
Abstract—Partial reconfiguration (PR) enhances

traditional FPGA-based high-performance reconfigurable

computing by providing additional benefits such as reduced

area and memory requirements, increased performance, and

increased functionality. However, since leveraging these

additional benefits requires specific designer expertise,

which increases design time, PR has not yet gained

widespread usage. Even though Xilinx’s PR design flow

significantly eases PR design, to fully leverage PR benefits

designers require extensive PR design flow knowledge, as

well as low-level architectural details of the target FPGA

device. In this paper, we present a PR design flow and

associated tool to automate PR design intricacies and design

space exploration. Our design flow and tool can significantly

reduce PR design time effort and make PR designs more

accessible and amenable to a wider range of PR designers.

I. INTRODUCTION AND MOTIVATION

Dynamic reconfiguration in SRAM-based FPGAs is an

extremely beneficial feature for high-performance embedded

designs. By dynamically reconfiguring FPGA configuration

memory with various design specifications (bitstreams),

hardware functionality can time-multiplex FPGA resources.

The dynamic reconfiguration method affects the bitstream

format. Full bitstreams, used for full reconfiguration (FR),

contain configuration information for the entire FPGA.

Partial bitstreams, used for partial reconfiguration (PR),

contain configuration information for a portion of the FPGA.

FR and PR expand FPGA resources to nearly an infinite

amount, resulting in reduced total resource requirements and

increased flexibility through on-demand design specification

loading/unloading. Additionally, since FR and PR can

potentially decrease the number of required devices or device

size, FPGA power consumption can also be reduced [10].

However, dynamic reconfiguration has several drawbacks.

Since FR requires reconfiguring the entire FPGA even for

small design changes, memory resources are wasted as

multiple large full bitstreams containing redundant

configuration information need to be stored. Additionally,

FR interrupts design execution during FPGA reconfiguration.

This interruption or reconfiguration time can impose

unacceptable performance overheads, especially for real-time

systems. Alternatively, PR mitigates FR’s drawbacks by

isolating reconfiguration to a portion of the FPGA while all

other remaining FPGA resources continue execution [11].

PR designs partition the FPGA into a static region and

several individually reconfigurable PR regions (PRRs). The

static region implements a PR design’s base functionality

and is never reconfigured, while the PRRs are

loaded/unloaded on demand with PR modules (PRMs). A

PRM constitutes a portion of a PR design’s functionality.

Since PR isolates the static region and PRRs, PR reduces

memory requirements by eliminating the need for multiple

full bitstreams containing redundant configuration

information. PR designs require only one full bitstream to

initialize a PR design’s initial static region and PRRs. During

execution, different PRM partial bitstreams can be loaded

into the PRRs on demand. Additionally, since partial

bitstreams are significantly smaller than full bitstreams, PR

reconfiguration time is faster than FR reconfiguration time

[9]. PR is particularly useful for designs that do not

simultaneously require all their functionality and can benefit

from uninterrupted reconfiguration (SDRs [10], JPEG [16]).

Despite PR’s enhancements over FR, PR designs have

several drawbacks. PR designs are primarily supported by

Xilinx’s Early-Access (EA) PR design flow [14], which

requires manual intervention and significant design time

effort. In addition to defining a PR design’s functionality and

partitioning the design into the PRMs, PR designers must

perform PR-specific tasks such as instantiating bus macro

[14] VHDL specifications. Thus, even with Xilinx’s EA PR

design flow, realizing PR benefits is challenging as lack of

sufficient expertise can result in poor design performance.

Currently, there exists little support for PR designers, and,

to the best of our knowledge, there exists no previous efforts

to completely automate the EA PR design flow’s design

space exploration. In this paper we present the Design

Automation for Partial Reconfiguration (DAPR) PR design

flow. The DAPR design flow reduces PR design time effort

and complexity, allowing rapid PR design prototyping and

making PR more amenable to a larger range of designers.

DAPR: Design Automation for Partially Reconfigurable FPGAs

Shaon Yousuf and Ann Gordon-Ross

NSF Center for High-Performance Reconfigurable Computing (CHREC)

Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611

{yousuf, ann}@chrec.org

Figure 1: Xilinx's EA PR design flow (left side) and the DAPR design

flow (right side).

II. BACKGROUND AND RELATED WORK

A. Xilinx’s EA PR Design Flow

Figure 1 (left side) depicts Xilinx’s EA PR design flow

[14]. The EA PR design flow requires a hierarchical logical

partitioning of the VHDL design files into non-overlapping

PRMs. Next, the designer must: (1) synthesize each design

file separately; (2) create the PR design’s floorplan; (3)

implement separate non-PR designs for every PRM to PRR

combination and perform timing analysis on each design to

verify timing requirements; (4) generate place and route

information for the static region to create a static design with

“holes” (un-placed and un-routed regions) for the PRMs and

then generate place and route information for each respective

hole’s (PRR’s) PRM; and (5) merge the static design’s place

and route information with each PRM’s place and route

information to generate the PR design’s multiple full and

partial bitstreams. Each full bitstream contains configuration

information for different PRM to PRR combinations

allowing any startup PR design functionality and modifying

the functionality with partial bitstreams during runtime.

Xilinx ISE [14] utilities individually handle steps 1, 4, and

5 and Xilinx PlanAhead [14] aids step 2 (PR design

floorplanning). Floorplanning defines area constraints (set in

Xilinx’s user constraints file (.ucf)) that specify bus macro

and resource placements as well as each PRR’s location and

dimension (size and shape) on the FPGA. Although

PlanAhead provides useful floorplanning information, there

exists no formal process for determining optimal bus macro

and PRR placements. Additionally, FPGA manufacturer

provided bus macro placement “best practices” can produce

designs with suboptimal design performance [3].

Bus macro floorplanning depends on the target device

type. Xilinx Virtex-4 device bus macros are slice-based [14]

and span the static region and PRR boundaries. Bus macros

are Xilinx provided hardwired logical elements that lock wire

routing between the static design and PRMs. All signals

except global signals (e.g. clock signals) between the static

design and PRMs must pass through bus macros to ensure

communication between the static region and PRMs remains

established during reconfiguration. PRR floorplanning

ensures PRRs encompass enough hardware resources to

support the resource requirements of each PRM mapped to a

PRR. Proper floorplanning ensures correct placement of both

bus macros and PRRs but several correct placements exist

and not all placements will result in the same design

performance. For example, a PRR’s dimension can affect the

maximum attainable clock frequency [5].

Figure 2 (a) depicts a Virtex-4 LX25 FPGA fabric and

resource types including: configurable logic blocks (CLBs),

block RAMs (BRAMs), first-in first-out buffers (FIFOs),

digital signal processors (DSPs), digital clock managers

(DCMs), input/output buffers (IOBs), and global buffers

(BUFGs). CLBs, BRAMs, FIFOs, and DSPs are in the right

and left halves of the fabric, whereas DCMs and BUFGs are

in the center. CLBs consist of four slices and are the main

logic resource used for sequential and combinatorial circuits.

B. Previous work

Previous work proposes the special-purpose (SP) and

multipurpose (MP) [5] PR design methodologies. The SP PR

design flow creates custom PR designs tailored for a target

system and the MP design flow creates generalized PR

design templates for implementing a variety of systems.

Since a critical design flow stage is PRR floorplanning, the

authors proposed cost functions to evaluate PRR placement

quality with respect to the PRR aspect ratio (PRR height in

slices divided by PRR width), internal fragmentation,

position relative to IOBs, and routability.

Craven et al. [6] presented a high-level development

environment for implementing dynamically reconfigurable

hardware and used a simulated annealing based automated

floorplanner and a BusMacroHelper tool for PRR and bus

macro placement, respectively. No details were presented on

the mechanism or effectiveness of the BusMacroHelper tool.

Carver et al. [3] developed an automated simulated

annealing-based bus macro placement tool and evaluated the

tool using timing results generated by Xilinx’s PAR (place

and route) utility. However, PRR dimensions were fixed and

manually placed and timing evaluation was done for the

static and PRM designs separately. Alternatively, DAPR

automates PRR placement and evaluates the complete

design’s timing and partial bitstream size using the final

output bitstreams.

Much previous work focuses on floorplanning techniques

for reconfigurable designs [1][2][6]. Singhal et al. [13],

Cheng et al. [4], and Feng et al. [8] used simulated annealing

algorithms for automated PRR floorplanning, but these

methods did not automate bus macro placement nor apply

their floorplanning techniques to a PR design flow.

Even though there exists much research on bus macro and

PRR placement, to the best of our knowledge this is the first

attempt to circumvent PR design flow burdens and

complexities by automated design space exploration of both

bus macro and PRR placement through the evaluation of PR

design output bitstreams. Our work also aims to isolate

designers from PR design low-level details and intricacies.

Figure 2: Virtex-4 LX25 (a) Virtex-4 LX25 FPGA resource layout with

.dil file banks and (b) .dil to device floorplan mapping.

 (a) (b)

III. DAPR DESIGN FLOW

The DAPR design flow reduces PR design time effort and

complexities by automating many of Xilinx’s EA PR design

flow’s difficult steps. Figure 1 depicts the DAPR design flow

(right side) compared to Xilinx’s EA PR design flow (left

side). The DAPR design flow is a generic, module-based

reconfiguration PR design flow and uses vendor specific

(Xilinx in this case) utilities to assist in bitstream generation.

The DAPR design flow consists of a manual step and an

automated step. In the manual step, the designer annotates

the top-level VHDL design files and sets design constraints

(optional). These annotations and design constraints serve as

input to the automated step, which is orchestrated by the

DAPR tool to automate the complex portions of Xilinx’s EA

PR design flow. The DAPR design flow can be adapted to

support different PR devices by updating how the vendor

utilities are integrated in the DAPR tool. The DAPR tool

works in four phases, which generate the PR design’s full

and partial bitstreams. In this section, we describe the DAPR

design flow steps and the DAPR tool phases.

A. DAPR Design Flow Steps

In the DAPR design flow’s first manual step, the designer

performs several straightforward tasks to prepare the PR

design for the second automated step. First, the designer

annotates the VHDL component instantiations in the top-

level design file using standard formatted VHDL comments

(the designer must also follow Xilinx’s EA PR design VHDL

formatting guidelines (Section II.A), which assumes that all

PRR instantiations are defined in the top-level file). Using

VHDL comments ensures that these annotations will not

introduce synthesis errors or affect design portability.

Optionally, the designer can define PR design constraints

(e.g. timing, power, area, partial bitstream size, I/O primitive

definitions, etc.) and the DAPR tool’s effort level control

value (Section III.B) in a design constraints file (.dcs).

After completion of the manual step, the DAPR tool’s

inputs are the annotated top-level design file, all other design

files, and the .dcs file. The DAPR tool manipulates these

files to generate the PR design’s full and partial bitstreams.

B. DAPR Tool Phases

The DAPR design flow’s second automated step, depicted

in Figure 3, consists of four phases. In phase 1, information

identification uses the design file annotations to identify the

static region and PRR instantiations, bus macro

instantiations, and design file names. Information extraction

extracts port map connection information from the region

instantiations. The extracted connection information is

written to a PR automation information file (.prai).

Collectively, phases 2 through 4 iteratively generate

candidate PR designs. Phase 2, the candidate generation

phase, constitutes the bulk of DAPR’s work and

automatically (1) synthesizes all design files using Xilinx’s

XST utility, (2) estimates the hardware resource

requirements from the generated synthesis log file (.srp) and

records the requirements in the .prai file, (3) reads the port

map connection information from the .prai file, generates a

connectivity information file (.dot), and generates a

connectivity graph for these regions, (4) uses the device

information library file’s (.dil) estimated resources,

connectivity information, and .ucf file to build an initial

candidate floorplan if the .ucf file does not contain an

existing floorplan, otherwise builds a new candidate

floorplan, and (5) writes the current candidate floorplan

constraints to a new .ucf file. The .dil file is currently

generated in-house as part of the DAPR tool and contains the

target device’s hardware resource information.

Phase 3, the bitstream generation phase, uses the ngdbuild,

MAP, PAR, PR_verifydesign, and PR_assemble utilities

(similar to the EA PR design flow’s implement (4) and

merge (5) steps) to output the full and partial bitstreams.

Finally, phase 4, the design evaluation phase, determines if

the current candidate floorplan meets the specified design

constraints. A Perl script estimates the candidate PR design’s

partial bitstream size, timing, power, and area requirements

from the trace report file (.twr), the power report file (.pwr),

and the map report file (.mrp) generated by Xilinx’s TRACE,

XPower, and MAP utilities, respectively. If any design

constraints are not met, the DAPR tool returns to phase 2,

builds a new unique candidate floorplan, and repeats phases

3 and 4. This iterative process continues until the candidate

floorplan meets the design constraints or for a fixed number

of successful iterations Imax. Successful iterations generate

valid candidate PR designs, while unsuccessful iterations fail

the place and route step. To bound design exploration time to

a reasonable amount, Imax is initially set to 100 since

experiments showed that a single small design iteration

required 15 minutes on average (the Xilinx utilities

constituted the majority of this time). However, Imax’s value

can be specified in the .dcs file.

On phase 4’s completion, the DAPR tool outputs the PR

design that meets the clock frequency constraint or the PR

Figure 3: DAPR tool phases.

design with the maximum attainable clock frequency if the

clock frequency constraint is not met. The DAPR tool also

outputs a Pareto optimal set of PR designs that trade off

clock frequency and partial bitstream size.

IV. DAPR TOOL DETAILS

Since the candidate generation phase does most of

DAPR’s work, in this section we elaborate on this phase’s

functionality, including .dil file layout and usage in candidate

floorplan generation.

A. Device Information Library

 The .dil file is primarily used in conjunction with the

DAPR tool floorplanner to build candidate floorplans. The

.dil file is a two dimensional grid of entries, which specify

each FPGA fabric location’s resource status and type (e.g.

0S, 0R, 0F, 0D, 0B, 0C). Each entry’s X and Y coordinates

(grid location) in the .dil file’s grid directly translate to the

resource’s X and Y coordinates on the FPGA fabric. Each

entry’s numerical and character value indicate the resource’s

availability (allocated (0) or free (1)) and type (CLB slices

(S), BRAMs (R), FIFOs (F), DSPs (D), BUFGs (B), and

DCMs (C)), respectively. Figure 2 (b) illustrates an example

floorplan built from the Virtex-4 LX25 .dil file.

 Each entry’s value and corresponding grid location provides

an easy method to identify and allocate FPGA resources

(currently the DAPR tool includes a .dil file for the Virtex-4

LX 25, but the .dil file could be easily generated for any

FPGA device). Resource types can be allocated for a PR

design’s PRRs, bus macros, or other components (e.g.

DCMs, BUFGs) by translating the entry value and grid

location into proper .ucf file syntax. The allocation syntax for

a PRR is the PRR instance name, as defined in the top level

VHDL file, followed by the required resource’s type and X

and Y coordinates on the FPGA fabric (see [14] for syntax

details). To allocate component resources that span across

the FPGA fabric (e.g. CLB slices, BRAM, FIFOs, DSPs), the

resource range can be specified in the .ucf file. Alternatively,

DCM and BUFG allocations do not span the FPGA fabric

and must be in the form of single X and Y coordinates. Since

defining PRRs that span the center of the device ((a)) is

complicated and not recommended [14], we divide the .dil

file into three banks (Figure 2 (a)) to isolate resource

allocation. Banks 0 and 1 contain CLB slice, BRAM, FIFO,

and DSP entries for the FPGA’s left and right halves,

respectively, and bank 2 contains DCM and BUFG entries.

B. Candidate Floorplan Generation

The DAPR tool floorplanner uses the .dil, .dcs, and .prai

files to automatically build candidate design floorplans to

determine the best PR design (fastest clock frequency) after

Imax successful iterations. Phase 2’s first iteration creates an

initial candidate floorplan by placing the PR design’s DCMs

and BUFGs in the lowest possible free DCM and BUFG X

and Y coordinate locations, the PRRs using a cluster growth

(CG) algorithm [12], and the bus macros randomly around

the PRRs using a simulated annealing (SA) algorithm [12].

The candidate floorplan is then used to create a candidate PR

design during phases 3 and 4.

Algorithm 1 depicts our CG algorithm which takes as

input the set of all PRRs (S), each PRRs maximum resource

requirements (R) and port connectivity information (C), the

white space (WS) (extra resources), the aspect ratio (AR),

total number of PRRs (n), the .dil file, the set of all bus

macros (B), the maximum number of bus macros required for

each PRR (Bmax), and the maximum number of successful

iterations (Imax).

Lines 3-10 use CG to place PRRs where the set of all

PRRs S is initially arranged in a linearly ordered list (line 3)

using PRR port connectivity information C and a linear

ordering algorithm (a widely used technique for building

initial placement configurations [12]). The CG algorithm

selects PRRs in ascending order from the list (line 7) and

selects a placement for the current PRR i (starting at the

FPGA’s lower left corner and growing diagonally across the

device) using the .dil file while minimizing the increase in

the cost function (line 8). The cost function attempts to

minimize each PRR’s placement size, thus minimizing the

total number of resources required, while keeping the PRR

aspect ratio close to AR. PRR i’s minimum placement size is

defined by PRR i’s maximum resource requirements R(i)

plus the percentage of extra resources as defined by WS. The

default amount of white space allocated is 10% of the

maximum resources required by a PRR (WS can be specified

in the .dcs file). Additionally, AR defines the placed PRR’s

shape. AR defaults to 1 if no value is specified.

Lines 11-57 depict our SA-based approach for exploring

bus macro placement solutions for B. In order to determine

the initial temperature T0 and initial solution for the SA

algorithm, a random number Irand (between 1 and 10) of

successful bus macro placement iterations is performed (lines

11-18) where in each iteration, the set of all bus macros B is

placed around the respective PRRs using bmRnd(). bmRnd()

generates random placement constraints for B, which is

written to BmPlace (line 12). BmPlace is written to the .ucf

file (line 13) and the corresponding candidate PR design is

generated (line 14) and evaluated (line 16). Candidate PR

designs are only evaluated if the bitstream generation

completes without PAR errors (line 15), otherwise a new

candidate floorplan is generated and the current running

number of successful iterations Icurr remains unchanged

(lines 51-52). If five consecutive PAR errors occur, WS is

increased by 5% in order to inhibit further PAR errors (lines

55-57). A candidate PR design’s clock frequency, partial

bitstream size, power, and area requirements are determined

and recorded during design evaluation. If the design’s clock

frequency constraint is met, then DesignEvaluation() jumps

to line 59, otherwise the average clock frequency change

Δavg (used to compute T0) for all uphill bus macro

placements (lower clock frequency PR designs) is

determined. The best found bus macro placement constraints

after Irand successful iterations is stored in BmInit using

clkFq() (returns the candidate PR design’s clock frequency)

and is used as the initial solution for SA.

After Irand successful iterations complete, the SA

algorithm (lines 20-25) sets the current bus macro placement

(BmCurrent) and the best found bus macro placement

(BmBest) to BmInit, swp to Bmax, the acceptance probability

(uphill bus macro placement acceptance probability) P to

0.99, the temperature reduction rate λ to 0.85, and the current

temperature T and the initial temperature T0 using:

)ln(

0
P

avg
T (1)

Next, for each successful iteration from Irand to Imax

(lines 26-57), the SA algorithm explores new bus macro

placements for B using a perturbation function (lines 28-33),

generates and evaluates the corresponding candidate PR

design (lines 35-38), and accepts or rejects the new

placement (lines 39-46) with probability P using:

 T

avg

eP (2)

The perturbation function explores new bus macro

placements for B (written to BmNew) using either swpRnd()

or bmRnd() according to the value of swp. If swp is greater

than 0, swpRnd() modifies the current bus macro placements

(BmCurrent) by performing swaps among existing bus macro

placements of each respective PRR while decrementing swp

each time (line 28-30). If swp equals 0, bmRnd() performs

random bus macro placements while resetting the value of

swp back to Bmax each time (lines 31-33). swpRnd() swaps

existing bus macro placements for each respective PRR by

comparing the current value of Bmax and swp where, if

swp≥(2*Bmax/3), the input bus macro locations are

randomly swapped, if swp<(2*Bmax/3) and swp>(Bmax/3),

the output bus macro locations are randomly swapped, and if

swp<(Bmax/3) until swp equals 0, the input and output bus

macro locations are randomly swapped interchangeably. We

use this swapping method to provide ample variation in the

swapping mechanism, but not too much variation such that

the design solution space size is exponential (2
Bmax

).

After the candidate PR design with the new bus macro

placement is generated and evaluated, the change (ΔclkFq)

between the new bus macro placement’s (BmNew) clock

frequency from the current bus macro placement’s

(Bmcurrent) clock frequency is computed (line 39). If

ΔclkFq < 0 (line 40), the new bus macro placement is not

uphill and is accepted as the current bus macro placement

(line 43). Also, if the new bus macro placement has the best

clock frequency thus far, the new bus macro placement is

accepted as the best bus macro placement and is written to

BmBest (lines 44-45). Alternatively, if the new bus macro

placement is uphill, the new solution is accepted with

probability P and written to BmCurrent (line 41). Initially,

the acceptance probability P is close to 1 during high T

values, but decreases with decreasing T. T is decreased in

line 49 with the recommended temperature reduction rate λ =

0.85 [12], if at each given temperature the total number of

uphill moves (Uphill) or the total number of moves (MT)

exceeds Bmax or 2*Bmax respectively (line 27).

At the end of our algorithm (line 59), the best found clock

frequency along with the corresponding iteration number and

floorplan is output using clkFqBest(), IBest(), and

floorplanBest(), respectively. Also, a Pareto optimal set of

PR designs that trade off clock frequency and partial

bitstream size are output with Pareto().

V. DAPR DESIGN FLOW EVALUATION

A. Experimental Setup

We implemented the DAPR design flow and tool in the

Linux environment. The DAPR tool phases are implemented

in Perl scripts for information parsing and file manipulation.

The candidate generation phase (2) uses a dot language

Input: S, R, C, WS, AR, n, .dil, B, Bmax, Imax
Output: Highest clock frequency value, corresponding design number,

 and floorplan constraints

Algorithm 1: The DAPR tool cluster growth and simulated annealing

algorithm for PRR and bus macro placement, respectively.

1 Icurr,Uphill,Reject,MT ← 0;

2 Irand ← int(rand(10));

3 S ← LinearOrder(S, C);

4 while Icurr < Imax do

5 DCMandBUFGplacement();

6 for i ← 1 to n do

7 Select PRR i from S;

8 Use R(i), WS, AR and .dil to select PRR i’s

 placement with minimum increase in cost function;

9 Write PRM i’s placement constraints to ucf file;

10 endfor

11 if Ic < Irand then

12 BmPlace ← bmRnd(B);

13 Write bmInit placement constraints to ucf file;

14 BitstreamGeneration();

15 if PARfail == 0 then

16 DesignEvaluation();

17 if clkFq(bmplace) > clkFq(bmInit) then

18 BmInit ← Bmplace;

19 if Ic == Irand then

20 BmCurrent ← BmInit;

21 BmBest ← BmInit;

22 swp ← Bmax;

23 P ← 0.99;

24 λ ← 0.85;

25 T ← T0 ← Δavg/ln (P);

26 if Ic ≥ Irand and Ic < Imax then

27 if (Uphill > Bmax or MT > 2*Bmax) then

28 if (swp > 0 and swp ≤ Bmax) then

29 BmNew ← swpRnd(B, swp, Bmax);

30 swp ← swp -1;

31 else
32 BmNew ← bmRnd(B);

33 swp ← Bmax;

34 MT ← MT + 1;

35 Write bmNew placement constraints to ucf file;

36 BitstreamGeneration();

37 if PARfail == 0 then

38 DesignEvaluation();

39 ΔclkFq ← clkFq(BmCurrent) – clkFq(BmNew);

40 if (ΔclkFq < 0 or rand(1) < eΔclkFq/T) then

41 if (ΔclkFq > 0) then

42 Uphill ← Uphill+1;

43 bmCurrent ← bmNew; (*placement accepted*)

44 if (clkFq (BmCurrent) > clkFq (BmBest)) then

45 BmBest ← BmCurrent;

46 else
47 Reject ← Reject+1; (*placement rejected*)

48 else

49 T ← λ * T;

50 Uphill,Reject,MT ← 0;

51 if PARfail == 0 then

52 Icurr ← Icurr + 1;

53 else

54 PARerror ← PARerror +1;

55 if PARerror == 5;

56 WS ← WS + 5;

57 PARerror ← 0;

58 endwhile

59 return clkFqBest(), IBest(), floorplanBest(), Pareto()

interpreter to generate the connectivity graphs. We ran the

DAPR tool on a desktop PC with an Intel® Core ™ 2 Duo

E6750 2.66 GHz CPU and 3.24 GB of RAM and the utilities

from Xilinx’s ISE version 9.2i04 with PR patch 12 installed.

We evaluated the DAPR design flow SA algorithm with a

32-bit counter core and the complete DAPR design flow with

a 1K-point FFT core, a 32-bit CORDIC core, and a 4X4

matrix multiplier (MM) core. We generated the FFT and

CORDIC cores using Xilinx’s core generation tool and wrote

the MM and counter cores in-house. Each PR design’s

modified HDL design description was taken as input by the

DAPR tool and the final bitstreams were generated for the

Xilinx ML401 evaluation platform [15] (Virtex-4 LX25

FPGA board). We wrote the original HDL device description

for the PR designs with one static region to function as a

register to store each PRM’s last output and one PRR to

load/unload the counter, FFT, CORDIC, or MM core PRMs.

In order to maintain feasible simulation times, our PR

designs consist of a single PRR due to a significant increase

in iteration time for more PRRs (i.e. 50 to 60 minutes per

iteration for 2 PRRs). However, we simulated designs with

more PRRs and obtained similar results as presented here.

We evaluated our SA algorithm for the 32-bit counter core

compared to an exhaustive search (ES) algorithm to find the

optimal placement of the input bus macros only (the 32-bit

counter has 4 input and output bus macros) and also a

random exploration (RE) algorithm of the input bus macros

for the largest PRR size (we explored four ascending PRR

sizes, which required 24, 120, 360, and 840 iterations,

respectively for ES). Although, we obtained similar results

for ES by including output bus macros for the smallest PRR

size (required 576 iterations), we ran the algorithms for input

bus macros only to bound the total DAPR tool run time (e.g.

the second smallest PRR size would require 14,400 iterations

for ES, which would require 3600 hours or 150 days).

We constructed two test cases for the FFT, CORDIC, and

MM PR designs and used the DAPR tool to find the best PR

design (fastest clock frequency) within Imax successful

iterations. For both test cases, we set Imax = 100. For the

first and second test cases, we set AR=1 and AR=10,

respectively, in order to evaluate the aspect ratio’s impact on

attainable clock frequency (there is no defined method to

predict clock frequency based on PRR aspect ratio [5]) and

partial bitstream size. Power and area constraints were not

set, which forced the algorithm to place the PRRs with the

lowest area (including the extra space) possible. Setting lax

power and area constraints allows the PRR placement

algorithm to place PRRs with larger areas (extra unused

resources), which can reveal higher clock frequencies.

We evaluated our results for the FFT, CORDIC, and MM

cores with respect to the highest clock frequency found by

the DAPR tool after a fixed number of successful iterations.

We did not compare with the optimal clock frequency

because our experiments showed that the clock frequency

varied unpredictably with different bus macro placements,

therefore determining the optimal solution through

exhaustive search is impractical given such a large design

space. The average runtime to complete 100 iterations on

each design was 25 completely automated hours (an

acceptable runtime given that a manual process would take

several days).

B. Results

We evaluated SA using the percentage of the design space

explored (in terms of successful iterations) to achieve the

optimal clock frequency obtained from ES. For the smallest

PRR size, SA found the optimal solution after exploring 83%

of the design space. SA improved on this performance

significantly for increasing PRR sizes, finding the optimal

solution after exploring only 21.7%, 13.84%, and 18.2% of

the design space, respectively. Additionally, for the largest

PRR size, SA outperformed RE by requiring 23% less design

space exploration.

We evaluated the complete DAPR design flow using the

clock frequency and partial bitstream size verses successful

iterations. Power requirements were constant in each

iteration as each PR design’s logic remained constant (no

logic reduction was done during synthesis). PRR area

requirements did not change significantly during the

iterations as PRR size only increased when enough PAR

failures occurred and thus was excluded due to lack of space.

Figure 4 depicts the current iteration’s clock frequency

130

140

150

160

170

180

190

200

1 10 19 28 37 46 55 64 73 82 91 100

C
lo

ck
 F

re
q

u
e

n
cy

 (M
H

z)

&
 P

ar
ti

al
 B

it
st

re
am

 S
iz

e
(K

B
)

1K-Point FFT (AR=1), Final Aspect Ratio=3
Current Iteration Solution Explored

Partial bitstream size (KB) Clock Frequency (MHz)

90

110

130

150

170

1 10 19 28 37 46 55 64 73 82 91 100

32Bit CORDIC (AR=1), Final Aspect Ratio=2
Current Iteration Solution Explored

Partial bitstream size(KB) Clock Frequency(MHz)

40

70

100

130

160

190

220

250

1 10 19 28 37 46 55 64 73 82 91 100

4X4 Matrix Mult. (AR=1), Final Aspect Ratio=1
Current Iteration Solution Expl

Partial bitstream size(KB) Clock Frequency(MHz)

130

140

150

160

170

180

190

200

1 10 19 28 37 46 55 64 73 82 91 100

Cl
oc

k
Fr

eq
ue

nc
y

(M
H

z)
&

 P
ar

ti
al

 B
it

st
re

am
 S

iz
e

(K
B

)

Successful Iterations

1K-Point FFT (AR=10), Final Aspect Ratio=14
Current Iteration Solution Explored

Partial bitstream size(KB) Clock Frequency(MHz)

90

110

130

150

170

190

1 10 19 28 37 46 55 64 73 82 91 100

Successful Iterations

32Bit CORDIC (AR=10), Final Aspect Ratio=10
Current Iteration Solution Explored

Partial bitstream size(KB) Clock Frequency(MHz)

30

74

118

162

206

250

1 10 19 28 37 46 55 64 73 82 91 100

Successful Iterations

4X4 Matrix Mult. (AR=10), Final Aspect Ratio=10
Current Iteration Solution Explored

Partial bitstream size(KB) Clock Frequency(MHz)

Figure 4: Current iteration’s clock frequency and partial bitstream size versus successful iterations with the design’s final aspect ratio (top row and

bottom row shows designs run with AR=1 and AR=10, respectively).

and partial bitstream size verses successful iterations (AR=1

top row, AR=10 bottom row) and Figure 5 depicts the current

highest clock frequency found (AR=1 left, AR=10 right).

Figure 4 tracks the variations in the current iteration’s clock

frequency and bitstream size while Figure 5 tracks the

convergence of the best solution found thus far. Since the AR

constraint is not always maintained during design exploration

due to variations in the PRR’s required resources and the

FPGA fabric’s resource distribution, the actual (final) AR

values of the placed PRR’s are noted in the graph titles.

As expected, the results revealed that the greatest

improvements in the best solution occur during the first

several successful iterations. This growth rate quickly levels

off and converges to within 2.31% of the highest achievable

solution (within Imax) after an average of only 10 iterations.

Comparing the convergence rates for different AR values also

reveals that higher AR values converge faster than lower AR

values requiring on average 28 and 33 iterations,

respectively. Additionally, the initial AR value affects the

maximum achievable clock frequency. For example, the 32-

bit CORDIC core’s fastest clock frequency ranged from

170.1 MHz to 178.1 MHz for AR=1 and AR=10, respectively.

The difference in clock frequency arises because large aspect

ratios enable our PRR placement algorithm to more easily

meet DSP, FIFO, and BRAM requirements with more free

resources in each PRR, which reveals additional higher clock

frequency routing paths.

Since each candidate PR design results in a different

tradeoff between partial bitstream size and clock frequency,

the DAPR design flow can also be used to determine the

Pareto optimal set of design points, enabling designers to

choose the appropriate design tradeoff while examining only

a small set of potential designs. Figure 6 shows each

candidate design’s time period (inverse of the clock

frequency) verses partial bit stream size for the 1K-point FFT

core with AR=1 with the Pareto optimal points highlighted

(circular points). For this example, only 3% of the design

space are interesting points, thus significantly reducing the

number of designs a designer must consider.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present the DAPR design flow, which

automates the intricate EA PR design flow steps. DAPR

enables designers to specify design constraints and

automatically explores the design space using an iterative

candidate PR floorplan generation methodology. DAPR

outputs the PR design with the fastest clock frequency and a

Pareto optimal set of PR design’s that trade off clock

frequency and partial bitstream size. Therefore, the DAPR

flow is highly flexible to meet different designer needs. The

DAPR design flow’s key contributions include: making PR

design more accessible and amenable to a wider range of

designers; facilitating rapid design prototyping; and creating

high-performance systems with reduced design time effort.

Future work includes investigating techniques to enhance

the DAPR tool floorplanning algorithm such as leveraging

SA for PRR placement (the CG-based method is unsuitable

for heterogeneous floorplanning), efficient use of BUFG and

DCM placement, and finding the best design with respect to

any design constraint. Support for additional Virtex-4

devices and the ISE design suite 11 is also planned.

VII. ACKNOWLEDGEMENTS

This work was supported in part by the I/UCRC Program

of the National Science Foundation under Grant No. EEC-

0642422. We gratefully acknowledge tools provided by

Xilinx.

VIII. REFERENCES
[1] P. Banerjee, S. Sur-Kolay and A. Bishnu, “Floorplanning in Modern

FPGAs,” VLSID, 2007.

[2] P. Banerjee, M. Sangtani and S. Sur-Kolay, “Floorplanning for Partial
Reconfiguration in FPGAs,” VLSID, 2009.

[3] J.M. Carver, R.N. Pittman and A. Forin, “Automatic Bus Macro

Placement for Partially Reconfigurable FPGA designs,” FPGA 2009.
[4] L. Cheng and M.D.F Wong, “Floorplan Design for Multi-million Gate

FPGAs,” ICCAD, 2004.

[5] C. Conger, A. D. George and A. Gordon-Ross, “Design Framework for
Partial Run-Time FPGA Reconfiguration,” ERSA, 2008.

[6] S. Craven and P. Athanas, “Dynamic Hardware Development,” IJRC,

2008.
[7] S. Fekete, E. Kohler and J. Teich, “Optimal FPGA module placement

with temporal precedence constraints,” DATE, 2001.

[8] Y. Feng, D.P. Mehta, “Heterogeneous floorplanning for FPGAs,”
VLSID, 2006.

[9] C. Kao, “Benefits of Partial Reconfiguration”, Xcell Journal, 2005.

[10] E.J. Mcdonald, “Runtime FPGA partial reconfiguration,” IEEE AES
Magazine, 2008.

[11] D. Mesquita, F. Moraes, J. Palma, L. Moller and N. Calazans, “Remote

and partial reconfiguration of FPGAs: tools and trends,” IPDPS, 2003.
[12] S. M. Sait and H. Youssef, “VLSI Physical Design Automation:

Theory and Practice”, World Scientific Publishing Company, 1st

edition, 1999.
[13] L. Singhal and E. Bozorgzadeh, “Multi-layer Floorplanning on a

Sequence of Reconfigurable Designs,” FPL, 2006.

[14] Xilinx Inc., “Early Access PR User Guide,” UG208, 2006.
[15] Xilinx Inc., “ML40x Evaluation Platform User Guide,” UG080, 2006.

[16] S. Yousuf and A. Gordon-Ross, “Partial Reconfiguration for Image

Processing Applications,” MAPLD, 2009.

Figure 5: Current iteration’s highest Clock Frequency versus successful

iterations for designs run with AR=1 (left side) and AR=10 (right side).

Figure 6: 1K-point FFT (AR=1) time period versus partial bitstream size.

140

160

180

200

220

240

260

1 10 19 28 37 46 55 64 73 82 91 100

C
lo

c
k

 F
re

q
u

e
n

c
y

 (
M

h
z
)

Successful Iterations

Current Iteration Highest Solution, AR=1

1K-Point FFT Core 32Bit CORDIC Core 4X4 Matrix Mult.

140

160

180

200

220

240

260

1 10 19 28 37 46 55 64 73 82 91 100

C
lo

c
k

 F
re

q
u

e
n

c
y

 (
M

h
z
)

Successful Iterations

Current Iteration Highest Solution, AR=10

1K-Point FFT Core 32Bit CORDIC Core 4X4 Matrix Mult.

5

5.5

6

6.5

7

7.5

160 161 162 163 164 165 166 167 168

Ti
m

e
 P

e
ri

o
d

 (n
s)

Partial bitstream size (KB)

1K-Point FFT (AR=1), Final Aspect Ratio=3

