
Abstract—Partial reconfiguration (PR) enhances 

traditional FPGA-based high-performance reconfigurable 

computing by providing additional benefits such as reduced 

area and memory requirements, increased performance, and 

increased functionality. However, since leveraging these 

additional benefits requires specific designer expertise, 

which increases design time, PR has not yet gained 

widespread usage. Even though Xilinx’s PR design flow 

significantly eases PR design, to fully leverage PR benefits 

designers require extensive PR design flow knowledge, as 

well as low-level architectural details of the target FPGA 

device. In this paper, we present a PR design flow and 

associated tool to automate PR design intricacies and design 

space exploration. Our design flow and tool can significantly 

reduce PR design time effort and make PR designs more 

accessible and amenable to a wider range of PR designers. 

I. INTRODUCTION AND MOTIVATION 

Dynamic reconfiguration in SRAM-based FPGAs is an 

extremely beneficial feature for high-performance embedded 

designs. By dynamically reconfiguring FPGA configuration 

memory with various design specifications (bitstreams), 

hardware functionality can time-multiplex FPGA resources.  

The dynamic reconfiguration method affects the bitstream 

format. Full bitstreams, used for full reconfiguration (FR), 

contain configuration information for the entire FPGA. 

Partial bitstreams, used for partial reconfiguration (PR), 

contain configuration information for a portion of the FPGA. 

FR and PR expand FPGA resources to nearly an infinite 

amount, resulting in reduced total resource requirements and 

increased flexibility through on-demand design specification 

loading/unloading. Additionally, since FR and PR can 

potentially decrease the number of required devices or device 

size, FPGA power consumption can also be reduced [10].  

However, dynamic reconfiguration has several drawbacks. 

Since FR requires reconfiguring the entire FPGA even for 

small design changes, memory resources are wasted as 

multiple large full bitstreams containing redundant 

configuration information need to be stored. Additionally, 

FR interrupts design execution during FPGA reconfiguration. 

This interruption or reconfiguration time can impose 

unacceptable performance overheads, especially for real-time 

systems. Alternatively, PR mitigates FR’s drawbacks by 

isolating reconfiguration to a portion of the FPGA while all 

other remaining FPGA resources continue execution [11].  

PR designs partition the FPGA into a static region and 

several individually reconfigurable PR regions (PRRs). The 

static region implements a PR design’s base functionality 

and is never reconfigured, while the PRRs are 

loaded/unloaded on demand with PR modules (PRMs). A 

PRM constitutes a portion of a PR design’s functionality. 

Since PR isolates the static region and PRRs, PR reduces 

memory requirements by eliminating the need for multiple 

full bitstreams containing redundant configuration 

information. PR designs require only one full bitstream to 

initialize a PR design’s initial static region and PRRs. During 

execution, different PRM partial bitstreams can be loaded 

into the PRRs on demand. Additionally, since partial 

bitstreams are significantly smaller than full bitstreams, PR 

reconfiguration time is faster than FR reconfiguration time 

[9]. PR is particularly useful for designs that do not 

simultaneously require all their functionality and can benefit 

from uninterrupted reconfiguration (SDRs [10], JPEG [16]). 

Despite PR’s enhancements over FR, PR designs have 

several drawbacks. PR designs are primarily supported by 

Xilinx’s Early-Access (EA) PR design flow [14], which 

requires manual intervention and significant design time 

effort. In addition to defining a PR design’s functionality and 

partitioning the design into the PRMs, PR designers must 

perform PR-specific tasks such as instantiating bus macro 

[14] VHDL specifications. Thus, even with Xilinx’s EA PR 

design flow, realizing PR benefits is challenging as lack of 

sufficient expertise can result in poor design performance.  

Currently, there exists little support for PR designers, and, 

to the best of our knowledge, there exists no previous efforts 

to completely automate the EA PR design flow’s design 

space exploration. In this paper we present the Design 

Automation for Partial Reconfiguration (DAPR) PR design 

flow. The DAPR design flow reduces PR design time effort 

and complexity, allowing rapid PR design prototyping and 

making PR more amenable to a larger range of designers. 
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Figure 1: Xilinx's EA PR design flow (left side) and the DAPR design  

flow (right side). 

 



II. BACKGROUND AND RELATED WORK 

A. Xilinx’s EA PR Design Flow 

Figure 1 (left side) depicts Xilinx’s EA PR design flow 

[14]. The EA PR design flow requires a hierarchical logical 

partitioning of the VHDL design files into non-overlapping 

PRMs. Next, the designer must: (1) synthesize each design 

file separately; (2) create the PR design’s floorplan; (3) 

implement separate non-PR designs for every PRM to PRR 

combination and perform timing analysis on each design to 

verify timing requirements; (4) generate place and route 

information for the static region to create a static design with 

“holes” (un-placed and un-routed regions) for the PRMs and 

then generate place and route information for each respective 

hole’s (PRR’s) PRM; and (5) merge the static design’s place 

and route information with each PRM’s place and route 

information to generate the PR design’s multiple full and 

partial bitstreams. Each full bitstream contains configuration 

information for different PRM to PRR combinations 

allowing any startup PR design functionality and modifying 

the functionality with partial bitstreams during runtime. 

Xilinx ISE [14] utilities individually handle steps 1, 4, and 

5 and Xilinx PlanAhead [14] aids step 2 (PR design 

floorplanning). Floorplanning defines area constraints (set in 

Xilinx’s user constraints file (.ucf)) that specify bus macro 

and resource placements as well as each PRR’s location and 

dimension (size and shape) on the FPGA. Although 

PlanAhead provides useful floorplanning information, there 

exists no formal process for determining optimal bus macro 

and PRR placements. Additionally, FPGA manufacturer 

provided bus macro placement “best practices” can produce 

designs with suboptimal design performance [3].  

Bus macro floorplanning depends on the target device 

type. Xilinx Virtex-4 device bus macros are slice-based [14] 

and span the static region and PRR boundaries. Bus macros 

are Xilinx provided hardwired logical elements that lock wire 

routing between the static design and PRMs. All signals 

except global signals (e.g. clock signals) between the static 

design and PRMs must pass through bus macros to ensure 

communication between the static region and PRMs remains 

established during reconfiguration. PRR floorplanning 

ensures PRRs encompass enough hardware resources to 

support the resource requirements of each PRM mapped to a 

PRR. Proper floorplanning ensures correct placement of both 

bus macros and PRRs but several correct placements exist 

and not all placements will result in the same design 

performance. For example, a PRR’s dimension can affect the 

maximum attainable clock frequency [5]. 

Figure 2 (a) depicts a Virtex-4 LX25 FPGA fabric and 

resource types including: configurable logic blocks (CLBs), 

block RAMs (BRAMs), first-in first-out buffers (FIFOs), 

digital signal processors (DSPs), digital clock managers 

(DCMs), input/output buffers (IOBs), and global buffers 

(BUFGs). CLBs, BRAMs, FIFOs, and DSPs are in the right 

and left halves of the fabric, whereas DCMs and BUFGs are 

in the center. CLBs consist of four slices and are the main 

logic resource used for sequential and combinatorial circuits. 

B. Previous work 

Previous work proposes the special-purpose (SP) and 

multipurpose (MP) [5] PR design methodologies. The SP PR 

design flow creates custom PR designs tailored for a target 

system and the MP design flow creates generalized PR 

design templates for implementing a variety of systems. 

Since a critical design flow stage is PRR floorplanning, the 

authors proposed cost functions to evaluate PRR placement 

quality with respect to the PRR aspect ratio (PRR height in 

slices divided by PRR width), internal fragmentation, 

position relative to IOBs, and routability. 

Craven et al. [6] presented a high-level development 

environment for implementing dynamically reconfigurable 

hardware and used a simulated annealing based automated 

floorplanner and a BusMacroHelper tool for PRR and bus 

macro placement, respectively. No details were presented on 

the mechanism or effectiveness of the BusMacroHelper tool. 

Carver et al. [3] developed an automated simulated 

annealing-based bus macro placement tool and evaluated the 

tool using timing results generated by Xilinx’s PAR (place 

and route) utility. However, PRR dimensions were fixed and 

manually placed and timing evaluation was done for the 

static and PRM designs separately. Alternatively, DAPR 

automates PRR placement and evaluates the complete 

design’s timing and partial bitstream size using the final 

output bitstreams.  

Much previous work focuses on floorplanning techniques 

for reconfigurable designs [1][2][6]. Singhal et al. [13], 

Cheng et al. [4], and Feng et al. [8] used simulated annealing 

algorithms for automated PRR floorplanning, but these 

methods did not automate bus macro placement nor apply 

their floorplanning techniques to a PR design flow. 

Even though there exists much research on bus macro and 

PRR placement, to the best of our knowledge this is the first 

attempt to circumvent PR design flow burdens and 

complexities by automated design space exploration of both 

bus macro and PRR placement through the evaluation of PR 

design output bitstreams. Our work also aims to isolate 

designers from PR design low-level details and intricacies. 

 

 

 

 

 
 

 

 

 
 

 
 

 

 

Figure 2: Virtex-4 LX25 (a) Virtex-4 LX25 FPGA resource layout with 

.dil file banks and (b) .dil to device floorplan mapping. 
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III. DAPR DESIGN FLOW 

The DAPR design flow reduces PR design time effort and 

complexities by automating many of Xilinx’s EA PR design 

flow’s difficult steps. Figure 1 depicts the DAPR design flow 

(right side) compared to Xilinx’s EA PR design flow (left 

side). The DAPR design flow is a generic, module-based 

reconfiguration PR design flow and uses vendor specific 

(Xilinx in this case) utilities to assist in bitstream generation. 

The DAPR design flow consists of a manual step and an 

automated step. In the manual step, the designer annotates 

the top-level VHDL design files and sets design constraints 

(optional). These annotations and design constraints serve as 

input to the automated step, which is orchestrated by the 

DAPR tool to automate the complex portions of Xilinx’s EA 

PR design flow. The DAPR design flow can be adapted to 

support different PR devices by updating how the vendor 

utilities are integrated in the DAPR tool. The DAPR tool 

works in four phases, which generate the PR design’s full 

and partial bitstreams. In this section, we describe the DAPR 

design flow steps and the DAPR tool phases. 

A. DAPR Design Flow Steps 

In the DAPR design flow’s first manual step, the designer 

performs several straightforward tasks to prepare the PR 

design for the second automated step. First, the designer 

annotates the VHDL component instantiations in the top-

level design file using standard formatted VHDL comments 

(the designer must also follow Xilinx’s EA PR design VHDL 

formatting guidelines (Section II.A), which assumes that all 

PRR instantiations are defined in the top-level file). Using 

VHDL comments ensures that these annotations will not 

introduce synthesis errors or affect design portability. 

Optionally, the designer can define PR design constraints 

(e.g. timing, power, area, partial bitstream size, I/O primitive 

definitions, etc.) and the DAPR tool’s effort level control 

value (Section III.B) in a design constraints file (.dcs). 

After completion of the manual step, the DAPR tool’s 

inputs are the annotated top-level design file, all other design 

files, and the .dcs file. The DAPR tool manipulates these 

files to generate the PR design’s full and partial bitstreams. 

B. DAPR Tool Phases 

The DAPR design flow’s second automated step, depicted 

in Figure 3, consists of four phases. In phase 1, information 

identification uses the design file annotations to identify the 

static region and PRR instantiations, bus macro 

instantiations, and design file names. Information extraction 

extracts port map connection information from the region 

instantiations. The extracted connection information is 

written to a PR automation information file (.prai). 

Collectively, phases 2 through 4 iteratively generate 

candidate PR designs. Phase 2, the candidate generation 

phase, constitutes the bulk of DAPR’s work and 

automatically (1) synthesizes all design files using Xilinx’s 

XST utility, (2) estimates the hardware resource 

requirements from the generated synthesis log file (.srp) and 

records the requirements in the .prai file, (3) reads the port 

map connection information from the .prai file, generates a 

connectivity information file (.dot), and generates a 

connectivity graph for these regions, (4) uses the device 

information library file’s (.dil) estimated resources, 

connectivity information, and .ucf file to build an initial 

candidate floorplan if the .ucf file does not contain an 

existing floorplan, otherwise builds a new candidate 

floorplan, and (5) writes the current candidate floorplan 

constraints to a new .ucf file. The .dil file is currently 

generated in-house as part of the DAPR tool and contains the 

target device’s hardware resource information.  

Phase 3, the bitstream generation phase, uses the ngdbuild, 

MAP, PAR, PR_verifydesign, and PR_assemble utilities 

(similar to the EA PR design flow’s implement (4) and 

merge (5) steps) to output the full and partial bitstreams. 

Finally, phase 4, the design evaluation phase, determines if 

the current candidate floorplan meets the specified design 

constraints. A Perl script estimates the candidate PR design’s 

partial bitstream size, timing, power, and area requirements 

from the trace report file (.twr), the power report file (.pwr), 

and the map report file (.mrp) generated by Xilinx’s TRACE, 

XPower, and MAP utilities, respectively. If any design 

constraints are not met, the DAPR tool returns to phase 2, 

builds a new unique candidate floorplan, and repeats phases 

3 and 4. This iterative process continues until the candidate 

floorplan meets the design constraints or for a fixed number 

of successful iterations Imax. Successful iterations generate 

valid candidate PR designs, while unsuccessful iterations fail 

the place and route step. To bound design exploration time to 

a reasonable amount, Imax is initially set to 100 since 

experiments showed that a single small design iteration 

required 15 minutes on average (the Xilinx utilities 

constituted the majority of this time). However, Imax’s value 

can be specified in the .dcs file. 

On phase 4’s completion, the DAPR tool outputs the PR 

design that meets the clock frequency constraint or the PR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

Figure 3: DAPR tool phases. 

 

 
 



design with the maximum attainable clock frequency if the 

clock frequency constraint is not met. The DAPR tool also 

outputs a Pareto optimal set of PR designs that trade off 

clock frequency and partial bitstream size. 

IV. DAPR TOOL DETAILS 

Since the candidate generation phase does most of 

DAPR’s work, in this section we elaborate on this phase’s 

functionality, including .dil file layout and usage in candidate 

floorplan generation. 

A. Device Information Library 

 The .dil file is primarily used in conjunction with the 

DAPR tool floorplanner to build candidate floorplans. The 

.dil file is a two dimensional grid of entries, which specify 

each FPGA fabric location’s resource status and type (e.g. 

0S, 0R, 0F, 0D, 0B, 0C). Each entry’s X and Y coordinates 

(grid location) in the .dil file’s grid directly translate to the 

resource’s X and Y coordinates on the FPGA fabric. Each 

entry’s numerical and character value indicate the resource’s 

availability (allocated (0) or free (1)) and type (CLB slices 

(S), BRAMs (R), FIFOs (F), DSPs (D), BUFGs (B), and 

DCMs (C)), respectively. Figure 2 (b) illustrates an example 

floorplan built from the Virtex-4 LX25 .dil file. 

 Each entry’s value and corresponding grid location provides 

an easy method to identify and allocate FPGA resources 

(currently the DAPR tool includes a .dil file for the Virtex-4 

LX 25, but the .dil file could be easily generated for any 

FPGA device). Resource types can be allocated for a PR 

design’s PRRs, bus macros, or other components (e.g. 

DCMs, BUFGs) by translating the entry value and grid 

location into proper .ucf file syntax. The allocation syntax for 

a PRR is the PRR instance name, as defined in the top level 

VHDL file, followed by the required resource’s type and X 

and Y coordinates on the FPGA fabric (see [14] for syntax 

details). To allocate component resources that span across 

the FPGA fabric (e.g. CLB slices, BRAM, FIFOs, DSPs), the 

resource range can be specified in the .ucf file. Alternatively, 

DCM and BUFG allocations do not span the FPGA fabric 

and must be in the form of single X and Y coordinates. Since 

defining PRRs that span the center of the device ((a)) is 

complicated and not recommended [14], we divide the .dil 

file into three banks (Figure 2 (a)) to isolate resource 

allocation. Banks 0 and 1 contain CLB slice, BRAM, FIFO, 

and DSP entries for the FPGA’s left and right halves, 

respectively, and bank 2 contains DCM and BUFG entries. 

B. Candidate Floorplan Generation 

The DAPR tool floorplanner uses the .dil, .dcs, and .prai 

files to automatically build candidate design floorplans to 

determine the best PR design (fastest clock frequency) after 

Imax successful iterations. Phase 2’s first iteration creates an 

initial candidate floorplan by placing the PR design’s DCMs 

and BUFGs in the lowest possible free DCM and BUFG X 

and Y coordinate locations, the PRRs using a cluster growth 

(CG) algorithm [12], and the bus macros randomly around 

the PRRs using a simulated annealing (SA) algorithm [12]. 

The candidate floorplan is then used to create a candidate PR 

design during phases 3 and 4. 

Algorithm 1 depicts our CG algorithm which takes as 

input the set of all PRRs (S), each PRRs maximum resource 

requirements (R) and port connectivity information (C), the 

white space (WS) (extra resources), the aspect ratio (AR), 

total number of PRRs (n), the .dil file, the set of all bus 

macros (B), the maximum number of bus macros required for 

each PRR (Bmax), and the maximum number of successful 

iterations (Imax).  

Lines 3-10 use CG to place PRRs where the set of all 

PRRs S is initially arranged in a linearly ordered list (line 3) 

using PRR port connectivity information C and a linear 

ordering algorithm (a widely used technique for building 

initial placement configurations [12]). The CG algorithm 

selects PRRs in ascending order from the list (line 7) and 

selects a placement for the current PRR i (starting at the 

FPGA’s lower left corner and growing diagonally across the 

device) using the .dil file while minimizing the increase in 

the cost function (line 8). The cost function attempts to 

minimize each PRR’s placement size, thus minimizing the 

total number of resources required, while keeping the PRR 

aspect ratio close to AR. PRR i’s minimum placement size is 

defined by PRR i’s maximum resource requirements R(i) 

plus the percentage of extra resources as defined by WS. The 

default amount of white space allocated is 10% of the 

maximum resources required by a PRR (WS can be specified 

in the .dcs file). Additionally, AR defines the placed PRR’s 

shape. AR defaults to 1 if no value is specified. 

Lines 11-57 depict our SA-based approach for exploring 

bus macro placement solutions for B. In order to determine 

the initial temperature T0 and initial solution for the SA 

algorithm, a random number Irand (between 1 and 10) of 

successful bus macro placement iterations is performed (lines 

11-18) where in each iteration, the set of all bus macros B is 

placed around the respective PRRs using bmRnd(). bmRnd() 

generates random placement constraints for B, which is 

written to BmPlace (line 12). BmPlace is written to the .ucf 

file (line 13) and the corresponding candidate PR design is 

generated (line 14) and evaluated (line 16). Candidate PR 

designs are only evaluated if the bitstream generation 

completes without PAR errors (line 15), otherwise a new 

candidate floorplan is generated and the current running 

number of successful iterations Icurr remains unchanged 

(lines 51-52). If five consecutive PAR errors occur, WS is 

increased by 5% in order to inhibit further PAR errors (lines 

55-57). A candidate PR design’s clock frequency, partial 

bitstream size, power, and area requirements are determined 

and recorded during design evaluation. If the design’s clock 

frequency constraint is met, then DesignEvaluation() jumps 

to line 59, otherwise the average clock frequency change 

Δavg (used to compute T0) for all uphill bus macro 

placements (lower clock frequency PR designs) is 

determined. The best found bus macro placement constraints 



after Irand successful iterations is stored in BmInit using 

clkFq() (returns the candidate PR design’s clock frequency) 

and is used as the initial solution for SA. 

After Irand successful iterations complete, the SA 

algorithm (lines 20-25) sets the current bus macro placement 

(BmCurrent) and the best found bus macro placement 

(BmBest) to BmInit, swp to Bmax, the acceptance probability 

(uphill bus macro placement acceptance probability) P to 

0.99, the temperature reduction rate λ to 0.85, and the current 

temperature T and the initial temperature T0 using: 

                                  
)ln(

0
P

avg
T                                     (1) 

Next, for each successful iteration from Irand to Imax 

(lines 26-57), the SA algorithm explores new bus macro 

placements for B using a perturbation function (lines 28-33), 

generates and evaluates the corresponding candidate PR 

design (lines 35-38), and accepts or rejects the new 

placement (lines 39-46) with probability P using: 

                                          T

avg

eP                                     (2) 

The perturbation function explores new bus macro 

placements for B (written to BmNew) using either swpRnd() 

or bmRnd() according to the value of swp. If swp is greater 

than 0, swpRnd() modifies the current bus macro placements 

(BmCurrent) by performing swaps among existing bus macro 

placements of each respective PRR while decrementing swp 

each time (line 28-30). If swp equals 0, bmRnd() performs 

random bus macro placements while resetting the value of 

swp back to Bmax each time (lines 31-33). swpRnd() swaps 

existing bus macro placements for each respective PRR by 

comparing the current value of Bmax and swp where, if 

swp≥(2*Bmax/3), the input bus macro locations are 

randomly swapped, if swp<(2*Bmax/3) and swp>(Bmax/3), 

the output bus macro locations are randomly swapped, and if 

swp<(Bmax/3) until swp equals 0, the input and output bus 

macro locations are randomly swapped interchangeably. We 

use this swapping method to provide ample variation in the 

swapping mechanism, but not too much variation such that 

the design solution space size is exponential (2
Bmax

). 

After the candidate PR design with the new bus macro 

placement is generated and evaluated, the change (ΔclkFq) 

between the new bus macro placement’s (BmNew) clock 

frequency from the current bus macro placement’s 

(Bmcurrent) clock frequency is computed (line 39). If 

ΔclkFq < 0 (line 40), the new bus macro placement is not 

uphill and is accepted as the current bus macro placement 

(line 43). Also, if the new bus macro placement has the best 

clock frequency thus far, the new bus macro placement is 

accepted as the best bus macro placement and is written to 

BmBest (lines 44-45). Alternatively, if the new bus macro 

placement is uphill, the new solution is accepted with 

probability P and written to BmCurrent (line 41). Initially, 

the acceptance probability P is close to 1 during high T 

values, but decreases with decreasing T. T is decreased in 

line 49 with the recommended temperature reduction rate λ = 

0.85 [12], if at each given temperature the total number of 

uphill moves (Uphill) or the total number of moves (MT) 

exceeds Bmax or 2*Bmax respectively (line 27). 

At the end of our algorithm (line 59), the best found clock 

frequency along with the corresponding iteration number and 

floorplan is output using clkFqBest(), IBest(), and 

floorplanBest(), respectively. Also, a Pareto optimal set of 

PR designs that trade off clock frequency and partial 

bitstream size are output with Pareto(). 

V. DAPR DESIGN FLOW EVALUATION 

A. Experimental Setup 

We implemented the DAPR design flow and tool in the 

Linux environment. The DAPR tool phases are implemented 

in Perl scripts for information parsing and file manipulation. 

The candidate generation phase (2) uses a dot language 

Input: S, R, C, WS, AR, n, .dil, B, Bmax, Imax 
Output: Highest clock frequency value, corresponding design number,     

               and floorplan constraints 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Algorithm 1: The DAPR tool cluster growth and simulated annealing 

algorithm for PRR and bus macro placement, respectively. 

1 Icurr,Uphill,Reject,MT ← 0; 

2 Irand ← int(rand(10)); 

3 S ← LinearOrder(S, C); 

4 while Icurr < Imax do 

5    DCMandBUFGplacement(); 

6    for i ← 1 to n do 

7       Select PRR i from S; 

8       Use R(i), WS, AR and .dil to select PRR i’s  

      placement with minimum increase in cost function; 

9       Write PRM i’s placement constraints to ucf file; 

10    endfor 

11    if Ic < Irand then 

12       BmPlace ← bmRnd(B); 

13       Write bmInit placement constraints to ucf file; 

14       BitstreamGeneration(); 

15       if PARfail == 0 then 

16          DesignEvaluation(); 

17       if clkFq(bmplace) > clkFq(bmInit) then 

18          BmInit ← Bmplace; 

19       if Ic == Irand then 

20          BmCurrent ← BmInit; 

21          BmBest ← BmInit; 

22          swp ← Bmax; 

23          P ← 0.99; 

24          λ ← 0.85; 

25          T ← T0 ← Δavg/ln (P); 

26    if Ic ≥ Irand and Ic < Imax then 

27       if (Uphill > Bmax or MT  > 2*Bmax) then 

28          if (swp > 0 and swp ≤ Bmax) then 

29             BmNew ← swpRnd(B, swp, Bmax); 

30             swp ← swp -1; 

31          else 
32             BmNew ← bmRnd(B); 

33             swp ← Bmax; 

34          MT ← MT + 1; 

35          Write bmNew placement constraints to ucf file; 

36          BitstreamGeneration(); 

37          if PARfail == 0 then 

38             DesignEvaluation(); 

39          ΔclkFq ← clkFq(BmCurrent) – clkFq(BmNew); 

40          if (ΔclkFq < 0 or rand(1) < eΔclkFq/T) then 

41             if (ΔclkFq > 0) then 

42                Uphill ← Uphill+1; 

43             bmCurrent ← bmNew; (*placement accepted*) 

44             if (clkFq (BmCurrent) > clkFq (BmBest)) then  

45               BmBest ← BmCurrent; 

46          else  
47             Reject ← Reject+1; (*placement rejected*) 

48       else 

49          T ← λ * T; 

50          Uphill,Reject,MT ← 0; 

51    if PARfail == 0 then 

52       Icurr ← Icurr  + 1; 

53    else 

54       PARerror ← PARerror +1; 

55    if PARerror == 5; 

56       WS ← WS + 5; 

57       PARerror ← 0; 

58 endwhile 

59 return clkFqBest(), IBest(), floorplanBest(), Pareto() 



interpreter to generate the connectivity graphs. We ran the 

DAPR tool on a desktop PC with an Intel® Core ™ 2 Duo 

E6750 2.66 GHz CPU and 3.24 GB of RAM and the utilities 

from Xilinx’s ISE version 9.2i04 with PR patch 12 installed. 

We evaluated the DAPR design flow SA algorithm with a 

32-bit counter core and the complete DAPR design flow with 

a 1K-point FFT core, a 32-bit CORDIC core, and a 4X4 

matrix multiplier (MM) core. We generated the FFT and 

CORDIC cores using Xilinx’s core generation tool and wrote 

the MM and counter cores in-house. Each PR design’s 

modified HDL design description was taken as input by the 

DAPR tool and the final bitstreams were generated for the 

Xilinx ML401 evaluation platform [15] (Virtex-4 LX25 

FPGA board). We wrote the original HDL device description 

for the PR designs with one static region to function as a 

register to store each PRM’s last output and one PRR to 

load/unload the counter, FFT, CORDIC, or MM core PRMs. 

In order to maintain feasible simulation times, our PR 

designs consist of a single PRR due to a significant increase 

in iteration time for more PRRs (i.e. 50 to 60 minutes per 

iteration for 2 PRRs). However, we simulated designs with 

more PRRs and obtained similar results as presented here. 

We evaluated our SA algorithm for the 32-bit counter core 

compared to an exhaustive search (ES) algorithm to find the 

optimal placement of the input bus macros only (the 32-bit 

counter has 4 input and output bus macros) and also a 

random exploration (RE) algorithm of the input bus macros 

for the largest PRR size (we explored four ascending PRR 

sizes, which required 24, 120, 360, and 840 iterations, 

respectively for ES). Although, we obtained similar results 

for ES by including output bus macros for the smallest PRR 

size (required 576 iterations), we ran the algorithms for input 

bus macros only to bound the total DAPR tool run time (e.g. 

the second smallest PRR size would require 14,400 iterations 

for ES, which would require 3600 hours or 150 days).  

We constructed two test cases for the FFT, CORDIC, and 

MM PR designs and used the DAPR tool to find the best PR 

design (fastest clock frequency) within Imax successful 

iterations. For both test cases, we set Imax = 100. For the 

first and second test cases, we set AR=1 and AR=10, 

respectively, in order to evaluate the aspect ratio’s impact on 

attainable clock frequency (there is no defined method to 

predict clock frequency based on PRR aspect ratio [5]) and 

partial bitstream size. Power and area constraints were not 

set, which forced the algorithm to place the PRRs with the 

lowest area (including the extra space) possible. Setting lax 

power and area constraints allows the PRR placement 

algorithm to place PRRs with larger areas (extra unused 

resources), which can reveal higher clock frequencies. 

We evaluated our results for the FFT, CORDIC, and MM 

cores with respect to the highest clock frequency found by 

the DAPR tool after a fixed number of successful iterations. 

We did not compare with the optimal clock frequency 

because our experiments showed that the clock frequency 

varied unpredictably with different bus macro placements, 

therefore determining the optimal solution through 

exhaustive search is impractical given such a large design 

space. The average runtime to complete 100 iterations on 

each design was 25 completely automated hours (an 

acceptable runtime given that a manual process would take 

several days). 

B. Results 

We evaluated SA using the percentage of the design space 

explored (in terms of successful iterations) to achieve the 

optimal clock frequency obtained from ES. For the smallest 

PRR size, SA found the optimal solution after exploring 83% 

of the design space. SA improved on this performance 

significantly for increasing PRR sizes, finding the optimal 

solution after exploring only 21.7%, 13.84%, and 18.2% of 

the design space, respectively. Additionally, for the largest 

PRR size, SA outperformed RE by requiring 23% less design 

space exploration. 

We evaluated the complete DAPR design flow using the 

clock frequency and partial bitstream size verses successful 

iterations. Power requirements were constant in each 

iteration as each PR design’s logic remained constant (no 

logic reduction was done during synthesis). PRR area 

requirements did not change significantly during the 

iterations as PRR size only increased when enough PAR 

failures occurred and thus was excluded due to lack of space.  

Figure 4 depicts the current iteration’s clock frequency 
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Figure 4: Current iteration’s clock frequency and partial bitstream size versus successful iterations with the design’s final aspect ratio (top row and 

bottom row shows designs run with AR=1 and AR=10, respectively). 



and partial bitstream size verses successful iterations (AR=1 

top row, AR=10 bottom row) and Figure 5 depicts the current 

highest clock frequency found (AR=1 left, AR=10 right). 

Figure 4 tracks the variations in the current iteration’s clock 

frequency and bitstream size while Figure 5 tracks the 

convergence of the best solution found thus far. Since the AR 

constraint is not always maintained during design exploration 

due to variations in the PRR’s required resources and the 

FPGA fabric’s resource distribution, the actual (final) AR 

values of the placed PRR’s are noted in the graph titles.  

As expected, the results revealed that the greatest 

improvements in the best solution occur during the first 

several successful iterations. This growth rate quickly levels 

off and converges to within 2.31% of the highest achievable 

solution (within Imax) after an average of only 10 iterations. 

Comparing the convergence rates for different AR values also 

reveals that higher AR values converge faster than lower AR 

values requiring on average 28 and 33 iterations, 

respectively. Additionally, the initial AR value affects the 

maximum achievable clock frequency. For example, the 32-

bit CORDIC core’s fastest clock frequency ranged from 

170.1 MHz to 178.1 MHz for AR=1 and AR=10, respectively. 

The difference in clock frequency arises because large aspect 

ratios enable our PRR placement algorithm to more easily 

meet DSP, FIFO, and BRAM requirements with more free 

resources in each PRR, which reveals additional higher clock 

frequency routing paths.  

Since each candidate PR design results in a different 

tradeoff between partial bitstream size and clock frequency, 

the DAPR design flow can also be used to determine the 

Pareto optimal set of design points, enabling designers to 

choose the appropriate design tradeoff while examining only 

a small set of potential designs. Figure 6 shows each 

candidate design’s time period (inverse of the clock 

frequency) verses partial bit stream size for the 1K-point FFT 

core with AR=1 with the Pareto optimal points highlighted 

(circular points). For this example, only 3% of the design 

space are interesting points, thus significantly reducing the 

number of designs a designer must consider. 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, we present the DAPR design flow, which 

automates the intricate EA PR design flow steps. DAPR 

enables designers to specify design constraints and 

automatically explores the design space using an iterative 

candidate PR floorplan generation methodology. DAPR 

outputs the PR design with the fastest clock frequency and a 

Pareto optimal set of PR design’s that trade off clock 

frequency and partial bitstream size. Therefore, the DAPR 

flow is highly flexible to meet different designer needs. The 

DAPR design flow’s key contributions include: making PR 

design more accessible and amenable to a wider range of 

designers; facilitating rapid design prototyping; and creating 

high-performance systems with reduced design time effort. 

Future work includes investigating techniques to enhance 

the DAPR tool floorplanning algorithm such as leveraging 

SA for PRR placement (the CG-based method is unsuitable 

for heterogeneous floorplanning), efficient use of BUFG and 

DCM placement, and finding the best design with respect to 

any design constraint. Support for additional Virtex-4 

devices and the ISE design suite 11 is also planned. 
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Figure 5: Current iteration’s highest Clock Frequency versus successful 

iterations for designs run with AR=1 (left side) and AR=10 (right side). 

 

 

 

 

 

 

 

 
 

Figure 6: 1K-point FFT (AR=1) time period versus partial bitstream size. 
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