
Integrating Application Specification and Performance
Prediction for Strategic Design-Space Exploration

Brian Holland, Alan D. George, and Herman Lam
NSF Center for High-Performance Reconfigurable Computing (CHREC)

University of Florida
Email: [holland, george, lam]@chrec.org

Abstract—Modeling environments and performance predic-
tion boost application productivity, but often lack integration
into an efficient and comprehensive approach to strategic
design-space exploration for reconfigurable computing (RC)
systems. This paper proposes a framework allowing simple
yet extensible bridging of modeling environments for high-
level application specification with the authors’ RC Amenability
Test (RAT), an analytical model for performance prediction
prior to expensive implementation. Two case studies, a modified
Needleman-Wunsch application for bioinformatics and a task
graph of mean-value analysis, demonstrate the efficiency of
the proposed integrated framework for rapid and reasonably
accurate analysis of application designs.

I. INTRODUCTION

Widespread adoption of reconfigurable computing (RC)
systems is increasingly limited by application design pro-
ductivity. Particularly for field-programmable gate arrays
(FPGAs), prototyping and revising applications based on
execution-time performance analysis of hardware implemen-
tations is impractical due to lengthy synthesis, placement,
and routing phases. Existing design flows for RC systems
lack structured application specification and analysis at an
abstract level. Strategic design-space exploration (DSE), the
evaluation and revision of algorithm and architecture design
choices based on the application’s performance requirements
prior to costly implementation, receives insufficient attention.
Illustrated in Figure 1, a key productivity challenge is the
gap in the abstraction pyramid for system design [1] between
“Back of the Envelope” estimations and “Abstract Executable
Models.” Existing modeling environments and performance
prediction techniques provide important yet commonly iso-
lated methodologies and tools for application specification
(i.e., design entry) and analysis, respectively.

One solution to the RC productivity challenge is an ex-
tensible methodology and tools for bridging modeling en-
vironments with performance prediction. Modeling environ-
ments provide more customizable, human-productive design
entry than lists or spreadsheets of quantitative performance
information. Performance prediction techniques can provide
relatively rapid and reasonably accurate estimations, albeit
with potentially manual data input, error checking, and re-
vision. Without an integrated approach, strategic DSE using
isolated abstract specification and analysis tools can be te-
dious, disconnected from subsequent implementation tasks,
and ultimately counterproductive.

Fig. 1. Abstraction pyramid comparing levels of modeling for hardware
applications [1]

This paper proposes a methodology for a framework allow-
ing integration of modeling environments with the authors’
RC Amenability Test (RAT) [2], an analytical model for
FPGA performance prediction prior to implementation. The
RAT methodology (and corresponding analysis tool) provides
models describing the behavior of the individual computa-
tion and communication operations and estimates the total
application performance based on their agglomeration. RAT
has demonstrated reasonably accurate performance prediction,
but its efficiency is limited by currently manual interpretation
of application specifications for the necessary inputs to the
analysis.

A number of different tools for strategic DSE (hereafter
referred to as “DSE tools”) can be constructed based on
the proposed framework depending on the capabilities and
constraints of the included modeling environment. One such
DSE tool is presented with case studies in Section IV. Using
the framework methodology as the basis for DSE tools al-
lows greater interchangeability of modeling environments and
reuse of components connecting the underlying specification
and analysis tools. Consequently, the proposed framework
defines a “translation” component that distills the required
prediction inputs for RAT from the (supported) model of
computation (MoC) of the application specification. An ab-
straction layer insulates the translation functionality from the
tool-dependent details of the particular modeling environ-
ment. Additionally, the framework defines an “orchestration”



component, which performs RAT prediction on an initial
application design and potential revisions to the underlying
algorithm and/or platform architecture. The functionality of a
DSE tool includes the connectivity and usage of existing tools
for application specification and RAT prediction by the newly
constructed components for translation and orchestration.

The remainder of this paper is structured as follows.
Section II presents background and related research on RAT
performance prediction and several modeling environments
amenable to integration with RAT, which ultimately provide
the analysis and specification capabilities for the framework.
Section III provides an overview of the requirements for the
translation and orchestration components of the framework
methodology that enable integration of modeling environ-
ments and performance prediction. Section IV discusses two
case studies, a modified Needleman-Wunsch (MNW) appli-
cation for bioinformatics and a task graph of mean-value
analysis (hereafter referred to as “MVA graph”), demonstrat-
ing productivity benefits with a DSE tool. Conclusions are
presented in Section V.

II. BACKGROUND AND RELATED RESEARCH

The proposed framework leverages existing research in
RAT performance prediction and modeling environments to
facilitate application specification and analysis for strategic
DSE for RC. RAT uses separate computation and com-
munication models, based on underlying assumptions about
the application structure and behavior, which agglomerate
into complete predictions of application. Several modeling
environments provide methods and tools with similar ap-
proaches for abstracting algorithm and platform architecture
specifications, albeit with differing levels of implementation
detail.

A. RAT Performance Prediction

Assuming known model inputs, the rapidity of analytical
modeling is advantageous for strategic application analysis as
compared to direct measurement based on a hardware imple-
mentation or simulation, which often requires lengthy analysis
times. The accuracy (i.e., correctness) of the analytical models
such as RAT [2] is based on the validity of the simplifying
assumptions that keep the analysis tractable. RAT assumes a
synchronous iterative (i.e., multiphase) performance model,
a subset of fork-join models with each hardware resource
(e.g., microprocessor or FPGA) performing an independent
portion of the application computation each iteration with
synchronizing communication separating every iteration from
preceding and proceeding iterations [3], [4]. The model as-
sumes application execution time is defined by the summation
of the slowest computation and communication each iteration.

The underlying computation and communication models
for RAT describe the potentially complex and typically data-
oriented behaviors within each iteration using a few key quan-
titative attributes. Computation is defined by total number
of application-specific operations and their rate of execution
based on usage of the algorithm’s deep or wide parallelism
by the hardware resources. Alternatively, RC computation can

(a) Performance prediction with RAT (b) Y-chart approach to app. specifi-
cation in modeling environments [1]

Fig. 2. Abstract structure of RAT performance prediction and modeling
environments

often be described by the number of data elements to be
processed and the rate of completion (i.e., cycles per element).
RAT uses an extension of the Hockney model [5] to describe
communication. Figure 2a outlines the general structure of
RAT.

A tool constructed from the RAT methodology includes an
API to provide the necessary prediction input and gather the
resulting performance estimation. The general methodology
of separate computation and communication modeling is
common in prediction techniques, though research directed
towards strategic RC analysis is not as expansive as com-
pared to modeling environments. RAT is included within
the framework due to its fairly unique focus of strategic
prediction prior to implementation. Encapsulation of RAT
for replacement with other synchronous iterative performance
models is possible, but outside the scope of this paper.

B. Modeling Environments

Modeling environments provide abstract yet reasonably
precise descriptions of application structure and behavior. An
application specification consists of models (i.e., descriptions)
of the underlying algorithm and RC platform architecture
along with their respective mapping. Algorithm and architec-
ture models are often specified separately using the Y-chart
approach [1], as illustrated in Figure 2b. These application
models (particularly the algorithm model) describe the be-
havior of an application in terms of a model of computation
(MoC). A MoC defines a set of allowable “operations” (i.e.,
basic and often technology-dependent computational events),
communication between operations (i.e. data movement),
their relative costs (e.g., clock cycles), and the total system
behavior based on the operations composing the application.
Each modeling environment uses graphical and/or textual
elements to denote precise syntactic and semantic meanings
for an application specification based on the MoC.

The case studies for this paper, MNW and MVA graph, are
specified by asynchronous message-passing (AMP) and syn-
chronous dataflow (SDF) MoCs, respectively, which represent
common models for FPGA systems. AMP denotes the use
of one or more queues to describe communication between
groups of operations. Only messages within the same queue
are strictly ordered with unspecified timing between different
queues. SDF represents a special case of AMP with groups
of operations evaluated as soon as the necessary messages are
available from the communication channels, which are uni-
directional. Data enters the application model at a constant



Fig. 3. Framework bridging modeling environments and performance
prediction, and orchestrating DSE

rate, which eventually induces a steady-state evaluation rate
for each group of operations with total performance defined
by the slowest group. AMP suitably describes the straightfor-
ward DMA communication between the microprocessor and
FPGAs for MNW. SDF provides mechanisms for describing
the pipeline network of the MVA graph.

The proposed DSE tool requires a modeling environment
capable of effectively representing abstract algorithm, archi-
tecture, and subsequent application mapping models based
on AMP and SDF MoCs. Ptolemy [6] is an environment
specifically for simulating and prototyping systems involving
heterogeneous MoCs, including AMP and SDF. Metropolis
[7] defines “metamodels” that use formal execution semantics
to define the application function, platform architecture, and
mapping of the system based on a new or existing MoCs.
Artemis [8] and Sesame [9] use a hierarchical Kahn Process
Network (KPN), a specialized AMP MoC, to describe the
system concurrency and individual component behavior. The
RC Modeling Language (RCML) [10] provides hierarchical
models (typically involving AMP and SDF MoCs) for the
algorithm, architecture, and total application mapping with
specialized constructs to express parallelism, communication
patterns, and other common aspects in RC. RCML is intended
to allow users to quickly model systems before lengthy coding
of a functional implementation, using abstract constructs
and quantitative attributes to define behavior. With suitable
abstraction, any of these modeling environments could pro-
vide effective application specification for RAT performance
prediction. The proposed DSE tool in Section IV uses RCML
because of the strategic, RC-specific focus for application
specification.

III. INTEGRATED FRAMEWORK

This section describes the general methodology of the
framework for connecting RAT performance prediction with
modeling environments for increased productivity during
strategic DSE. (Section IV discusses the DSE tool bridging
RAT with the RCML modeling environment.) Figure 3 pro-
vides an overview of the framework structure. The proposed
methodology includes translation of specification information

Fig. 4. Translation of application specification information for RAT
prediction

from the modeling environment to RAT and orchestration
of DSE based on revisions to the specification information.
The modeling environment and RAT performance prediction
components are the existing methods and tools from Section
II, as indicated by the shaded boxes. The dashed border of
the modeling environment and tool-abstraction layer indicates
the interchangeability of the specification tool. Section III-A
describes the general procedure for translation of algorithm-
based MoCs into the quantitative performance attributes and
application scheduling necessary to direct the synchronous,
iterative performance model of RAT. Section III-B provides
a high-level description of the mechanism for orchestration
of strategic DSE, specifically the directed revision of an
initial application specification to examine and compare the
performance potential design alternatives.

A. Translation

Although individual modeling environments and perfor-
mance prediction techniques sometimes include methods for
direct connectivity to other tools, an explicit intermediary
between specification and analysis is advantageous. The pro-
posed framework provides translation between the algorithm
MoCs and the RAT performance prediction, facilitating the
transfer of the required quantitative attributes and scheduling
information to the corresponding computation and communi-
cation model. Potential issues during translation include dif-
ferences in the data structures (e.g., format, representation, or
precision), abstraction levels, and semantic mean along with
other dilemmas such a missing, redundant, or inconsistent
data. Resolving these issues can require acute awareness of
the low-level details of the data formats, syntax, and semantics
of the tools with extra functionality to identify and request
additional information from the user as necessary. The need
for unique bridges between every desired modeling tool and
RAT is greatly reduced by an abstraction layer, which allows
the framework to perform the majority of the translation based
on a generic format for algorithm MoCs derived from the
specific modeling environment tool.

As illustrated in Figure 4, the algorithm and architec-
ture attributes for the basic operations of the MoC of the
application specification must be reorganized and formatted



based on their contribution to the RAT computation and/or
communication estimation. The framework constructs RAT
computation models for every hardware resource based on
the groups of operations mapped to that resource and RAT
communication models based on data movement between
hardware resources. A generic schedule that describes the
parallelism and overlap between the computation and com-
munication is constructed from the semantics of the MoC.
Conversion between algorithmic MoCs and RAT performance
models is possible as the important structure and behavior of
the application specification, properly formatted, correspond
directly to available computation and communication mod-
els. The basic computation operations within an MoC are
often generic abstractions that require additional quantitative
attributes from the application designer, specifically formatted
for the assumed technology (e.g. FPGAs), for translation to
the RAT model.

For the DSE tool used in Section IV (and by extension,
any future tool connecting modeling environments and RAT),
the underlying translation step must be tuned for the MoCs of
interest, specifically AMP and SDF for the case studies. For
FPGA systems, these MoCs can be abstractly represented as
a number of “tasks” (i.e., generic encapsulations of groups
of operations with detailed specification left to the appli-
cation designer) with the data movement through algorithm
“connections.” Tasks often represent either pipelines or state
machines, which imply structured execution at a deterministic
(or statistically observed) rate. Classification of these basic
operations is straightforward because tasks perform only
computation and connections facilitate only communication.
The quantitative attributes for the computation tasks include
the amount of data to be processed and the cost of pro-
cessing each data element, which are contained within the
particular task specification. Similarly, quantitative attributes
for algorithm connections define the amount of data and
segmentation for transfers between tasks, which are contained
within the connection specification. Computation and commu-
nication models for tasks and connections, respectively, are
provided with corresponding architectural information (e.g.,
FPGA clock frequency or interconnect bandwidth) by the
framework translation based on the application mapping. For
scheduling, the key difference between the two MoCs is the
specificity of the overlap of task execution. For AMP, task
execution is dependent only upon the order of communication
message from its predecessor tasks (i.e., those prior tasks
which provide data to the current task). In contrast, SDF
models assumes simultaneous, fine-grain operation of all
tasks and connections, typically as a pipeline operating on
individual data elements within one or more streams of data.
In practice, AMP is sufficient for serializing communication
between microprocessors and FPGA application accelerators
(e.g., MNW) whereas SDF is useful for describing multiple
directly connected pipelines (e.g., MVA graph).

B. Orchestration
Strategic DSE involves evaluating a range of application

designs to determine the most desirable configuration. De-

sign alternatives may differ in multiple facets including the
algorithm requirements (e.g., problem size) and architectural
capabilities (e.g., clock frequency). The framework supports
strategic DSE by repetitively revising an application spec-
ification and evaluating the resulting performance against
other design alternatives. RAT is provided different sets of
quantitative performance features, which typically represent
several permutations of one or more attributes. (DSE based
on major revisions to the application mapping is outside the
scope of this paper.) Predictions are revised not once but
potentially hundreds or thousands of times depending on the
breadth of the design space and complexity of the algorithm.

Strategic DSE begins with identification of performance
features for revisions. The application designer may choose
to annotate a parameter with one or more alternative values
denoting possible changes to the application design. The goal
is to propose revisions to specific features and compare the
range of performance values against the performance require-
ments of the designer. For example, several different pipeline
rates or clock frequencies may be evaluated. Also, scalability
can be analyzed using revisions that define progressively
larger problem sizes and hardware resources. Alternatively,
different schedules can be evaluated by adjusting the order-
ing (i.e., priority) of messages to outgoing communication
channels. As illustrated by the case studies in Section IV,
rapid exploration of large design spaces can greatly aid design
productivity. However, a designer using the framework must
ensure that the design space under investigation is realistic
with respect to the architectural constraints (e.g., maximum
circuit size or clock frequency).

IV. CASE STUDIES

This section describes two case studies, MNW and MVA
graph, which demonstrate the capabilities of the integrated
framework for efficient (i.e., rapid and reasonably accurate)
strategic DSE. The experimental setup, including the con-
struction of the DSE tool bridging the RCML modeling
environment with RAT performance prediction, is discussed
in Section IV-A. The MNW case study in Section IV-B
is a bioinformatics application with an AMP MoC. This
case study demonstrates accurate prediction, as compared to
subsequent hardware implementations, and rapid DSE. The
MVA graph in Section IV-C contains a more complex network
of pipelines with performance defined by the SDF MoC. This
case study maintains rapid DSE, even for very large numbers
of revisions to a complex algorithm structure.

A. Experimental Setup

For validation of the proposed methodology, a DSE tool
provides functionality for gathering the application specifi-
cation, performing translation, and orchestrating DSE using
performance prediction. This functionality includes interac-
tion with a modeling environment tool, RCML, to collect the
necessary information from an application specification and
usage of a prediction tool, RAT, for performance analysis.
RCML provides an RC-specific abstraction environment with
semantic constructs amenable to the RAT prediction. The



Fig. 5. Architecture specification of FPGA platform

DSE tool is a hierarchical composite of existing tools for
RCML and RAT and newly constructed components pro-
viding translation and orchestration. These translation and
orchestration components are implemented as a Java-based
Eclipse plug-in to help minimize the customized interfacing
necessary for connecting to the RCML and RAT tools. The
specific implementation details of the DSE tool are outside
the scope of this paper. Briefly, the translation component
constructs an environment-independent graph representation
of the application behavior based on the MoC for use in RAT
performance prediction. The orchestration component adjusts
the graph representation and provides these revisions to the
RAT tool.

The two application case studies for this paper are mapped
onto a Linux server containing a GiDEL PROCStar-III FPGA
card connected by a PCIe ×8 bus to a Xeon E5520 (i.e.,
2.26GHz Quad-core Nehalem) microprocessor. The GiDEL
FPGA card contains four Altera Stratix-III E260 FPGAs,
which have interconnects to adjacent FPGAs and support
DMA transfers to and from the microprocessor. Figure 5 out-
lines the general architecture model for the FPGA-augmented
platform. This FPGA system can be used as a prototype for
an RC-augmented embedded platform or represent a single
node in a multi-node RC supercomputer.

B. Modified Needleman-Wunsch (MNW)

The MNW case study is an FPGA-optimized application
for calculating the normalized edit distance between two
DNA sequences within the composite ESPRIT application
for metagenomics [11]. The normalized edit distance provides
concise quantitative insight about the similarity of two DNA
sequences based on the length of the sequences, the number
of gaps in the global sequence alignment, and the number of
edits required to transform one sequence string into the other.
The MNW application pipelines the standard Needleman-
Wunsch [12] calculations for individual alignment scores and
resulting global alignment with the ESPRIT calculation of the
normalized edit distance. The pipeline concurrently computes
the alignment scores with the normalized edit distance rather
than computing the edit distance from the character repre-
sentation of the alignment as is done in software. Computing
the edit distance in this way eliminates the need to store a
score matrix, significantly reducing the memory requirements
for the FPGA system. This case study is referred to as
modified because the typical outputs of Needleman-Wunsch,
the score matrix and global alignment, are unnecessary after
the calculation of the normalized edit distance and are never
retained. However, as with traditional Needleman-Wunsch,

(a) Calculation of normalized edit distances on multiple FPGAs for MNW

(b) MNW algorithm specification and mapping

Fig. 6. Overview of MNW case study

MNW is often useful for comparing many pairs of sequences
of similar length as a batch.

Figure 6a provides a general overview of the algorithm
structure. A database of comparisons is built from the se-
quences and divided, round-robin, among the specified num-
ber of FPGAs. A total of N sequences requires a database of
N2−N

2 comparisons since sequences are not compared against
themselves and comparisons such as [2, 1] are equivalent to
[1, 2]. The initial configuration of this case study involves
1500 sequences, each 105 characters in length. The resulting
N2−N

2 normalized edit distances are collected by micropro-
cessor after computation is complete.

The framework queries the modeling environment for the
quantitative performance information necessary for RAT pre-
diction. The communication of the DNA sequence database
and the resulting values for the normalized edit distance
are described using the AMP MoC. From the algorithm
specification (Figure 6b), each of the computation tasks (Start,
MNW, and End) and two communication connections requires
a separate analytical model. The performance of the software
Start and End tasks are defined by an execution-time at-
tribute. The number of characters in the database of sequence
comparisons determines the amount of input communication
(between Start and MNW) and the amount of computation
for MNW. The output communication (between MNW and
End) is defined by the number of sequence comparisons. The
architecture model (Figure 5) contains the parameters outlin-
ing the communication capabilities of the PCIe interconnect.
The FPGA clock frequency (architecture) and pipeline depth
(algorithm) parameters define the computation rate.

Table I summarizes the predicted and experimental ex-
ecution times for MNW using 1500 DNA sequences (i.e.,
15002−1500

2 comparisons) divided across 1, 2, and 4 FPGAs.
The predicted execution times were generated by RAT based
on the quantitative performance information provided by the



TABLE I
PREDICTED AND EXPERIMENTAL RESULTS FOR MNW

Predicted Time (s) Experimental Time (s) Error
1 FPGA 9.44E-1 9.58E-1 1.5%
2 FPGAs 4.72E-1 4.83E-1 2.3%
4 FPGAs 2.36E-1 2.46E-1 4.1%

Fig. 7. Predicted execution times of MNW on four FPGAs based on
revisions to the number of DNA sequences for comparison

framework. The experimental execution times were measured
from subsequent hardware implementations that correspond
to the application specification. Based on the 1% to 4%
error rate, the integrated framework was able to maintain
reasonable accuracy during the abstract application speci-
fication, collection of quantitative performance parameters,
and resulting performance prediction. Generating the abstract
specification took only a few minutes and the subsequent
analysis, as directed by the framework, took approximately
2.3ms. The productivity gained by using the framework is
significant because the actual hardware implementation for
MNW required approximately 200 man-hours to code, place
and route, debug, and evaluate.

Beyond the initial prediction, evaluating the performance
impact of alternative MNW designs can provide insight about
the desirability of possible structural or behavior revisions.
The DSE tool can explore different architectural optimizations
(e.g., faster pipelines), but these analyses can be trivial for this
computation-bound application due to the direct correspon-
dence between the rate of execution and the overall applica-
tion performance. Instead, Figure 7 illustrates the predicted
execution time of MNW based on 1000 design revisions
that represent different problem sizes (i.e., comparisons of
500 to 50450 DNA sequences) divided among four FPGAs.
These revisions expand the initial four-FPGA design of 1500
DNA sequences. The execution time of MNW increases ex-
ponentially with the number of DNA sequence comparisons.
This DSE can help evaluate the suitability of the MNW
application for meeting the broad performance requirements
of a designer, particularly when the size of the sequence
database is expected to increase at a potentially unknown
rate after implementation. The DSE tool took only 6.1ms
to analyze this significantly larger design space. Table II

TABLE II
ANALYSIS TIMES FOR DESIGN SPACES OF MNW

Number of Revisions Analysis Time (ms)
0 (initial design) 2.3
1000 3.0
10000 15
100000 140

Fig. 8. MVA graph specification and mapping

summarizes analysis times for the initial design, the 1000
revisions, and two other large DSEs. The analysis times grow
linearly with the size of the design space and allows very large
numbers of revisions to be explored in significantly less than
one second.

C. Task Graph of Mean-Value Analysis (MVA Graph)

An MVA graph is a defined structure for tasks and depen-
dences that commonly describes the parallel decomposition
of a recursive algorithm. As illustrated in Figure 8, the
general algorithm structure widens until the particular “base”
case is achieved and subsequent contracts to agglomerate the
individual values. This task graph is commonly associated
with mean-value analysis [13], though other algorithms such
as quicksort have comparable structure. For this case study,
the tasks represent a network of pipelined computations
conforming to the SDF MoC. Random volumes of data and
execution rates (i.e., pipeline rates and parallel decomposi-
tion) are assigned to each task. Communication is based on
the multi-FPGA mapping. The structure of the MVA graph is
often used as a benchmark for hardware/software scheduling
algorithms. For this case study, the randomly populated MVA
graph is used as a synthetic application to demonstrate the
capabilities of the DSE tool for rapidly analyzing large design
spaces of complex applications.

Although the algorithm structure is a SDF MoC, collecting
quantitative parameters from the individual computation tasks
and communication operations remains very similar to the
MNW case study. The algorithm complexity is manifested in
the number of tasks, their dependencies, and their scheduling.
The predicted execution time of the initial design for the MVA
graph is 0.17s, which is dominated by the slowest pipeline,
T2-1 (Figure 8), due to its highest assigned workload.
Strategic DSE can provide useful insight about minimum
execution rates for the other pipelines and allows a designer
to construct the slowest (and least resource-intensive) pipeline
possible without increasing the overall execution time for the



Fig. 9. Predicted execution times of the MVA graph based on revisions to
the execution rate of the T4-2 pipeline

TABLE III
ANALYSIS TIMES FOR DESIGN SPACES OF MVA GRAPH

Number of Revisions Analysis Time (ms)
0 (initial design) 10
1000 12
10000 33
100000 340

application. For example, Figure 9 illustrates the predicted
execution time of the MVA graph based on 1000 design
revisions that represent different execution rates for the T4-
2 pipeline. Pipeline rates for T4-2 above a certain threshold
have no impact on the total performance of the MVA graph
because the execution time remains dominated by the slower
T2-1 pipeline. However, sufficiently slow rates for the T4-2
pipeline increase the execution time of the MVA graph. Rapid
determination of this threshold is difficult without the DSE
tool.

Despite the large number of revisions, DSE using the in-
tegrated framework remained tractable. Table III summarizes
the framework analysis times, including the transfer of the
performance information and RAT prediction, for various
numbers of revisions to the design of the MVA graph. The
analysis time grows approximately linearly with the size of
the design space. The longest analysis of 100,000 revisions
took 340ms, which is nearly indistinguishable by the user
from the duration of a single analysis of a simple application
(e.g., 2.3ms for MNW). The primary limitation of broad
DSE (aside from Java memory requirements) is the ability of
the user to efficiently digest the generated prediction values.
Additional analysis tools could be constructed to identify the
highest performing design(s) based on criteria such as fewest
revisions from the original application specification, but such
features are outside the scope of this paper.

V. CONCLUSIONS

Widespread adoption of FPGA systems is limited by appli-
cation development productivity. Modeling environments and
performance prediction help reduce the costly development
process by facilitating iterative application refinement prior

to hardware implementation. However, efficient design-space
exploration requires a comprehensive approach to application
specification, analysis, and ultimately revision, if necessary.

The proposed framework introduces a methodology to
integrate modeling environments with RAT performance pre-
diction for strategic DSE. Tools based on the framework
facilitate translation of application specifications into per-
formance characterizations and orchestration of the required
RAT predictions. The DSE tool described in this paper
demonstrated accurate performance analysis with under 5%
error for the MNW case study. Strategic DSE with the tool
was efficient and rapid, requiring only 140ms and 340ms for
analysis of 100,000 revisions to the MNW application and the
MVA graph, respectively. Future work includes more detailed
focus on low-level issues for translation and orchestration
components, and broader support for performance prediction
of scalable FPGA systems.

ACKNOWLEDGMENTS

This work was supported in part by the I/UCRC Program
of the National Science Foundation under Grant No. EEC-
0642422. The authors gratefully acknowledge vendor equip-
ment and tools provided by Altera.

REFERENCES

[1] B. Kienhuis, E. F. Deprettere, P. van der Wolf, and K. Vissers,
Embedded Processor Design Challenges. Springer, 2002, ch. A
Methodology to Design Programmable Embedded Systems: The Y-
Chart Approach, pp. 18–37.

[2] B. Holland, K. Nagarajan, and A. D. George, “Rat: Rc amenability
test for rapid performance prediction,” ACM Trans. on Reconfigurable
Technology and Systems (TRETS), vol. 1, no. 4, pp. 22:1–22:31, 2009.

[3] G. D. Peterson and R. D. Chamberlain, “Beyond execution time:
Expanding the use of performance models,” IEEE Parallel Distrib.
Technol., vol. 2, no. 2, pp. 37–49, 1994.

[4] M. Smith and G. Peterson, “Parallel application performance on shared
high performance reconfigurable computing resources,” Perform. Eval.,
vol. 60, pp. 107–125, May 2005.

[5] R. W. Hockney, “The communication challenge for mpp: Intel paragon
and meiko cs-2,” Parallel Comput., vol. 20, no. 3, pp. 389–398, 1994.

[6] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, “Ptolemy: A
framework for simulating and prototyping heterogeneous systems,”
International Journal of Computer Simulation, vol. 4, pp. 152–184,
April 1994.

[7] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli, “Metropolis: an integrated electronic sys-
tem design environment,” Computer, vol. 36, no. 4, pp. 45–52, April
2003.

[8] A. D. Pimentel, L. O. Hertzbetger, P. Lieverse, P. van der Wolf, and E. F.
Deprettere, “Exploring embedded-systems architectures with artemis,”
Computer, vol. 34, no. 11, pp. 57–63, November 2001.

[9] A. D. Pimentel, C. Erbas, and S. Polstra, “A systematic approach to
exploring embedded system architectures at multiple abstraction levels,”
IEEE Trans. on Computers, vol. 55, no. 2, pp. 99–112, February 2006.

[10] C. Reardon, B. Holland, A. George, G. Stitt, and H. Lam, “RCML:
An environment for estimation modeling of reconfigurable computing
systems,” ACM Transactions on Embedded Computing Systems (TECS),
to appear.

[11] Y. Sun, Y. Cai, L. Liu, F. Yu, M. L. Farrell, W. McKendree, and
W. Farmerie, “Esprit: estimating species richness using large collections
of 16s rrna pyrosequences,” Nucleic Acids Res., vol. 37, no. 10, p. e76.

[12] S. B. Needleman and C. D. Wunsch, “A general method applicable to
the search for similarities in the amino acid sequence of two proteins,”
J. Mol. Biol., vol. 48, no. 3, pp. 443–453, 1970.

[13] M. Reiser and S. S. Lavenberg, “Mean-value analysis of closed multi-
chain queuing networks,” J. ACM, vol. 27, no. 2, pp. 313–322, 1980.


