
Performance Visualization and Exploration for
Reconfigurable Computing Applications

Seth Koehler and Alan D. George
NSF Center for High-Performance Reconfigurable Computing (CHREC)

ECE Department, University of Florida, Gainesville, FL, USA

Abstract— Reconfigurable computing (RC) applications have
the potential for significant performance while consuming
little power. Although runtime performance analysis of RC
applications has previously been shown to be important
in achieving this potential, the optimization process is still
arduous. We target two primary contributing factors: the
incongruence between traditional CPU-based performance
visualizations and RC performance data, and the need to
manually predict the benefits of each potential optimization. To
address these issues, we propose a methodology for interactive
performance visualization targeted toward RC applications.
Our methodology presents performance data hierarchically
within the system and application contexts while simultane-
ously permitting a user to explore “what-if” scenarios to
predict the effects of optimizations. We present a prototype of
this visualization in our ReCAP (Reconfigurable Computing
Application Performance) tool and demonstrate its utility via
an application case study.

1. Introduction
Reconfigurable computing (RC), which typically employs

both CPUs and FPGAs, has been shown to provide substantial
performance over using processors alone in a number of ap-
plications. Due to the complexity of these hybrid applications
and systems, RC performance analysis (i.e., monitoring an
RC application’s performance from within an RC device) has
been shown to be important in achieving this potential [1],
[2]. Unfortunately, even with current tools, the optimization
process can still be difficult and time-consuming.

Several factors complicate optimization. First, current per-
formance visualizations are CPU-centric and do not reflect
the heterogeneous, hierarchical parallelism common to RC
applications, making it difficult to locate and understand
performance bottlenecks. Second, once bottlenecks and po-
tential optimizations are identified, the expected change in
performance must be manually predicted for each optimization
and weighed against other expected costs (e.g., implementation
effort, power, resources used). Finally, due to the complexity
of RC applications, the optimized application may still not
meet desired performance, requiring additional optimization.

In this paper, we seek to ameliorate these issues by propos-
ing concepts and techniques for RC performance visualization
and exploration that accelerate the optimization process; while
we visualize and explore application performance within the

context of the system, our focus is on application (rather
than system) performance. Section 2 provides background
and related research for performance analysis, visualization,
and performance prediction. In Section 3, we propose our
methodology for RC performance visualization and provide
details of a prototype visualization within our Reconfigurable
Computing Application Performance (ReCAP) tool. Next,
Section 4 overviews our methodology for performance ex-
ploration within this visualization, using runtime performance
data to enable a user to perform “what-if” scenarios during
the optimization process before implementing any changes.
Finally, Section 5 provides a case study demonstrating the
utility of our framework and tool, and Section 6 concludes.

2. Background and Related Research
Performance analysis aides a user in quickly locating and

remedying performance bottlenecks (see [3] for a good treat-
ment of challenges and techniques). Performance analysis may
be divided into stages including gaining access to application
data (instrumentation), recording and storing data at runtime
(measurement), optionally analyzing data for performance bot-
tlenecks (automated analysis), visualizing performance data
and analyses (presentation) that allow the user to carry on
further analyses (manual analysis), and finally formulating
and implementing optimizations to ameliorate bottlenecks
(optimization). The process can be repeated if desired.

Performance analysis can address metrics such as runtime
performance, resource usage, or power consumption. These
metrics may be interchangeable; for example, increasing ap-
plication performance can allow fewer (or slower) devices
to be used while still meeting performance requirements,
potentially reducing the system cost or size. FPGAs, due to
their reconfigurability, are even more flexible since application
architecture and clock frequency can be changed, potentially
trading performance improvements for lower power or fewer
resources. Thus, improving runtime efficiency is often useful
in achieving a balance among performance metrics.

Since, RC applications are commonly programmed using
high-level languages (HLLs) for CPUs (e.g., C/C++) and
hardware description languages (HDLs) for FPGAs (e.g.,
VHDL, Verilog), it is beneficial to monitor performance from
both portions of the application (as is done in our ReCAP
framework and tool [1]). While HLLs can also be used to
program an FPGA (and thus monitored as well [2]), we restrict

our focus to HDL-based applications. ReCAP monitors appli-
cation performance via the HDL Instrumenter that instruments
HDL code, the PPW+RC backend that instruments HLL code,
and the PPW+RC frontend GUI that presents performance
data post-mortem. PPW+RC components are extended from
Parallel Performance Wizard (PPW), an open-source perfor-
mance analysis tool for parallel programs [4]. ReCAP supports
software written using C/C++, MPI, UPC, and SHMEM and
hardware written using VHDL (Verilog support is in progress)
using Xilinx ISE or Altera Quartus II tool-flows.

Performance visualization seeks to rapidly convey applica-
tion behavior to a user. While we found no previous work in
visualization for RC applications beyond ReCAP, research in
visualization for parallel applications suggests that visualiza-
tions should be concise, easy-to-use, informative, appropriate
to the programming model, scalable, and interactive [5], [6].
Visualization can often benefit from a user’s high-level model
of the application that is not present in (or not easily extracted
from) source code, using this model to structure performance
data in an intuitive, application-specific context (and poten-
tially reducing instrumentation overhead as well) [7]–[9].

While we know of no work providing performance explo-
ration for RC applications using runtime performance data,
there is significant research in performance prediction during
design space exploration (DSE). DSE employs analytical mod-
eling or simulation to strategically explore alternative applica-
tion designs or system architectures based on metrics such as
performance, power, and resources. As generally no source
code exists, the user supplies parameters or models of appli-
cation or system behavior to predict performance. Balsamo
et al. provide a good survey of performance-driven modeling
techniques for software applications [10]. RC performance
prediction using analytical models [11], [12] and simulation
[9], [13], [14] has also been demonstrated. Finally, process
algebras and calculi can be used to predict performance, from
which we borrow some concepts for this paper [15].

3. RC Performance Visualization
Unfortunately, traditional parallel-processor performance vi-

sualizations are not readily suited for RC applications. First,
these visualizations typically assume devices are general-
purpose, interchangeable, and within a relatively shallow hi-
erarchy (e.g., timeline visualization with one processor per
row). In contrast, many components programmed on the FPGA
are special-purpose (e.g., a component that scatters data to
cores) and may be connected in arbitrarily deep hierarchies.
If treated as a flat list of interchangeable devices, much of the
structure and semantics of the application are lost. Second,
even with heavily pipelined, superscalar processors executing
instructions out-of-order, a single thread or process is still
abstractly viewed as roughly sequential (since sequential or-
dering of application code is preserved), while a single FPGA
component may perform an arbitrary amount of tasks in a
given cycle (HDL code is inherently parallel). Finally, HDLs
lack standardized, high-level communication and synchroniza-

tion functions (e.g., MPI_Send), complicating attempts to
automatically classify and visualize such behavior.

To address these issues, we follow a similar approach to [7],
[8], having a user provide a high-level model of application
behavior. However, to make our framework easy-to-use, we
provide simple pragmas that allow a user to augment their
source code with high-level information while not changing
the application itself. Each pragma defines the current state
of a hardware or software block (the finest-grained unit that
operates in parallel with all other blocks, typically a software
thread or process or a VHDL process block or Verilog always
block); note that while the term “state” is used, no explicit
state machine is needed in the application’s source code to
employ our methodology. In software, pragmas are only used
to classify FPGA API calls (since PPW, and therefore ReCAP,
already monitors traditional parallel-program communication
and synchronization). In hardware, pragmas are used to clas-
sify how time is spent in each clocked block. Figure 1 shows
several examples of software and hardware pragmas.

#pragma recap wrX send(top.in, data): words > 0

fpgaWrite(fpga, data, addr, words);

#pragma recap waitDone wait_recv(top.out, done)

while (fpgaReadReg(fpga, addr2) == 0);

...

(a) SW pragmas

case current_state is

when recvXCoord =>

--pragma recap getX recv($CPU,data)

when waitAck =>

--pragma recap w1 wait_recv(top.out,ack):ack=‘0’

--pragma recap d1 recv(top.out,ack):ack=‘1’

...

...

(b) HW pragmas

Figure 1. Example of user-defined pragmas

Each pragma-defined state is given a name and one or
more classifications such as wait send, wait recv, send, recv,
and busy (performing internal tasks), although other categories
such as wait sync and overhead could be useful as well (the
chosen categories are similar to those visualized in current
performance tools [16] and used for performance modeling
[15]). The “busy” category requires no arguments, while
“wait” and “communication” categories require two argu-
ments specifying dependencies and a “purpose” tag used to
distinguish between similarly-typed messages from the same
block. While a pragma automatically inherits all conditions
that contain it, an optional condition field (after the colon)
permits additional control over when a block is in a given state.

Given this framework, we extended ReCAP to automatically
monitor these pragma-defined states. While trace (timeline)
information is ideal for viewing exact details of application
behavior (and is supported by ReCAP on both CPUs and
FPGAs), limitations on FPGA memory make it difficult to rely
on such information. Instead, we build a Markov model of all
CPU and FPGA blocks by recording time spent in each state
and state transition, accepting a potential loss in fidelity. While
this approach incurs O(n2) counters, where n is the number

of states, it is common for many transitions to be impossible.
Thus, we use a basic sparse-matrix representation for state
transitions on both devices; due to the potentially high cost of
implementing sparse matrices on FPGAs, we provide optional
syntax in hardware pragmas to specify which transitions are
possible, thus creating a static sparse matrix. A synthesis tool
could potentially determine impossible transitions automati-
cally, but this is difficult and may not be possible in all cases.

To present performance in an intuitive, model-appropriate
fashion, we visualize performance data within the system and
application hierarchy. While HDL code is naturally hierarchi-
cal, we found the digraph generated from block dependen-
cies better suited for understanding behavior than the actual
structure of code (since HDL components or modules may
simply pass data through or connect two sub-components
together). For our visualization, we define the system, node,
device, block, and state levels, allowing any of these levels
to have one or more nested groups within it. A node is
generally the smallest networked homogeneous unit of a
system (which may contain multiple devices such as CPUs
and FPGAs), while the block level refers to the definition of
block given earlier (e.g., thread, VHDL process block), which
are broken into states via user-supplied pragmas. Examples
of application- or system-specific grouping include FPGAs on
the same card and threads or cores performing similar tasks.
By employing a hierarchical structure, scalability is improved
and our visualization is appropriate to the hierarchical structure
common in RC applications. As these levels are fairly generic,
our visualization and exploration framework could also apply
to other computing devices (e.g., GPUs, DSPs).

In ReCAP, we prototyped this visualization (without group-
ing mentioned above) by generating a single file per logi-
cal CPU for use in Graphviz [17]; thus, multi-CPU/FPGA
applications are supported, but the system-level view is not
yet constructed. Graphviz can then generate scalable vector
graphics (SVG) files, allowing a user to open the top-level
SVG file and traverse the system and application hierarchy
via hyperlinked nodes. Figure 2 shows actual tool-generated
output for the device, node, and block levels, which have
been cropped for brevity. The state level (not shown) is
also visualized within our tool as an HTML table including
the number of iterations, user pragma, source location, tool
overhead, time spent in the state (including min, max, average,
and total), and similar summaries of bytes transfered and
communication bandwidth. Dependency information between
blocks within the FPGA or between the FPGA and CPU are
also visualized (e.g., the arrow connecting the two blocks
within the device level in Figure 2). While visualization of
CPU-CPU communication and synchronization is currently
unimplemented in this view, statistical and timeline views of
this behavior are available in PPW+RC’s frontend GUI. Figure
2 will be analyzed for performance problems in Section 5.

The block level (for CPUs and FPGAs) shows each user-
defined state’s name and type, along with the cumulative time
spent in that state (numerically and visually via partially filled
bars). In addition, transitions are labeled with a percentage

Node Level Device Level (FPGA)

Block Level (CPU)

Figure 2. ReCAP visualizations for 2-core Collatz application

representing the frequency of a given transition in comparison
to all outgoing transitions from the state. In CPU blocks, tran-
sitions are also labeled with the total time spent transitioning
from one state to another (numerically and visually), as an
arbitrary amount of work may occur between FPGA API calls.
The CPU block level is shown at the bottom of Figure 2.

At higher levels in the hierarchy, it is crucial to summarize
data such that a user can quickly determine whether that
item deserves further attention. From a performance analysis
perspective, an application is performing ideally if all com-
putational resources committed to the application are fully
used; certainly better algorithms can have less utilization and
still perform better, but performance analysis is concerned
with maximizing a given solution, assuming all computation
performed is necessary. Deviation from this ideal is considered

a (local) performance problem and potentially an application
bottleneck (a critical performance problem degrading the entire
application’s performance) and should be highlighted.

Therefore, we display total time spent in each category when
summarizing blocks within the device and node levels, and we
display the maximum of each category’s totals (along with
the minimum total busy time) for summarizing devices and
nodes themselves. The maximum wait-time, communication-
time, and minimum busy-time show deviations from the ideal,
while the maximum busy-time shows hot-spots that may
benefit significantly from optimization (including algorithmic
improvement). It may also be of use to provide standard devi-
ation and automatic grouping or binning of blocks with other
similarly performing blocks, depending on the application.

Based on our visualization approach, it is often beneficial
to define as few states as necessary to describe high-level
application behavior, inserting additional pragmas in key areas
if more detail is needed. In addition, while hierarchical struc-
turing has many advantages, it may also be desirable to query
or aggregate performance data. For example, a query such
as SELECT * FROM FPGA[*] WHERE TIME(SEND) >
0.1*TOTAL_TIME() could be used to find all FPGA states
sending data more than 10% of the time. Due to significant
implementation cost, this feature is not currently implemented.

4. RC Performance Exploration
Once performance is visualized, the user must formulate

potential optimizations and weigh expected performance gains
against expected costs of optimization (e.g., effort, power,
resources). Unfortunately, predicting performance can be diffi-
cult in complex RC applications, potentially leading to wasted
implementation effort. As mentioned in Section 2, DSE is
invaluable for providing early performance estimates. How-
ever, these estimates may be inaccurate due to assumptions
concerning the system and application; thus, we employ actual
performance data gathered for our visualization to support
performance exploration in the optimization stage. Our pro-
posed exploration methodology compliments existing methods
in DSE and performance prediction. Since our goal is to
maximize performance of an existing system and design, we
take advantage of detailed performance data, targeting finer-
grained changes and more accurate exploration rather than
broad changes common in traditional DSE. Ideally, our data
and methodology could be integrated with existing DSE tools
(e.g., augmenting application and system models with real per-
formance data), enabling more accurate prediction and provid-
ing an end-to-end environment in which to study application
performance, from conceptual design through optimization.

We now motivate our approach. Figure 3 shows mockup
performance data for an application consisting of two blocks.
Each state contains the cumulative time (CT) spent in that
state (over all iterations) as well as the number of incoming
and outgoing transitions, from which a potential timeline can
be constructed (Figure 4a). Supposing an optimization could
reduce the CT of the busy2 state from 3s to 1s, Amdahl’s

law suggests an ideal speedup of 22.9% (1/(1− 3s/10.75s +
3s/10.75s

3)) is possible. However, in reality, the performance
of other blocks could inhibit us from achieving this potential.

Assuming the average case, the above optimization will re-
duce each of the four iterations of busy2 by 0.5s, leaving gaps
in Block B’s timeline (Figure 4b). Unfortunately, the first three
gaps precede a wait state; since Block B was already waiting
on Block A, Block B will have to wait that much longer. How-
ever, the final gap is followed by communication with Block
A, where Block A is waiting for this communication. Thus,
Block A could now wait less time, allowing the final send/recv
pair to complete 0.5s earlier (Figure 4c) and providing a final
speedup of 4.9%, much less than the ideal 22.9% (this ideal
could be realized with a similar change to busy1 instead).

Block B (10.75s)Block A (10.75s)

send1

busy1

wait1

recv1

recv2

busy2

wait2

send2

1

4
3

1

1

1

2

5s

4s

0.75s

1s

2.75s

4s

3s

1s

7

1

4

4

3

1

1

Figure 3. Example application for exploration.

A

B

Comm BusyWait

10.75s

(a) Initial timeline

A

B

gaps

(b) After local modification

10.25s
increase

in wait

decrease in wait

(finish 0.5s earlier)

A

B

(c) Final result

Figure 4. Potential timelines when optimizing an example application.

While the previous example focused on changing a state’s
CT (along with the corresponding adjustments to other states),
other changes can be modeled as well. For example, changing
FPGA clock frequency can be modeled as scaling the total
time of each FPGA state (except those communicating or
waiting on external resources such as SRAMs or CPU).
Changing a block’s replication factor by F (e.g., doubling

CPUs or FPGA cores) can be modeled as scaling all busy
and communication state times by a factor of 1/F (assuming
perfect load balancing). Our framework does not constrain the
magnitude of such changes, allowing users to investigate per-
formance if a larger or faster device were employed; however,
potential changes in resource usage and achievable frequency
should be considered when targeting specific devices. Ideally,
a tool could automatically map these higher-level changes
into corresponding state-level changes rather than requiring
the user to manually perform this mapping.

This approach makes several assumptions. Since a gen-
erated timeline represents the average case, it could differ
significantly from actual runtime behavior (especially with
shared effects such as contention). However, a number of
RC applications exhibit very regular behavior, and thus our
approach is reasonable given the significant memory reduction
afforded by using summary statistics (even trace data can be
insufficient to predict performance as a single execution may
not include all execution paths). Also, although a user’s change
to the CT of one or more states could affect the CT of a busy or
communication state, we assume only the CT of wait states is
adjusted, as this case is far more common and easier to model.
Finally, although matching communication states between
blocks can wait on each other (e.g., in one iteration Block A
waits on Block B while in the next Block B waits on Block A),
we assume that communication can be shifted such that only
one block is waiting on another; while not always possible,
this represents an ideal case if such a synchronization problem
is remedied. We show in Section 5 that our methodology can
still be fairly accurate, even with non-uniform behavior.

Unfortunately, generating timelines consistent across all
blocks can be difficult, as matching send/recv pairs must be
aligned globally (e.g., in Figure 4a, Block B’s first wait state
was elongated in order to line up communication states). Thus,
for simplicity and efficiency, we forego timeline generation,
instead employing a heuristic methodology that calculates the
CST, or cumulative time a state is shifted in the timeline
(e.g., the final -0.5s shift in Figure 4c), as well as the CT
for each state; pseudocode for our approach is provided in
Figures 5 and 6. Note that while CST/CT calculation may yield
different results from a timeline approach (as the latter ensures
matching transfers occur together rather than just ensuring
that dependencies, on average, are met), this does not imply
the timeline approach is more accurate; both are effectively
assuming a schedule that may differ from actual execution.

We now re-predict performance for our example application
via the CST/CT methodology. As shown in Figure 7a, the
user changes the CT of busy2 from 3s to 1s (checkered). The
propBlk function (Figure 5) is then called with the busy2
state and -2s CST. This function is responsible for propagating
a change in expected CST throughout a block, adding any
dependencies to a queue for later processing. The CST is
split among all potential next states based on the frequency
of transitions to each. If a state has been visited before,
the handleCycle function (definition not shown) finds all
states outside the cycle that have a transition to them from

void propBlk(State s, double CST) {

 if (CST == 0) return;

 s.CST += CST;

 // add dependencies to queue

 foreach (dep in s.dependencies)

 depQueue.add(dep);

 // compute next state changes

 double total = sum(s.outTrans);

 foreach (n in s.nextStates) {

 double frac = s.outTrans(n) / total;

 if (n.visited)

 handleCycle(n, s, frac * s.CST);

 else propBlk(n, frac * s.CST);

}}

Figure 5. Block-propagation methodology

void handleDep(State s, State sw,

 State d, State dw) {

 double CST, CT;

 // modify wait times

 CST = max(-dw.CT, s.CST – d.CST);

 CT = min(CST, max(CST – sw.CT, 0));

 dw.CT += CT;

 sw.CT += CT – (s.CST – d.CST);

 // propagate and back-propagate

 propBlk(dw, CT);

 propBlk(sw, CT – (s.CST – d.CST));

}

sw

s

dw

d

Source Destination

dw.CSTsw.CST

s.CST d.CST

Figure 6. Dependency-handling methodology

within the cycle (exit states) and determines the correct split
of CST between these states (determined either by iteration
or geometric series if the number of iterations is sufficiently
large). In our example application, the call to propBlk adds
dependencies for recv2 and send2 to the queue and results in
the final CST values shown (black ellipses) in Figure 7a.

At this point, each dependency is incrementally applied
by calling handleDep with the four relevant states in the
dependency: the source s, its corresponding wait state sw,
the destination d, and its corresponding wait state dw (Figure
6). If there is no corresponding wait state for either s or
d, an implicit one with zero CT is added. The handleDep
function attempts to shift communication as early as possible,
resolving any conflict detected by increasing wait time at the
source. Figure 7b shows the result of triggering the recv2
dependency, which resolves a conflict where Block B could
progress faster but Block A cannot, thus increasing the wait
time in wait2 to 4.25s. Figure 7c then shows the final outcome
after triggering the send2 dependency, which allows the recv1
state in Block A to shift 0.5s earlier (by reducing the CT of
wait1 to 0.25s), yielding a final reduction of 0.5s out of 10.75s
(4.9% speedup) for the application, as predicted earlier. Note
that our methodology not only predicts overall performance,
but also the CT for each state, thus aiding a user in locating and

Block B (8.75s)Block A (10.75s)

send1

busy1

wait1

recv1

recv2

busy2

wait2

send2

1

4
3

1

1

1

2

5s

4s

0.75s

1s

2.75s

4s

1s

1s

7

1

4

4

3

1

1

-2s

-2s

-1.5s

-1.5s

0s

0s

0s

0s

(a) Result of initial update to Block B

Block B (10.25s)Block A (10.75s)

send1

busy1

wait1

recv1

recv2

busy2

wait2

send2

1

4
3

1

1

1

2

5s

4s

0.75s

1s

4.25s

4s

1s

1s

7

1

4

4

3

1

1

-0.5s

-0.5s

0s

0s

0s

0s

0s

0s

(b) Result of recv2 dependency handling

Block B (10.25s)Block A (10.25s)

send1

busy1

wait1

recv1

recv2

busy2

wait2

send2

1

4
3

1

1

1

2

5s

4s

0.25s

1s

4.25s

4s

1s

1s

7

1

4

4

3

1

1

-0.5s

-0.5s

0s

0s

0s

0s

-0.5s

-0.5s

(c) Result of send2 dependency handling

Figure 7. Performance exploration using CST/CT updates

potentially remedying bottlenecks in an optimized version of
the application before the optimization has been implemented.

While our intent is to allow users to modify a state’s CT,
block replication, or frequency within our visualization, per-
formance exploration is not currently implemented in ReCAP.
Thus, we manually employ our exploration framework to
demonstrate its utility.

5. Results
To validate the utility of our framework, we investigate the

performance of a Collatz application, which tests the lengths
of sequences generated under repetitive iteration of a simple
function on the natural numbers (see [18] for details). While
this application is not readily used for practical purposes,
it contains patterns that closely resemble cryptanalysis (i.e.,
a large number space is pre-filtered by a CPU, the FPGA
performs a large parallel search, and finally the CPU collects
and performs post-processing on returned numbers) [19],
[20]. In addition, both the CPU and FPGA are involved in
computation, with FPGA cores requiring an unknown number
of cycles to complete, thus providing a case study that would
be difficult to predict performance for via other methods.

The application was executed on a Pentium-4 3.2GHz 64-
bit Xeon processor containing a Nallatech H101-X PCI-X

card with a Virtex-4 LX100. We used GCC 4.4.2 with “O3”
optimization and Xilinx ISE 11.3 with default settings to
compile the application software and hardware, respectively;
the same application served as a C baseline (with FPGA tasks
performed on the CPU instead). All execution times were
computed from the average of three executions, with the FPGA
operating at 100MHz. Each execution consisted of running
sequence-length tests on the first 154 billion numbers.

Figure 2 shows visualizations generated by ReCAP for an
initial 2-core version of the Collatz application. From the visu-
alizations, we quickly noticed the CPU is waiting a significant
amount of time for the FPGA to complete its work (100.8s, as
shown in the CPU-block-level visualization), representing poor
hardware/software partitioning that could be remedied easily
by increasing the number of cores in the FPGA. Assuming the
wait-time problem can be removed, the inStatus1 state is
taking up a significant portion of the remaining time (13.5%).
Decreasing the transmission frequency (and correspondingly
increasing buffer size) could reduce this overhead. In support
of this decision, clicking on the send1 state indicates an
average bandwidth of 42.5MB/s and message size of 0.75KB
(not shown); platform benchmarks indicated that increasing
message size could improve bandwidth significantly.

We now predict the effects of scaling the number of FPGA
cores in our application from 2 to 56 via our performance
exploration methodology (64 cores could not be validated
due to FPGA resource limitations). Figure 8 shows the ideal
prediction given by Amdahl’s law (triangles), our methodol-
ogy’s prediction (squares and dotted line), actual application
performance (asterisk), and performance achieved from an
optimized version of the application discussed below (cir-
cles). Since FPGA computation represents the majority of the
application time, Amdahl’s law predicts near-linear speedup,
with a 56-core version achieving a total 54.2x speedup over
the software baseline. However, our performance exploration
predicts that performance will scale in a roughly linear fashion
until leveling off around 12 cores, with the 56-core version
achieving a total 12.1x speedup over the software baseline.

0

10

20

30

40

50

60

2 4 8 16 32 56

Number of Cores

S
p

e
e

d
u

p
 (

v
s

.
C

P
U

) Amdahl

ReCAP

Actual

Optimized

3.8x

speedup

3.3% error

361% error

Figure 8. Performance exploration for Collatz application.

Our actual 56-core version achieved a total 11.7x speedup
over the software baseline, resulting in a maximum error
in predicted performance of only 3.3% for our performance
exploration methodology (using Amdahl’s law yields 361%

error), thus demonstrating our framework’s utility, even in the
presence of non-uniform behavior. As examining the predicted
state CTs indicated the FPGA would be mostly idle if 56-cores
were employed, we developed an auto-tuning step to perform
coarse-grained load-balancing between the CPU and FPGA
and reduced transmission frequency (as mentioned earlier),
yielding a 3.8x speedup over the original 56-core design (44.7x
speedup over the software baseline), as shown in Figure 8.

Due to the number of application resources used (85%
LUTs, 32% regs, and 57% block RAMs (BRAMs)), we
chose to instrument only 2 of the 56 hardware cores (all
other software and hardware were instrumented normally). We
observed a change of +1.7% (or less) in software runtime, -2%
LUTs, +4% regs, +35% BRAMs, and no change in maximum
frequency. The unexpected changes to LUTs and BRAMs
were due to instrumentation interfering with a RAM-packing
synthesis optimization that decreases BRAMs at the expense
of LUTs. Unfortuntaely, ReCAP replicates components in
loops to ease instrumentation, preventing ISE from detecting
this optimization for this application; better handling of loops
in ReCAP would avoid this issue. Disabling this optimization
yields a more informative baseline of 77% LUTs, 32% regs,
and 92% BRAMs for the original application, yielding an
actual overhead of +6% LUTs, +4% regs, and +0% BRAMs.

6. Conclusions
In conclusion, we provided a methodology for both per-

formance visualization and performance exploration of RC
applications, implementing a prototype visualization within
our ReCAP tool. We then demonstrated the utility of our
framework and tool by predicting application performance
before actually implementing changes, yielding only 3.3%
error when validated. Based on these results, a scalability
problem and inefficient communication were quickly located
and remedied, yielding a 3.8x speedup of our original 56-core
design (increasing application speedup from 11.7 to 44.7 when
compared to the software baseline).

Future work includes implementing the exploration frame-
work and potentially integrating both into DSE tools, allowing
users to follow application performance through the entire
design process. In addition, handling more complex scenarios,
including modeling buffers and memories as well as including
trace data, could be of use.

Acknowledgments
This work was supported in part by the I/UCRC Program

of the National Science Foundation under Grant No. EEC-
0642422. The authors gratefully acknowledge vendor equip-
ment and/or tools provided by Aldec, Altera, Nallatech, and
Xilinx.

References
[1] S. Koehler, J. Curreri, and A. D. George, “Performance analysis chal-

lenges and framework for high-performance reconfigurable computing,”
Parallel Computing, vol. 34, no. 4-5, pp. 217–230, 2008.

[2] J. Curreri, S. Koehler, A. D. George, B. Holland, and R. Garcia,
“Performance analysis framework for high-level language applications in
reconfigurable computing,” ACM Trans. on Reconfigurable Technology
and Systems, vol. 3, no. 1, pp. 1–23, 2010.

[3] S. S. Shende and A. D. Malony, “The TAU parallel performance system,”
Int. Jour. of High Performance Computing Applications (HPCA), vol. 20,
no. 2, pp. 287–311, May 2006.

[4] H.-H. Su, M. Billingsley, and A. D. George, “Parallel performance
wizard: A performance analysis tool for partitioned global-address-space
programming,” in IEEE Int. Symposium on Parallel and Distributed
Processing (IPDPS’08), April 2008, pp. 1–8.

[5] B. P. Miller, “What to draw? When to draw?: an essay on parallel
program visualization,” Jour. of Parallel and Distributed Computing,
vol. 18, no. 2, pp. 265–269, 1993.

[6] M. T. Heath, A. D. Malony, and D. T. Rover, “Parallel performance
visualization: From practice to theory,” IEEE Parallel and Distributed
Technology, vol. 3, no. 4, pp. 44–60, 1995.

[7] J. Garcı́a, J. Entrialgo, and D. Garcia, “An instrumentation and visualiza-
tion technique for performance analysis of high-performance industrial
embedded applications,” in Proc. of the 16th IEEE Instrumentation and
Measurement Technology Conf. (IMTC’99), vol. 2, 1999, pp. 958–963.

[8] M. Sefika, A. Sane, and R. H. Campbell, “Architecture-oriented visual-
ization,” in Proc. of the 11th ACM SIGPLAN Conf. on Object-oriented
Programming, Systems, Languages, and Applications (OOPSLA ’96).
New York, NY, USA: ACM, 1996, pp. 389–405.

[9] K. Bondalapati and V. K. Prasanna, “DRIVE: An interpretive simulation
and visualization environment for dynamically reconfigurable systems,”
in Proc. of the 9th Int. Workshop on Field-Programmable Logic and
Applications (FPL’99). Springer Berlin / Heidelberg, 1999, pp. 31–40.

[10] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni, “Model-based
performance prediction in software development: a survey,” IEEE Trans.
on Software Engineering, vol. 30, no. 5, pp. 295–310, May 2004.

[11] M. C. Smith and G. D. Peterson, “Parallel application performance on
shared high performance reconfigurable computing resources,” Perfor-
mance Evaluation, vol. 60, no. 1-4, pp. 107–125, 2005.

[12] B. Holland, K. Nagarajan, C. Conger, A. Jacobs, and A. D. George,
“RAT: a methodology for predicting performance in application design
migration to FPGAs,” in Proc. of the 1st Int. Workshop on High-
performance Reconfigurable Computing Technology and Applications
(HPRCTA’07). New York, NY, USA: ACM, 2007, pp. 1–10.

[13] D. Densmore, A. Donlin, and A. Sangiovanni-Vincentelli, “FPGA archi-
tecture characterization for system level performance analysis,” in Proc.
of the Conf. on Design, Automation and Test in Europe (DATE’06).
3001 Leuven, Belgium, Belgium: European Design and Automation
Association, 2006, pp. 734–739.

[14] C. Reardon, E. Grobelny, A. D. George, and G. Wang, “A simulation
framework for rapid analysis of reconfigurable computing systems,”
ACM Trans. on Reconfigurable Technology and Systems (TRETS), to
appear.

[15] A. Clark and S. Gilmore, “State-aware performance analysis with ex-
tended stochastic probes,” in Proc. of the 5th European Performance En-
gineering Workshop on Computer Performance Engineering (EPEW’08).
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 125–140.

[16] Z. Szebenyi, B. J. Wylie, and F. Wolf, “Scalasca parallel performance
analyses of PEPC,” in Proc. of the 1st Workshop on Productivity and
Performance (PROPER) in conjunction with Euro-Par 2008, ser. Lecture
Notes in Computer Science, vol. 5415. Springer, 2009, pp. 305–314.

[17] J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull,
Lecture Notes in Computer Science: Graph Drawing. Springer Berlin
/ Heidelberg, 2002, ch. Graphviz - Open Source Graph Drawing Tools,
pp. 594–597.

[18] J. C. Lagarias, “The 3x + 1 problem and its generalizations,” The
American Mathematical Monthly, vol. 92, no. 1, pp. 3–23, Jan. 1985.
[Online]. Available: http://www.jstor.org/stable/2322189

[19] J.-J. Quisquater, F.-X. Standaert, G. Rouvroy, J.-P. David, and J.-D.
Legat, “A cryptanalytic time-memory tradeoff: First FPGA implemen-
tation,” in Field-Programmable Logic and Applications: Reconfigurable
Computing Is Going Mainstream. London, UK: Springer-Verlag, 2002,
pp. 780–789.

[20] T. Pornin and J. Stern, “Software-hardware trade-offs: Application to
A5/1 cryptanalysis,” in Proc. of the 2nd Int. Workshop on Cryptographic
Hardware and Embedded Systems (CHES’00). London, UK: Springer-
Verlag, 2000, pp. 318–327.

http://www.jstor.org/stable/2322189

	Introduction
	Background and Related Research
	RC Performance Visualization
	RC Performance Exploration
	Results
	Conclusions
	References

