
An Automated Scheduling and Partitioning Algorithm
for Scalable Reconfigurable Computing Systems

Casey Reardon, Alan D. George, Greg Stitt, and Herman Lam
NSF Center for High-Performance Reconfigurable Computing (CHREC)

ECE Department, University of Florida, Gainesville, FL
{reardon,george,stitt,lam}@chrec.org

Abstract—As reconfigurable computing (RC) platforms are
becoming increasingly large-scale and heterogeneous, efficiently
scheduling and partitioning applications on these platforms
is a growing challenge. While previous approaches support
scheduling and HW/SW partitioning for various reconfigurable
architectures, none of these approaches have been designed or
shown to support large-scale or multi-node RC systems. This
paper presents an algorithm that to our knowledge is the
first designed to support automated scheduling and HW/SW
partitioning on large-scale RC systems. The algorithm presented
here uses a two-stage process. The first stage generates an initial
schedule using novel list-based scheduling extensions, which feeds
an iterative cycle in stage two to search for moves to further
optimize the schedule. Initial results show the algorithm can
efficiently produce quality schedules for parallel applications on
a large-scale RC platform.

I. INTRODUCTION

As platforms use increasing amounts of parallelism and
heterogeneity to more efficiently meet the computational de-
mands of modern applications, reconfigurable computing (RC)
is becoming recognized as an important and viable paradigm
for high-performance and embedded computing. Large-scale
RC systems, which may feature a mix of hundreds or thou-
sands of processing devices such as microprocessors and
FPGAs, can leverage system-level concepts from conventional
high-performance computing and accommodate hardware re-
configurability to efficiently accelerate many operations that
would otherwise be performed in software.

The emergence of RC in increasingly parallel high-
performance and embedded computing systems raises many
challenges. One challenge that designers must confront is
the problem of HW/SW partitioning and scheduling com-
plex parallel applications onto a large-scale heterogeneous
system. While manually determining and specifying an op-
timal schedule may be a straightforward process for simple,
embarrassingly parallel applications, it can be difficult and
time-consuming for complex applications with many parallel
tasks on large systems. The challenge is even greater when
considering a reconfigurable heterogeneous system, such as an
RC platform containing FPGAs and microprocessors, where
each type of device is likely to provide a different level
of support and performance for a given task. Additionally,
users must also decide when to reconfigure the platform’s
RC devices to support a new set of tasks. To address these
challenges, automated HW/SW partitioning and scheduling
techniques can be employed to suggest an optimal or near-
optimal mapping (i.e., assignment of tasks to specific instances

of a resource) of the parallel algorithm onto the execution
platform in terms of performance (or other metric(s)). Algo-
rithms based on methods such as Integer Linear Programming
(ILP) can even guarantee an optimal schedule, but their
computational complexity makes these algorithms undesirable
for many situations, especially with large-scale systems.

While previous approaches have addressed various schedul-
ing and HW/SW partitioning problems, they have typically
focused on either parallel SW-based systems or HW/SW
partitioning for ASICs or small-scale RC architectures. As
a result, existing research is lacking in the area of scheduling
and HW/SW partitioning for systems that are large-scale,
heterogeneous, and dynamically reconfigurable. Therefore,
in this paper we present an algorithm designed to support
automated scheduling and partitioning on large-scale RC
systems. The algorithm presented in this paper, which extends
existing RC-based scheduling and partitioning techniques to
efficiently support large-scale systems, is divided into two
stages. In the first stage, a novel priority and allocation scheme
to extend existing list-based scheduling (LBS) techniques is
used to generate an initial schedule. In the second stage, a
modified Kernighan-Lin heuristic [1] is used that iteratively
analyzes a set of moves for each unfixed node in the task
graph, implementing the best move after each iteration to
move the schedule towards a better solution. The iterative
process continues until all tasks have participated in a move
or until no more moves produce an improved schedule. Two
case studies are presented demonstrating that this algorithm
performs well for large-scale RC applications and in a fraction
of the time compared to our baseline scheduling algorithm,
which employs simulated annealing.

The remainder of this paper is organized as follows. Sec-
tion II discusses related research in automated scheduling
and HW/SW partitioning. Basic problem definitions and as-
sumptions are summarized in Section III. In Section IV, a
detailed overview of the algorithm is presented. Case studies
testing and demonstrating the effectiveness of the scheduling
algorithm are presented in Section V. Finally, conclusions and
future work are discussed in Section VI.

II. RELATED RESEARCH

Many previous algorithms have been developed for HW/SW
partitioning [2], [3] and scheduling on parallel heterogeneous
systems [4]. Meanwhile, fewer research projects have focused
on automated scheduling and partitioning in RC environments,



though several approaches have been proposed and are sum-
marized in the remainder of this section.

A pair of algorithms has been developed for schedul-
ing on reconfigurable architectures with hard real-time con-
straints. An evolutionary scheduling algorithm built into the
CORDS co-synthesis framework for distributed real-time re-
configurable embedded systems is discussed in [5]. An in-
tegrated HW/SW partitioning and scheduling algorithm for
co-synthesis of hard real-time RC systems is described in [6],
which uses the Latest Deadline First heuristic for software
tasks and then moves tasks to an FPGA co-processor (adding
FPGAs to the architecture as needed) until a feasible schedule
exists that meets all real-time deadlines.

Stitt proposes a pair of efficient sub-heuristics for HW/SW
partitioning and multi-version implementation exploration of
reconfigurable hardware circuits which are specialized for
support of balanced (i.e., execution time is evenly distributed
throughout each region of the algorithm) and unbalanced
applications [7]. Li et al. describe a HW/SW partitioning
approach for embedded reconfigurable architectures developed
for the Nimble framework [8]. The algorithm identifies regions
of interest in the task graph, and exhaustively searches those
regions for a locally optimal partitioning to produce near-
optimal solutions for the global system.

Banerjee et al. [9] introduces an iterative-based algorithm
to determine scheduling and module placement of tasks in a
partial-reconfiguration environment, consisting of a single a
CPU and FPGA with support for configuration pre-fetching.

Another iterative algorithm, which employs a strategy
similar to the Kernighan-Lin heuristic, is proposed in [10]
that combines HW/SW partitioning, hardware design-space
exploration (DSE), and scheduling. MAGELLAN extends this
work by implementing DSE for loop-unrolling and defines
additional types of moves for scheduling control-dataflow
task graphs [11]. As with all of the existing approaches
discussed in this section, their algorithm assumes a single-
node architecture with few devices. But since their algorithm
supports scheduling, partitioning and automated DSE of RC
applications with loop-unrolling and dynamic reconfiguration
(characteristics we believe to be important in complex large-
scale RC applications), the algorithm presented in this paper
builds upon the work in [10], [11] to support large-scale RC
systems by leveraging the iterative DSE exploration process
they use while adding moves for combining tasks into recon-
figurable hardware cores and introducing a new LBS heuristic
scheme in the initial scheduling phase.

III. PROBLEM DEFINITION AND ASSUMPTIONS

Before describing our scheduling algorithm, the goals and
basic assumptions applied throughout this research need to be
defined. The primary goal is to design an efficient automated
scheduling and partitioning algorithm that supports large-scale
RC applications and platforms. The algorithm’s primary task
is to minimize the completion time of the entire application on
the given platform, and to use as few architecture resources as
needed to achieve the minimal schedule length in order to help
limit the system’s power consumption. The remainder of this

section defines basic architecture and algorithm assumptions
and input variables used for this research.

The platform architecture is assumed to consist of one or
more uniform, fully connected nodes. Each node contains one
or more CPUs and one or more FPGAs, as defined by the
user’s architecture model. Parameters are assigned to each
FPGA to characterize the logic and memory capacities of each
device, as well as the reconfiguration time. Communication
between devices within the same node assumes one of three
rates. The term RCPU−CPU specifies the communication rate
between any two CPUs in the same node, RFPGA−FPGA

specifies the communication rate between any two FPGAs
in the same node, and RCPU−FPGA specifies the commu-
nication rate from any CPU to any FPGA (or vice versa) in
the same node. Communication between any two nodes is
uniform and approximated by the inter-node communication
rate Rinter. The communication time between tasks within
the same device is assumed to be negligible compared to
other communication times. Future extensions to the algo-
rithm could be implemented to support additional architectural
characteristics, such as separate rates for reads and writes
between a CPU and FPGA, or platforms whose nodes are
arbitrarily connected. Furthermore, while this paper focuses
on platforms that feature homogenous CPUs and FPGAs, the
approach described here can naturally be applied to platforms
with more than two types of processors, including processor
types beyond CPUs and FPGAs.

The application is assumed to be specified as a directed
acyclic task graph G(V,E), where the vertices V represent
tasks and edges E represent data dependencies between tasks.
For each task Vi, TP (Vi) defines the execution time of task
Vi on processor type P (i.e., CPU or FPGA). Such values
can typically be ascertained from profiling tools, synthesis
reports, or predictive modeling techniques, and are commonly
assumed inputs to scheduling algorithms. UP,log(Vi) and
UP,mem(Vi) define the baseline logic and memory utilization
respectively of the task Vi for processor type P . Currently,
the utilizations are only used determine if resource constraints
are violated; potential performance degradations from memory
or logic contention within a device are not considered. A
utilization of 1 is assumed for all tasks with regard to software-
based CPUs (i.e., only one task may execute at a time on any
CPU, each core of a multi-core CPU is treated as a separate
CPU). An instance of TP (Vi) = null signifies that execution
of task Vi is not supported on processor type P . Each task also
contains a parameter defining the degree of loop unrolling (or
parallelization) that can be exploited for concurrent execution
on one or more devices. An unrolled task may span multiple
devices and multiple nodes, as such tasks often comprise the
bulk of an application’s execution time. Tasks that do not
support any loop unrolling are assigned a degree of 1. When
unrolled, the task’s execution time (prior to communication
considerations) is assumed to decrease linearly, and utilization
is assumed to increase linearly, proportional to the degree of
unrolling. These assumptions are generally valid for highly
parallel applications which are the focus of this research.
Finally, for each edge in the graph Ei,j that connects task



//Preprocessing
for each Task Vi in Task Graph do

Calculate DAW for Vi

Calculate CW for Vi

Set Vi as Unfixed
end for

//Initial LBS Stage
while List UnscheduledTasks is not empty do

Vhp ← Unscheduled Task with Highest Priority
Allocate Resources and Map Vhp to Platform
Update List UnscheduledTasks
for each Task Vj in UnscheduledTasks do

Update CW for Vj

end for
end while

//Iterative DSE Cycle Stage
while List UnfixedTasks is not empty do

for each Task Vk in List UnfixedTasks do
Evaluate All Moves For Task Vk

end for
if Schedule Improvement From BestMove > 0 then

Apply BestMove to Current Schedule
Set Task VBestMove as Fixed
Update List UnfixedTasks

else
Exit DSE Cycle

end if
end while
return Final Schedule

Fig. 1. Pseudocode for General Algorithm

Vi to Vj , a cost value is attached which defines the amount
of data transferred from Vi to Vj .

IV. ALGORITHM OVERVIEW

This section describes our algorithm for automated schedul-
ing and partitioning of large-scale RC systems. The algo-
rithm presented in this section extends existing techniques
while operating under the assumptions outlined in Section
III. Following pre-processing, the scheduling and partitioning
algorithm is divided into two stages. In the first stage, novel
list-based scheduling heuristics are used to quickly generate
an initial schedule for the system. In the second stage, an
extension of the Kernighan-Lin heuristic is employed that
takes the initial schedule and iteratively analyzes a set of
moves for each unfixed node in the task graph, implementing
the best move after each iteration. Pseudocode for the general
algorithm is presented in Fig. 1. The following subsections
detail the two stages of the algorithm followed by a basic
example which illustrates how the algorithm operates.

A. LIST-BASED SCHEDULING STAGE

The first stage of our algorithm uses a novel list-based
scheduling (LBS) heuristic to efficiently generate an initial
schedule intended to at least reasonably approximate an
optimal schedule. Typically, LBS algorithms maintain a list
of tasks available for scheduling, and calculate a priority
for each task based on a chosen metric. During each step,
the available task with the highest priority is selected and

TABLE I
SUMMARY OF KEY LBS-STAGE ALGORITHM METRICS

Symbol Name Description

DAWP (Vi) Device
Affinity
Weight

A value from 0 to 1 that represents
the task’s preference for execution on
processor type P

CWP (Vi) Concurrency
Weight

The fraction of computational load
from this task w.r.t. all tasks at the
same level of the task graph on P

T ′
P (Vi) Normalized

Processing
Time

The task’s processing time on P multi-
plied by the single-instance, per-node
utilization of P

mapped onto the architecture, and the list of tasks available for
scheduling is updated as well as any dynamically maintained
metrics for each unscheduled task. Our LBS heuristic follows
this process, and the remainder of this subsection defines the
priority metrics used during the LBS stage and the procedure
used to map tasks to the architecture once they have been
selected for scheduling.

Before the LBS process begins, a few metrics are calculated
for each task, which are summarized in Table I. These
metrics are unique to this algorithm and represent extensions
to previous LBS techniques. The first is called the Device
Affinity Weight (DAW ), which represents how strongly a
task favors execution on a particular type of processor over
any others. For a task Vi and processor type P , the DAW is
calculated as

DAWP (Vi) = 1− T ′P (Vi)∑
q(T ′q(Vi)

(1)

where T ′P (Vi) represents the normalized processing time for
task Vi on processor type P , which takes into account resource
utilization by Vi in addition to the total processing time.
Assuming NP is the number of processors of type P on a
single node of the platform, and Uavg is the average of the
memory and logic utilization of the task on processor type P ,
T ′P (Vi) is calculated as follows.

T ′P (Vi) = TP (V i)× Uavg(Vi, P )/NP (2)

Currently, the LBS stage assumes only one task can occupy
an FPGA at any time but allows a single task to be unrolled on
one or more devices. The iterative DSE stage later considers
potential groupings of separate tasks into hardware cores.

Each task will have a DAW value for each type of
processor in the architecture. The DAW metric, whose value
ranges from 0 to 1, will give more weight to tasks that
strongly favor one type of processor over others, or can
only execute on one type of processor. Tasks that do not
require or strongly favor one type of processor will have lower
affinities since they more likely can afford to be allocated
the resources that are leftover after more critical tasks are
scheduled. Tasks that are only able execute on one type of
processor will be assigned a DAW of 1 for that device, and
0 for all others. The normalized processing time is designed
to decrease the weight for tasks that use only a fraction of



a processor, or uses a processor that is more prevalent in the
architecture than other types of processors. Therefore tasks
that demand a lot of resources and/or scarce resources will
have higher affinities. These metrics allow the algorithm to
make intelligent scheduling decisions based on the makeup
of the platform and regardless of its size. With the DAW
and T ′P values, the priority can be calculated for each task
which is used to determine the order that tasks are scheduled
and mapped. In our algorithm, the LBS priority of a task Vi is
the maximum DAW multiplied by the normalized processing
time for the task on the type of processor corresponding to
the maximum DAW value (Pmax).

Priority(Vi) = DAWPmax
(Vi)× T ′Pmax

(Vi) (3)

As can be seen from Eq. 3, a higher priority will be given
primarily to tasks that are more computationally intensive,
while also favoring tasks with a strong processor affinity
from their DAW set. This allows the algorithm to prefer-
entially schedule tasks that are more demanding in terms
of computation and resource restrictions, allowing the less
demanding tasks to use leftover resources in the architecture.
This behavior is important since efficient scheduling on large-
scale systems will often require the scheduler to effectively
make use of all resources in the system.

Once a task has been selected for scheduling based on their
LBS priority, processing resources must be be allocated for the
task. This involves determining the number, type, and location
of processor(s) used to execute the task. While DAW is used
to determine when a task is scheduled via the task priority, it
is not used to determine where the task is mapped onto the
platform. Instead, to facilitate the allocation process a metric
called the Concurrency Weight (CW ) is maintained for each
task, which represents the fraction of total computation a task
contains compared to all unscheduled parallel tasks that reside
on the task’s primary t-level. The primary t-level of a task is
defined as the number of hops along the longest path from
the task to the root (or top, thus the name t-level) of the
task graph. A task also resides on any t-level that is between
its own primary t-level and the highest t-level of any of its
children. The determination of t-levels is further illustrated in
the example in Section IV-C. Thus, for a given processor type
P and task Vi,

CWP (Vi) =
DAWP (Vi)× T ′P (Vi)∑

n(DAWP (Vn)× T ′P (Vn))
(4)

where n represents the set of unscheduled tasks that reside
at the same primary t-level of task Vi. The CW serves as
a bound that defines the fraction of available processors of
type P that may be allocated to the task. A processor (which
could be a CPU or FPGA) is considered available if there is no
other task executing on it at the earliest possible start time for
the task. CW values are dynamically maintained, thus each
time after a task is mapped and scheduled, CW values are
recalculated for all unscheduled tasks.

When a task is selected to be scheduled, it will be mapped
onto the platform to minimize the finishing time of the entire

task bounded by the number of resources it is allowed. The de-
termination of the expected completion time of the task is the
sum of the required computation, incoming communication,
and hardware reconfiguration times. When two separate tasks
are mapped to the same FPGA a reconfiguration of the FPGA
is taken into account, which may delay the time at which the
latter task may receive data and execute on the FPGA. When
calculating potential communication delays, the algorithm
takes into account whether data must be transmitted within
a node and/or between nodes, and applies the appropriate
communication rates defined in Section III.

The number of processors that may be allocated to a task
is the product of the number of available processors and
the corresponding CW . In general, the algorithm will round
down the number of processors that a task may use, with
a few exceptions. For example, the algorithm will round
up the number of processors allowed for allocation if no
other concurrent unscheduled task is likely to use an instance
of the processor (i.e., DAW < 0.2), or if rounding down
would result in zero processors allowed for allocation to
the task. The CW metric and subsequent allocation scheme
enables the algorithm to fairly and efficiently map complex
algorithms to systems with lots of devices during LBS. While
the tactics described here may lead to a conservative alloca-
tion of resources and thus sub-optimal scheduling decisions,
this is considered acceptable in order to prevent tasks from
being starved of resources when they become available for
execution. Furthermore, minor allocation optimizations are
intended to be identified and corrected in the iterative DSE
stage where more exhaustive analyses are performed. Once
all tasks have been initially scheduled, the algorithm moves
on to the iterative DSE stage.

B. ITERATIVE DESIGN-SPACE EXPLORATION STAGE

As previously discussed, it is likely that sub-optimal choices
will be made during the LBS process, as any single LBS
heuristic will struggle to optimally account for every schedul-
ing decision that must be made in large-scale RC environments
for complex task graphs. Therefore, this algorithm uses a
modified Kernighan-Lin heuristic to perform DSE and find
modifications to the initial schedule that will improve the
application’s expected runtime and potentially correct for sub-
optimal decisions made during LBS.

At the beginning of this stage of the algorithm, all tasks
are marked as unfixed, followed by the iterative cycle. During
each iteration, the algorithm analyzes all potential moves for
each unfixed task. Moves for each task include changing the
number, type, and/or location of processors allocated for the
task. These moves are similar to many of those discussed
and supported in [11]. Only valid moves are considered
for each task; thus, e.g., the algorithm will not change the
number of devices allocated to tasks that do not support loop
unrolling. In addition, our algorithm extends previous work by
considering a new move for creating hardware cores. In this
move, combinations of hardware tasks are grouped into cores,
such that reconfiguration and communication is unnecessary
between tasks in the same core on the same device. For



Fig. 2. Task Graph for Walkthrough Example

each move, the expected runtime of the whole application is
recalculated using the scheduler described in Section IV-A. At
the end of each iteration, the move that provides the largest
improvement to the overall schedule is selected, and the task
associated with the move is changed from unfixed to fixed.
For the case of a hardware core move, the associated tasks are
fixed into the core, but the core itself is initialized as unfixed
and may be re-allocated (or grouped to form another core)
in successive iterations. The iterative process repeats until all
tasks and cores are fixed or until there is an iteration where no
moves improve the schedule (this differs from the traditional
Kernighan-Lin heuristic, which always applies the best move
at the end of each iteration until the algorithm completes,
regardless of whether the move improves the overall state of
the system). Moves that worsen the system’s schedule are not
accepted in our heuristic in order to minimize the algorithm’s
processing time.

C. ILLUSTRATIVE EXAMPLE

To demonstrate the algorithm to the reader, this section
presents a walkthrough for a simple example. For simplicity,
this example assumes a single-node architecture that features
two (2) CPUs and four (4) FPGAs (case studies with a
multi-node platform are presented in Section V). All devices
communicate with each other over a 1 GB/s bus. Fig. 2 shows
the task graph that will be used in this example, which was
built using the RC Modeling Language (RCML) environment
[12]. The stacked-box icon for Tasks 1, 2, 3, and 5 represents
a task that supports loop unrolling. The number directly above
the stacked boxes represents the degree of loop unrolling that
the task supports (e.g., Task 1 may be unrolled and parallelized
by a factor of 32). Parameters for the total serial runtime and
baseline FPGA hardware utilization are attached to each task
and summarized in Table II.

The algorithm begins with preprocessing which first calcu-
lates the DAW values for each task, which are shown in the

TABLE II
TASK PARAMETERS FOR WALKTHROUGH EXAMPLE

T (Vi) U(Vi)

FPGA CPU Logic Memory

Task 1 null 10s NA NA

Task 2 16s 200s 0.50 0.50

Task 3 128s 128s 0.25 0.25

Task 4 4s 3s 1.0 1.0

Task 5 32s 32s 0.5 0.5

TABLE III
CALCULATED TASK METRICS FOR WALKTHROUGH EXAMPLE

DAW (Vi) CW (Vi) # Allocated
FPGA CPU

Pri
FPGA CPU FPGA CPU

Task 1 0 1 5.0 NA 0.31 0 2

Task 2 0.98 0.02 3.9 0.22 0.12 1 0

Task 3 0.89 0.11 30.7 0.78 0.57 3 0

Task 4 0.60 0.40 2.4 0.07 0.08 0 1

Task 5 0.80 0.20 3.2 1 1 4 0

second and third columns of Table III. Since the parameters
for Task 1 signify that it can only execute on a CPU,
DAWCPU (V1) is given a value of 1 and DAWFPGA(V1)
a value of 0. Meanwhile, Task 4 has an FPGA execution time
of 4s and a CPU execution time of 3s (this could represent a
control-intensive task with little parallelism that would see
no speedup when mapped to hardware). Based on Eq. 1,
DAWFPGA(V4) is calculated as 1− 1

1.5+1 = 0.6. Similarly,
DAWCPU (V4) is calculated as 1 − 1.5

1.5+1 = 0.4. The fourth
column of Table III, labeled Pri, lists the resulting priority
values for each task, which are calculated using Eq. 3.

As can be seen from Fig. 2, Tasks 1-3 have a primary t-
level of one since they are directly below the root, while Task
4 has a t-level of two. Task 3, which has a primary t-level of
one, also resides on the second t-level of the graph since its
only child (Task 5) has a t-level of three. Therefore, the CW
values for Tasks 1-3 will all take each other into account when
determining their own CW . Meanwhile, the CW for Task 4
will factor the load from Task 3 (since Task 3 resides on t-
level two), but Task 3 will not factor the load from Task 4
in its own CW (since Task 4 does not reside on t-level one).
The initial CW values for each task are shown in the final
two columns of Table III.

When the LBS phase begins, Tasks 1-3 are initially con-
sidered since they may all execute after the application has
started (represented by the Start task). Task 3 is scheduled
first, having the highest priority among the three first-level
tasks. The CW values limit Task 3 to use up to three of
the FPGAs in the architecture and one CPU. Given these
constraints, using three FPGAs is the fastest way for Task 3 to
execute on the platform (giving Task 3 a completion time of
11 seconds), thus it is allocated three FPGAs and scheduled
accordingly. This causes the CW values for Tasks 1 and 2
to be readjusted without consideration of Task 3. This means
that CWFPGA(V2) becomes 1 since no other unscheduled



tasks may execute concurrently with it on an FPGA(s). The
CWCPU weights for Tasks 1 and 2 are readjusted to 0.72 and
0.28 respectively. Task 1 is scheduled next and is allocated two
CPUs (since DAWCPU (V2) < 0.2, we round up the number
of CPUs that may be allocated to Task 1), followed by Task
2 being allocated the last available FPGA. At this point, Task
4 is available for scheduling and is allocated one CPU (even
though DAWFPGA(V4) > DAWCPU (V4), execution on a
CPU enables an earlier finish time, thus Task 4 is allocated
and scheduled on a CPU). Finally, Task 5 is allocated and
mapped onto all four FPGAs. While Task 5 could also use
both CPUs in addition or in place of the FPGAs, doing so does
not improve the completion time of the entire task. All of the
FPGAs must be reconfigured before Task 5 may execute since
previous tasks were allocated to them, but in this example the
FPGA reconfiguration delay is hidden while Task 5 waits for
Task 4 to complete.

At this point of the algorithm, the initial schedule from the
LBS stage has been generated, and the iterative DSE process
begins. Since no moves can improve the schedule generated
by the list-based scheduler, no moves would be implemented
during the first iteration and the algorithm would complete.

V. CASE STUDIES

To illustrate the effectiveness of our scheduling algorithm,
two case studies are presented. Both case studies involve
scheduling RC applications on a large-scale RC platform
called Novo-G [13]. The Novo-G platform consists of 24
nodes. Each node in our model contains one Xeon E5520
CPU and four Altera Stratix-III E260 FPGAs on a Gidel
ProcStar-III board (note: the real system will soon contain
two quad-FPGA boards per node). A PCIe 8x connection
connects the CPU and FPGA board, while the FPGA board
supports 25.6 Gb/s communication directly between FPGAs.
The nodes are all connected to a 20 Gb/s DDR InfiniBand
switch. For each case study, the expected execution time of
the application (hereafter referred to as the schedule length)
generated by the initial LBS stage (LBS Only) and the full
algorithm (LBS+DSE) are compared to the schedule generated
by a baseline simulated annealing (SA) scheduling algorithm
developed for this environment. Furthermore, the processing
time for each algorithm is also reported to analyze the process-
ing requirements of each algorithm. Each of the scheduling
algorithms are executed and timed on a desktop computer with
a 1.86 GHz Intel Core2 6300 CPU.

The first case study is a model of an application which
performs target detection and classification on a hyperspectral
image (HSI) [14]. A hyperspectral image is a collection of
2-D images, all of the same scene but each containing a
small, unique portion of the overall spectrum picked up by the
sensors. The task graph for the HSI application is illustrated
in Fig. 3. As previously discussed, the stacked icons for the
ACSM Calc and TC tasks signifies that loop unrolling can be
employed to the degree specified by the number just above
the boxes. All tasks in HSI may execute on CPUs, while the
ACSM Calc and TC tasks may also be mapped to FPGAs.

Fig. 3. HSI Task Graph

Fig. 4. MVA Task Graph

The second case study is a mean-value analysis (MVA)
structured task graph. MVA is a common technique used in
analysis of queueing networks, and its task graph structure
is often used as a benchmark for scheduling algorithms. To
additionally stress the scheduling algorithms, a typical MVA
task graph is augmented with sizable loop unrolling amounts
assigned to several of the tasks. Randomized FPGA and CPU
execution times are assigned to each task as well. The task
graph for the MVA case study is shown in Fig. 4.

Table IV summarizes the results from each of the schedul-
ing case studies. The schedule length columns represent the
expected completion time of the application based on the
generated schedule. For the HSI case study, the results show
that all of the scheduling algorithms produced the same
schedule length of 15.1s. Since the HSI task graph consisted
of a single path of tasks, it was relatively easy for both
the LBS algorithm and the simulated annealing algorithm to
generate what turned out to be an optimal schedule. Since the
LBS stage of our algorithm produced an optimal schedule, no
moves were implemented during the iterative DSE stage and
the schedule remained unchanged at the end of the algorithm.
While it is not remarkable that each algorithm produced an
optimal schedule for this task graph, the processing time spent
by our algorithm is considerably less than the processing time
of the simulated annealing algorithm. Since HSI is likely to be
representative of the structure of many RC applications, the
results of this case study are encouraging. Additionally, the
algorithm could provide reliability and significant time savings
to users who would otherwise need to manually perform
scheduling and analysis as part of the design process.

For the MVA case study, we see significant differences
in the schedule lengths produced by the two stages of our
algorithm and the SA algorithm. The SA algorithm generates
a schedule length of 34.2s, while the schedule length generated
by our algorithm is 35.7s. The SA algorithm is able to produce
a slightly better schedule in this case study since it evaluates a
much larger number of overall potential mappings, incurring



TABLE IV
SCHEDULING ALGORITHM CASE STUDY RESULTS

HSI MVA
Scheduling
Algorithm

Schedule
Length

Processing
Time

Schedule
Length

Processing
Time

LBS Only 15.1s 0.3s 41.0s 0.8s

LBS+DSE 15.1s 2.2s 35.7s 110.0s

SA 15.1s 7.5s 34.2s 426.9s

a higher processing time as well. Meanwhile, our algorithm
focuses on a smaller subset of potential schedules, using the
initial schedule from the LBS stage as a starting point. But due
to the greedy nature of the iterative DSE process, a move can
be implemented and fixed into the final schedule that prevents
the algorithm from ever arriving at the best solution generated
by the SA algorithm, as was the case with MVA.

Unlike the HSI case study, six moves are implemented
during the DSE stage of our algorithm for the MVA case
study. The additional moves and iterative cycles during the
DSE stage are the primary reasons for the larger discrepancy
between the LBS Only and LBS+DSE processing times in
the MVA case study versus the HSI case study. Since the
processing time of the algorithm is largely proportional to the
number of iterative cycles performed during the DSE stage,
it is important that a reasonably good schedule is generated
during the initial LBS stage in order to reduce the number of
moves that the DSE stage needs to make.

VI. CONCLUSIONS

As the trend towards heterogeneous parallel platforms con-
tinues in high-performance and embedded computing, the
task of scheduling and partitioning applications on large-scale
RC platforms becomes increasingly challenging. Automated
techniques for scheduling, HW/SW partitioning, and DSE on
scalable RC systems can significantly improve performance
and productivity on these systems. While previous research
projects have proposed algorithms for automated HW/SW
partitioning and scheduling for reconfigurable architectures,
none of these approaches support scheduling and partitioning
on large-scale or multi-node RC platforms.

In this paper, the first known algorithm designed to perform
HW/SW partitioning, scheduling, and DSE for large-scale RC
systems is presented. The algorithm uses a two-stage process
that performs initial scheduling and partitioning in the first
stage, followed by DSE in the second stage. A novel priority
and allocation scheme to extend existing list-based scheduling
techniques is used in the first stage to obtain an initial schedule
for the system. In the second stage, an extension of the itera-
tive Kernighan-Lin heuristic is used that analyzes moves to the
unfixed tasks in the graph, implementing the move at the end
of each iteration that offers the largest improvement to the total
execution time of the application until all tasks are fixed or no
moves remain that improve the schedule. After an illustrative
example, a pair of case studies were presented showcasing
the performance of the scheduling algorithm compared to a
baseline simulated annealing (SA) scheduling algorithm. Case

study results showed that our algorithm performed nearly as
well as the SA baseline, while requiring only a fraction of
the time to execute. Future work will look at extensions to
support a more generic set of architectures and additional
moves during the iterative DSE process, such as pipeline
configurations. Finally, comparative studies can be performed
to analyze how the approach presented in this paper compares
to other existing techniques when adapted to support scalable
RC systems.

ACKNOWLEDGMENTS

This work was supported in part by the I/UCRC Program
of the National Science Foundation under Grant No.
EEC-0642422. The authors gratefully acknowledge vendor
equipment and/or tools provided by Altera that helped make
this work possible.

REFERENCES

[1] B. Kernighan and S. Lin, “An efficient heuristic procedure for partition-
ing graphs,” Bell System Technical J., Feb. 1970.

[2] P. Eles, Z. Peng, K. Kuchchinski, and A. Doboli, “System-level
hardware/software partitinoing based on simulated annealing and tabu
search,” Journal on Design Automation for Embedded Systems, vol. 2,
no. 1, pp. 5–32, 1997.

[3] J. Henkel, “A low-power hardware/software partitioning approach for
core-based embedded systems,” in Proc. of the Design Automation
Conference (DAC), 1999, pp. 122–127.

[4] D. Menasce, D. Saha, S. C. da Silva Porto, V. Almeida, and S. Tripathi,
“Static and dynamic processor scheduling disciplines in heterogeneous
parallel architectures,” Journal of Parallel and Distributed Computing,
vol. 28, no. 1, pp. 1–18, July 1995.

[5] R. P. Dick and N. K. Jha, “Cords: Hardware-software co-synthesis
of reconfigurable real-time distributed embedded systems,” in Proc.
of International Conference on Computer Aided Design (ICCAD),
November 8-12 1998, pp. 62–67.

[6] F. M. Ali and A. S. Das, “Hardware-software co-synthesis of hard
real-time systems with reconfigurable fpgas,” Computers & Electrical
Engineering, vol. 30, no. 7, pp. 471–489, 2004.

[7] G. Stitt, “Hardware/software partitioning with multi-version implemen-
tation exploration,” in GLSVLSI ’08: Proc. of the ACM Great Lakes
symposium on VLSI. ACM, May 4-6 2008, pp. 143–146.

[8] Y. Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure, and J. Stockwood,
“Hardware-software co-design of embedded reconfigurable architec-
tures,” in Proc. of Design Automation Conference (DAC). ACM, June
5-9 2000, pp. 507–512.

[9] S. Banerjee, E. Bozorgzadeh, and N. Dutt, “Physically-aware hw-
sw partitioning for reconfigurable architectures with partial dynamic
reconfiguration,” in Proc. of Design Automation Conference (DAC).
ACM, June 13-17 2005, pp. 335–340.

[10] K. S. Chatha and R. Vemuri, “An iterative algorithm for hardware-
software partitioning, hardware design space exploration and schedul-
ing,” Design Automation for Embedded Systems, vol. 5, no. 3-4, pp.
281–293, August 2000.

[11] ——, “Magellan: Multiway hardware-software partitioning and schedul-
ing for latency minimization of hierarchical control-dataflow task
graphs,” in CODES ’01: Proc. of the 9th International Symposium on
Hardware/Software Codesign, 2001, pp. 42–47.

[12] C. Reardon, B. Holland, A. George, G. Stitt, and H. Lam, “RCML:
An environment for estimation modeling of reconfigurable computing
systems,” ACM Transactions on Embedded Computing Systems (TECS),
to appear.

[13] “http://www.chrec.org/facilities.html,” 2009.
[14] C.-I. Chang, H. Ren, and S.-S. Chiang, “Real-time processing algorithm

for target detection and classification in hyperspectral imagery,” IEEE
Trans. on Geoscience and Remote Sensing, vol. 39, no. 4, pp. 760–768,
April 2004.


