.83×, with batch sizes of 16
and 22, for regular and sorted campaigns, respectively. The
testing performance of Fine TMR is better than Coarse TMR
due to lesser occurrence of false-positive batch tests that cause
significant performance degradation. Similarly, reordered
campaigns show improved performance with higher batch
sizes, because of significant decrease in the incidence of false-
positive batch tests in the ‘0’ to ‘1’ phase of the campaign.

TABLE I. SUMMARY OF THE RESULTS

Experiment
Name

Single-Bit
Injection
Runtime

Optimal
Batch
Size

Multi-Bit
Injection
Runtime

Max.
Speedup

No FT 4.20 h 10 1.39 h 3

No FT w/ reord. 4.15 h 14 1.06 h 4

Coarse TMR 3.79 h 14 0.45 h 8

Coarse TMR w/ reord. 3.79 h 22 0.38 h 10

Fine TMR 3.80 h 16 0.43 h 9

Fine TMR w/ reord. 3.80 h 22 0.30 h 13

VI. CONCLUSIONS AND FUTURE WORK

Use of FPGAs on space-based platforms is highly effective
for increasing computational power of the system per unit
energy, but appropriate measures must be taken to determine
reliability of the design. By using our novel multi-bit injection
methodology in conjunction with reordering of fault-injection
campaigns, high speedups are possible when testing a design.
On our testbed, we were able to achieve speedups up to 4× for
unmitigated designs and up to 13× for designs employing a
form of TMR. Such high testing speedups can dramatically
decrease the time required to test complex designs in
preparation for space deployment.

Future work in this direction may explore further
optimizations to the proposed methodology. In particular,
adaptively controlling the batch size during run-time would
increase performance and usability of the fault injector.
Another campaign optimization strategy would involve
separating bits belonging to the switchboxes from bits
belonging to other components in the FPGA fabric.
Campaigns optimized with this information in mind would
yield even better results than the statistical approach based on
transitions proposed in the paper. Unfortunately, such an
approach would require in-depth knowledge of bitstream
structure, which is vendor-proprietary and thus not publicly
available.

ACKNOWLEDGMENTS

This work was supported in part by the I/UCRC Program of
the National Science Foundation under Grant No.
EEC0642422. The authors gratefully acknowledge vendor
equipment and/or tools provided by Xilinx.

REFERENCES
[1] E. Johnson, M. J. Wirthlin, and M. Caffrey, “Single-event upset

simulation on an FPGA,” Proc. Int. Conf. Engineering of

Reconfigurable Systems and Algorithms (ERSA), Las Vegas, NV, 24-27
Jun. 2002.

[2] E. Johnson, M. Caffrey; P. Graham, N. Rollins, M. Wirthlin,
“Accelerator validation of an FPGA SEU simulator”, IEEE Trans. on
Nuclear Science, vol.50, no.6, pp. 2147-2157, Dec. 2003.

[3] L. Sterpone, M. Violante, "A New Partial Reconfiguration-Based Fault-
Injection System to Evaluate SEU Effects in SRAM-Based FPGAs,"
IEEE Trans. on Nuclear Science, vol.54, no.4, pp.965-970, Aug. 2007.

[4] M. French. P. Graham, M. Wirthlin, L. Wang, and G. Larchev,
“Radiation Mitigation and Power Optimization Design Tools for
Reconfigurable Hardware in Orbit”, Proc. Earth-Sun System Technology
Conference, Hyattsville, MD, 28-30 Jun. 2005.

[5] G. Cieslewski, A. D. George, “SPFFI – Simple Portable FPGA Fault
Injector,” Military and Aerospace Programmable Logic Devices
(MAPLD) Conference, Greenbelt, MD, Aug. 31-Sep. 3. 2009.

[6] G. Allen, G. Swift, and C. Carmichael, “Virtex-4VQ static SEU
characterization summary,” Xilinx Radiation Test Consortium, Tech.
Rep. 1, 2008.

[7] “Virtex-4 Configuration Guide,” Tech. Doc. UG071 (v1.5), Xilinx
Corporation, San Jose, CA, pp. 1–116, 2007.

[8] “Command Line Tools User Guide,” Tech. Doc. UG628 (v 11.4), Xilinx
Corporation, San Jose, CA, pp. 1-380, 2009.

[9] D. Petrick, W. Powell, J. Howard Jr., K. LaBel, “Virtex-II Pro PowerPC
SEE Characterization Test Methods and Results”, Military and
Aerospace Programmable Logic Devices (MAPLD) Conference,
Washington D.C., 7-9 Sep. 2005.

[10] H. Quinn, P. Graham, J. Krone, M. Caffrey, and S. Rezgui, “Radiation
induced multi-bit upsets in SRAM-based FPGAs,” IEEE Trans. on
Nuclear Science, vol. 52, no. 6, pp. 2455–2461, Dec. 2005.

[11] C. Carmichael, “Triple module redundancy design techniques for Virtex
FPGAs,” Tech. Doc. XAPP197, Xilinx Corporation, Nov. 2001.

[12] B. Pratt, M. Caffrey, J. Carroll, P. Graham, K. Morgan, and M. Wirthlin,
“Fine-grain SEU mitigation for FPGAs using partial TMR,” IEEE
Trans. on Nuclear Science, vol. 55, pp. 2274–2280, Aug. 2008.

