
280 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 65, NO. 1, JANUARY 2018

Dynamic SEU Sensitivity of Designs on Two
28-nm SRAM-Based FPGA Architectures
Andrew M. Keller , Student Member, IEEE, Timothy A. Whiting, Student Member, IEEE,

Kenneth B. Sawyer, and Michael J. Wirthlin, Senior Member, IEEE

Abstract— Two field-programmable gate array (FPGA) designs
are tested for dynamic single event upset (SEU) sensitivity on two
different 28-nm static random access memory-based FPGAs—an
Intel Stratix V and a Xilinx Kintex 7 FPGA. These designs were
tested in both a conventional unmitigated version and a version to
tolerate SEUs with feedback triple modular redundancy (TMR).
The unmitigated design sensitivity and the low-level device
sensitivity were found to be similar between the devices through
neutron radiation testing. Results also show that feedback TMR
and configuration scrubbing benefit both designs on both FPGAs.
While TMR is helpful, the benefit of TMR depends on the
design structure and the device architecture. TMR and scrubbing
reduced dynamic SEU sensitivity by a factor of 4–54×.

Index Terms— Fault tolerace, field programmable gate arrays,
neutron radiation effects, redundancy, static random access
memory (SRAM) cells.

I. INTRODUCTION

SRAM-BASED field-programmable gate arrays (FPGAs)
provide large amounts of reprogrammable resources for

use in a wide variety of applications. In addition to logic
resources (e.g., look-up tables (LUTs) and flip-flops), FPGAs
offer high-speed serial I/O, DSP units, and block memories.
These devices are used in high-throughput, low-latency data
and control processing applications. They can be remotely
reprogrammed an unlimited number of times. Their rich pool
of resources and flexibility encourages their use in terrestrial
and space environments.

Radiation in space and terrestrial environments can
cause designs operating on static random access mem-
ory (SRAM)-based FPGAs to malfunction [1]–[3]. Single
event upsets (SEUs) in SRAM-based FPGAs can cause func-
tional failures in active designs by corrupting the state and
circuit configuration [4]. Functional failures occur when the
behavior of a design deviates from its intended operation.
Before using an SRAM-based FPGA in space environments,
the risk of radiation-induced failure must be addressed. Some
applications may require the use of SEU mitigation techniques
to improve functional reliability.

Many SEU mitigation techniques have been developed
to make FPGA designs more robust in harsh radiation

Manuscript received August 4, 2017; revised October 3, 2017 and
October 25, 2017; accepted October 26, 2017. Date of publication
November 10, 2017; date of current version January 17, 2018. This work was
supported in part by the I/UCRC Program of the National Science Foundation
under Grant 1265957 and in part by the Los Alamos Neutron Science Center
under Grant NS-2016-7268-F.

The authors are with the NSF Center for High-Performance Reconfigurable
Computing, Brigham Young University, Provo, UT 84602 USA (e-mail:
andrewmkeller@byu.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNS.2017.2772288

environments. A well-known SEU mitigation technique is
triple modular redundancy (TMR), which has been applied to
SRAM-based FPGA designs to reduce the risk of radiation-
induced failure [5]–[7]. In TMR, three redundant modules and
a voting system are used to mask errors that would normally
result in functional failures. TMR has been shown to greatly
improve functional reliability but this improvement comes at
the cost of greater power consumption, resources utilization,
and slower timing. Generally speaking, TMR cannot mask
simultaneous errors in multiple redundant modules. Config-
uration scrubbing is often combined with TMR, because it
prevents SEU accumulation that would compromise TMR [8].
To preserve the masking effects of TMR, any corrupted state
within a module must also be resynchronized with the other
redundant modules if it persists in the design (i.e., does not get
flushed). This can be done by placing synchronization voters in
the feedback paths of the circuit [9]. This is known as feedback
TMR or distributed TMR. It is the form of TMR used in this
paper. When combined with configuration scrubbing, feedback
TMR has demonstrated significant improvements in SRAM-
based FPGA design reliability [10].

The risk of functional failure caused by SEUs can be
evaluated through dynamic testing and is discussed in terms
of dynamic SEU sensitivity. Dynamic testing observes the
behavior of an active design while it is undergoing fault
injection or radiation testing [11]. If the behavior of a
design deviates from its intended operation (e.g., silent data
corruption, stalling/hanging, and jumping operational states
incorrectly), it is considered as a functional failure. Dynamic
SEU sensitivity reflects the probability of a functional fail-
ure given that a random SEU has occurred. Dynamic SEU
sensitivity is measured in random fault injection as the per-
centage of faults that cause a functional failure, and it is
measured in neutron radiation testing as the neutron cross
section of a functional failure event. Many experiments have
compared the mitigated and unmitigated dynamic SEU sen-
sitivity of a design (e.g., with and without TMR applied
to it) to determine the effectiveness of an SEU mitigation
technique [5], [6], [10], [12].

This experiment compares the dynamic SEU sensitivity of
the designs operating on two 28-nm FPGAs with different
architectures to examine the impact of architecture on reli-
ability. Two designs were selected as reliability benchmark
circuits. The dynamic SEU sensitivity of both designs was
measured with and without TMR on both FPGAs thorough
neutron radiation testing. The neutron cross section of a
single configuration random access memory (CRAM) bit was
also measured for each FPGA. Similarities were found in

0018-9499 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Brigham Young University. Downloaded on April 12,2021 at 15:48:08 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6285-5288

KELLER et al.: DYNAMIC SEU SENSITIVITY OF DESIGNS ON TWO 28-nm SRAM-BASED FPGA ARCHITECTURES 281

Fig. 1. Intel Stratix V architecture.

the unmitigated dynamic SEU sensitivity of designs across
architectures and in the low-level single-bit cross section
between the two devices. TMR and configuration scrubbing
improved the design reliability in all cases. The benefit of
TMR was the design structure and the device architecture
dependent with an improvement ratio of 4–54×.

II. 28-NM FPGA ARCHITECTURES

The goal of this experiment is to compare the dynamic SEU
sensitivity of designs across FPGA architectures. To accom-
plish this goal, FPGAs with similar process technologies
were selected for testing. The first is an Intel Stratix V
5SGXEA7 FPGA and the second is a Xilinx Kintex 7 325T
FPGA. Both the Stratix V FPGA and the Kintex 7 FPGA
use a 28-nm planar CMOS process technology [13], [14].
The FPGAs were selected from different vendors to promote
greater variation in architecture. Devices with similar process
technology were selected to focus the comparison of dynamic
SEU sensitivity on differences in architecture rather than
process technology. Although the density of each device is
unknown (i.e., transistors per mm-squared), it is important to
note that differences in density would impact results. Having
higher density increases the likelihood of an SEU, which in
turn increases the cross section of functional failure.

While the architectures between the two FPGAs are differ-
ent, their architectures do have some aspects in common. Both
FPGAs implement an island-style architecture [15]. This style
of architecture arranges logic blocks in a 2-D matrix with each
block surrounded by interconnects. Both implement column-
based resource layouts where columns in the device consist of
a single resource type for the most part [13], [16]. The way
that resources are implemented and interconnected is different.

In the Stratix V architecture [17], the basic grouping of com-
binational resources and registers is called an adaptive logic
module (ALM). Each consists of two adaptive LUTs (ALUTs),
two adders, and four registers. Eight inputs are shared between
the two ALUTs. A shared arithmetic chain and a carry chain
pass through each ALM to its vertically adjacent neighbors.
ALMs are grouped in sets of ten in logic array blocks, which
are connected to their own local interconnect resources. This
organization with its respective interconnects is represented
in Fig. 1. There are a total of 234 720 ALMs in the Stratix V
5SGXEA7 FPGA used in this experiment.

In the Kintex 7 architecture [16], the basic grouping of
combinational resources and registers is called a slice. Each
slice contains four six-input LUTs, carry chain logic, and
eight registers. Slices are grouped in sets of two into config-
uration logic blocks, which have their own associated switch

Fig. 2. Xilinx Kintex 7 architecture.

TABLE I

DEVICE CAPACITY

matrix for interconnects. This is represented in Fig. 2. There
are a total of 50 950 slices in the Kintex 7 325T FPGA.

The FPGAs differ in logic capacity and number of con-
figuration memory (CRAM) cells. Table I shows the device
capacity of each FPGA in terms of logic elements (LEs) for
the Stratix V and logic cells (LCs) for the Kintex 7. Table I also
includes the total number of configuration memory (CRAM)
cells for each FPGA. LEs and LCs are logically equivalent
to a four-input LUT and flip-flop pair [16], [18]. The total
number of LEs and LCs for each device was taken from their
respective data sheets [13], [14]. The number of CRAM bits
was approximated using reports from the design tools.

Because this is an application-level comparison of dynamic
SEU sensitivity (i.e., the same design on both FPGAs),
the difference in logic capacity and number of CRAM bits
between the FPGAs should have minimal impact on results.
The Stratix V has approximately 1.9× more logic capacity
than the Kintex 7, and it has approximately 1.4× more CRAM
cells than the Kintex 7. Although the Stratix V FPGA is larger
by these metrics, a comparison of dynamic SEU sensitivity
of designs implemented on the Kintex 7 FPGA focused on
differences in architecture should still be feasible between
these devices.

To facilitate the construction of this experiment, ready-made
FPGA development boards were used for each targeted FPGA
(see Fig. 3). The Terasic DE5-Net development board [19]
was used to test the Stratix V 5SGXEA7 FPGA, and the
Xilinx KC705 development board [20] was used to test the
Kintex 7 325T FPGA. Both of these boards offer a variety
of I/O interfaces, including joint test action group (JTAG).
This experiment uses JTAG as the primary interface with
the boards. With JTAG accessibility, these boards provide a
convenient platform for testing.

III. TEST DESIGNS

Comparing the dynamic SEU sensitivity of the same design
implemented on different architectures allows reliability to be
compared across architectures at an application level. In this
way, an FPGA design acts as a reliability benchmark. Like per-
formance benchmarks for CPUs, reliability benchmark circuits
can be used a means of reliability comparison between FPGA
architectures and SEU mitigation techniques [12]. Designs

Authorized licensed use limited to: Brigham Young University. Downloaded on April 12,2021 at 15:48:08 UTC from IEEE Xplore. Restrictions apply.

282 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 65, NO. 1, JANUARY 2018

Fig. 3. Development boards: Terasic DE5-Net (left) and Xilinx
KC705 (right).

TABLE II

SINGLE DESIGN INSTANCE RESOURCE UTILIZATION (% OF DEVICE)

selected as reliability benchmark circuits will be implemented
in different FPGA architectures but will perform the same task.
This section introduces the test designs selected and discusses
their resource utilization on the targeted FPGAs.

Two designs were selected as reliability benchmark circuits.
The first design is a small finite-state machine called the
B13 from the ITC’99 benchmark suite [21]. The second is
a 128-b advanced encyption standard (AES) cryptography
core [22]. Both of these designs are the representative of real-
world applications. Both are available in hardware description
language (HDL), making them easy to port to the target
FPGAs.

The B13 design is one of several benchmark circuits in the
ITC’99 benchmark suite. This circuit is used to interface with
a weather sensor. This particular circuit has been used in other
FPGA reliability experiments [12], [23]. As shown in Table II,
a single design instance only consumes a small portion of logic
resources. Test vectors are provided to keep the design active.

The AES design used for this experiment is a 128-b
cryptography IP core from OpenCores.org [22]. This core
implements a common cryptography standard that allows for
the encryption and decryption of data. The core is fully
pipelined and produces valid data every clock cycle once the
pipeline is filled. In this experiment, random data and keys are
fed into the core to keep the design active. This design was
selected for testing, because a single instance uses many more
resources than an instance of the B13 (see Table II). Synthesis
attributes were added to force lookup tables in the IP core to
be implemented in LUTs rather than block memories. It is
interesting to note that, unlike the B13, there are no feedback
paths within the AES design (i.e., all logics are feedforward).

Fig. 4 shows the TMR implementation flow used in this
experiment. The flow begins with the HDL of the designs.
They are ported to each FPGA through logic synthesis and
technology mapping. This was performed using Quartus Prime
16.0 Standard Edition for the Stratix V and Vivado v2016.2 for
the Kintex 7. The result is a structural netlist for each design

Fig. 4. TMR flow.

on each FPGA. An automated TMR tool takes the original
netlist, applies feedback TMR [9] to the netlist, and generates
a new TMR netlist. The automated TMR tool used in this
experiment is part of the BYU EDIF Tools [24]. Through this
process, netlists of each design with and without TMR for
both FPGAs are generated.

Table II shows the resource utilization of a single design
instance with and without TMR implemented in both FPGAs.
The overhead of TMR is reflected in the increase of resource
utilization of the TMR’d design versions. Three times as
many registers are used in all cases. Combinational resources
increase 3–3.2× in the TMR’d AES design and 5.2–6.5×
in the TMR’d B13 design. The large TMR overhead in the
B13 design is due to having many feedback paths in a small
amount of combinational logic with voters placed in every
feedback path. Comparison of resources utilization between
devices is not made due to differences in architecture.

IV. TEST LOGIC INFRASTRUCTURE

An on-chip test logic infrastructure was created to facilitate
testing. This test logic infrastructure allows multiple design
instances to be actively tested in parallel, which increases
the rate of data acquisition for fault injection and radiation
testing (i.e., more design instances and more frequent failure
events). The test logic infrastructure is implemented on the
same device as the design instances. The test logic infrastruc-
ture is protected with TMR to minimize its impact on dynamic
SEU sensitivity results. Design netlist instances in the test
logic infrastructure are all of the same design and version.
The same TMR’d test logic infrastructure is used to test the
unmitigated version of a design, and it is used to test the
mitigated (i.e., with TMR and configuration scrubbing) version
of the same design.

Fig. 5 shows the general layout of the test logic infrastruc-
ture for any design. The infrastructure consists of control logic,
design instances, and failure detection logic. The control logic
provides the design instances with stimulus to ensure that
they remain active for dynamic testing. It can also reset the
design and record failure events. The design instances can be
configured in a number of different ways. Failure detection
logic compares the lockstep outputs of design instances against
themselves, and a golden output vector if provided, on a clock-
by-clock basis. If any discrepancy is found, a function failure
is reported.

Different test logic configurations were used for each test
design. They are shown in Fig. 6. The B13 test logic con-
figuration instances the B13 512 times and drives a set of
input stimulus to all instances in parallel. Their outputs are
compared against each other and a set of golden output vectors
to detect functional failures. The AES test logic configuration
instances the AES 4 times between two chains. After the

Authorized licensed use limited to: Brigham Young University. Downloaded on April 12,2021 at 15:48:08 UTC from IEEE Xplore. Restrictions apply.

KELLER et al.: DYNAMIC SEU SENSITIVITY OF DESIGNS ON TWO 28-nm SRAM-BASED FPGA ARCHITECTURES 283

Fig. 5. Generalized on-chip test logic infrastructure.

Fig. 6. Test logic configurations: B13 (left) and AES (right).

TABLE III

OVERALL RESOURCE UTILIZATION (% OF DEVICE)

control logic fills the pipeline of the chains, their output is
feed back into their input to keep them actively processing
pseudorandom data. The outputs of the two chains should be
identical; discrepancies are reported as functional failures.

The overall resource utilization of the test logic infrastruc-
ture and design instances is shown in Table III. All of these
resources are exposed to fault injection and radiation testing.
Fewer than three times as many registers are used in the TMR
version of the design in all cases. The combinational logic
overhead of TMR is less than that of a single design instance
as well. This is due in part to the shared test logic infrastructure
found in both versions of the design.

Because the test logic infrastructure is placed on the chip
with the designs being tested, it is possible for the test logic
infrastructure to become corrupted while testing. If the test
logic gets corrupted it could result in either a false positive or a
false negative. A false positive occurs when the test logic
reports a functional failure that did not actually happen. A false
negative occurs when the test logic fails to report a functional
failure that actually happened. To minimize the impact of
test logic corruption on results, TMR has been applied to

Fig. 7. Neutron beam test setup.

the test logic with redundancy added to the functional failure
detection logic. In [25], redundant on-chip detection logic
demonstrated a 99.95%–99.99% accuracy in detecting func-
tional errors.

V. RADIATION TESTING

Neutron radiation testing was conducted at the Los Alamos
Neutron Science Center (LANSCE) in December 2016. This
facility provides a wide spectrum spallation neutron beam
source, which is commonly used to measure and report
terrestrial neutron soft errors in semiconductor devices [26].
Radiation testing is the commonly accepted standard for
validating SEU mitigation techniques and evaluating dynamic
SEU sensitivity [27].

In preparation for radiation testing, fault injection was per-
formed. Hardware-based fault emulation techniques were used
to mimic SEUs in the configuration memory and observe the
response. The fault injection algorithm used in this experiment
follows the same basic flow presented in [28]. A random fault
injection campaign was used where faults are injected into
random bits throughout the device. This approach is similar to
statistical fault injection [29] and was used to approximate the
dynamic SEU sensitivity of the test designs prior to radiation
testing. The detailed fault injection results are available in [30].

While fault injection provides useful information, radiation
testing provides better test coverage (e.g., able to upset states
that cannot be fault injected, test single event transients, and
multibit upsets) [28]. The ratio of the upset rate to scrub rate is
different in fault injection and radiation testing. In fault injec-
tion, the device is scrubbed before a new fault is introduced.
In radiation testing, many faults can occur before a scrub cycle
completes. Exaggerated SEU accumulation compared with
normal operating conditions can increase the cross section.
To further investigate the performance of TMR across the two
architectures, radiation testing was conducted.

Fig. 7 shows the Intel Stratix V DE5-Net and three Xilinx
Kintex 7 KC705 development boards mounted perpendicular
to the neutron beam aperture with the FPGAs aligned to the
flight path. Distance from the beam aperture to each board was
carefully measured so that the distance degradation could be
taken into account. For this experiment, a two-inch collimator
was used. For automated logging and testing, the Stratix V
FPGA was connected to a host computer via universal serial

Authorized licensed use limited to: Brigham Young University. Downloaded on April 12,2021 at 15:48:08 UTC from IEEE Xplore. Restrictions apply.

284 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 65, NO. 1, JANUARY 2018

TABLE IV

NEUTRON RADIATION RESULTS

Fig. 8. Test run flow for neutron radiation tests.

bus, and the three Kintex 7 FPGAs were connected to separate
JTAG controllers.

Test runs at LANSCE followed the flow shown in Fig. 8.
A test run starts with opening the beam shutter after the
experiment is initialized. A continuous cycle then follows the
configuration memory scrubbing and checking for a failure.
If a functional failure is detected, a full reconfiguration is
performed and the cycle resumes. This continues until the
beam shutter is closed, which ends the test run.

Before the beam shutter is ready to be opened, the experi-
ment has to be initialized. This consists of power cycling the
FPGA, configuring the FPGA with a selected design, making
sure that the design is operating correctly, and by starting
the SRAM scrubbing mechanism and event logger. Correct
operation is determined by checking the appropriate status
registers over JTAG. All events are logged for analysis. With
the experiment initialized, the shutter is ready to be opened.

As the neutron beam passes through the open shutter,
configuration upsets begin to occur. They are recorded and
corrected by a scrubbing mechanism. Each scrub cycle reports
the number of upsets detected and where they occurred.
External readback scrubbing was performed on the Kintex 7
FPGA. This consists of reading the configuration memory,
comparing the readback against a golden copy, and writing
the golden data back to the frames with detected upsets via
partial reconfiguration. The Kintex 7 was scrubbed at a rate
of 2.5 s per scrub cycle. A combination of external and

internal scrubbing was used for the Stratix V. An internal
error checking scan is completed every 94–189 ms continually.
Detected upsets are then sent to an error message register and
to the internal scrubber. It is not known how long it takes the
internal scrubber to correct an upset. Internal scrubbing may
slow down if upset events happen close together. All detected
errors (e.g., single, double-adjacent, and multibit) are read out
over JTAG. Each error is reported as corrected or uncorrected
by the internal scrubbing mechanism. If any uncorrected
upsets are reported, then an external scrub is performed where
the correct configuration data are written over the corrupted
frames. Reading out upsets and performing an external scrub
take 1–25 s with a 4.2-s average. All detected errors are
corrected within a subsequent scrub cycle on both FPGAs.

After every scrub cycle on each respective FPGA, a check is
performed to see if design failure has occurred (i.e., the func-
tional failure status register is set in the test logic infrastruc-
ture). If a failure is not detected, the next scrub cycle will
begin. If a failure is detected, the test design will be reset by
performing a full device reconfiguration and making sure that
the design starts up correctly by checking the status registers
over JTAG. SEUs during full reconfiguration may cause the
design to initialize improperly. This behavior was observed in
both FPGAs in 20% of all programming attempts and occurred
1.6× more frequently when programming a non-TMR design
version. When this occurred, the device was reprogrammed
again until the design started clearly. Resetting the design was
done by reprogramming the FPGA and expecting it to begin
operation in a good state. These false starts were excluded
from the observed failures in Table IV, because the design in
these samples never makes it to a known good operating state.

The test run continues until the beam shutter is closed. The
shutter might need to be closed to change the experiment being
tested, troubleshoot test setup, or change parts. The shutter
was most frequently closed to delimit the previous test run
and switch out the design being tested. Collected data were
analyzed throughout the test days to help determine, which
tests needed more beam time to obtain statistically significant

Authorized licensed use limited to: Brigham Young University. Downloaded on April 12,2021 at 15:48:08 UTC from IEEE Xplore. Restrictions apply.

KELLER et al.: DYNAMIC SEU SENSITIVITY OF DESIGNS ON TWO 28-nm SRAM-BASED FPGA ARCHITECTURES 285

TABLE V

DEVICE NEUTRON RADIATION DATA

data. Mitigated designs required more beam time to tighten
confidence intervals. After the beam shutter is closed, upsets
are no longer detected during a scrub cycle. The logging and
scrub cycles are stopped, and the next test is set up.

Time stamps were recorded on neutron beam fluence and
all test events (e.g., reprogramming, detected upsets, and
functional failure). A beam counter recorded fluence data
from the dosimeter with an added time stamp in two second
intervals. This provides a detailed log of fluence and flux of the
neutron beam. In a similar fashion, a time stamp was recorded
every time the device was reprogrammed and every time a
functional failure was detected. This gives a detailed log of
clean starts to failure events. By aligning the beam counter
and the test run logs, the total fluence exposure per failure
event can be obtained. This information is used later to plot
the reliability of the designs over fluence exposure as another
means of analyzing the data (see Section VI).

A. Device Data
The neutron cross section for each FPGA device as a

whole was also measured as part of this experiment. Table V
shows the total fluence expose and the number of detected
configuration upsets for each FPGA.1 Each double-adjacent
upset and multibit upset reported by the Stratix V internal
scrubbing are counted as two upsets. They make up 1.6%
of all upset events in the Stratix V. Because three Kintex 7
FPGAs were tested simultaneously, the total amount of flu-
ence exposure is approximately three times greater than that
of the Stratix V. The cross section of the entire device is
calculated by dividing the total number of detected upsets
by the total fluence. The cross section of a single CRAM
cell is approximated by dividing the device cross section
by the total number of CRAM bits. The number of CRAM
bits for each device was estimated using reports from their
respective vendor tools and the structure of configuration
memory (i.e., number of frames and bits per frame). It is
believed that the actual value is within 10 million of these
estimates. The actual number of CRAM bits is unknown, and
error may exist due to incorrect estimate (e.g., being off by
10-million bits changes the estimated single-bit cross section
by approximately 1 × 10−15 cm2).

B. Design Data
The total neutron fluence exposure of each test and the

number of observed failures are reported in Table IV. The

1To the best of our knowledge, there is no publicly available measurement
of neutron cross section of a single CRAM bit in an Intel Stratix V FPGA

design cross section is determined by dividing the number
of observed failures by the total neutron fluence. The 95%
confidence intervals are calculated using a common method-
ology [27]. Because the sensitive cross section of a design
does not depend on the total number of CRAM bits contained
in the FPGA, the design cross section can be used as a one-
to-one comparison metric across architectures. Improvement
is a cross section ratio between the unmitigated and mitigated
design versions.

Scrubbing logs from both FPGAs show that multiple upsets
were detected and corrected every scrub cycle. In scrub
cycles with at least 1 upset, the Kintex 7 scrubber reported
1 to 77 upsets averaging 3.1, and the Stratix V scrubber
reported 1 to 37 upsets averaging 4.7 with as many as
20 uncorrected upsets. Because the Stratix V scrubber uses a
combination of internal and external scrubbing, it is difficult to
determine if upsets were allowed to accumulate. Having more
than one upset present in the device may compromise the TMR
mitigation scheme and allow a failure to occur [31]. Increasing
the scrub rate would lower the number of upsets that coexist
between scrub cycles, but single particle strikes that cause
multibit upsets would still be a concern. This accumulation
of upsets most likely increases the reported cross section
in Table IV of the mitigated designs with TMR and scrubbing.

VI. RELIABILITY MODEL FIT

The reliability of a design is the probability that the design
is still operating correctly as a function of time or fluence
exposure. The cross section reflects the mean fluence-to-
failure, but the reliability of a design reflects the probability
of correct operation at a given point in fluence exposure. This
is valuable information, because some mitigation schemes,
such as TMR without scrubbing, may have a larger cross
section even though they have higher reliability early on in
the mission [32].

Given a sufficient number of fluence-to-failure samples, it is
possible to plot the reliability of a system as a function of flu-
ence exposure [33]. This section presents the collected neutron
radiation data as a plot of reliability verses fluence exposure
and discusses how this analysis is performed. In addition to
plotting the reliability, classic reliability models that match
the SEU mitigation schemes are fitted to the data based on
the cross section of the respective designs.

The reliability of a design given a set of fluence-to-failure
samples is

R(�) = n(�)

N
where � is the fluence exposure since start of operation,
n(�) is the number of survivors (i.e., samples still operating
correctly) as a function of �, and N is the total number of
samples in the set. This is adapted from a derivation for the
reliability of a system as a function of time given a set of
time-to-failure samples in [33]. By observation, the reliability
of a design is directly related to the percentage of survivors
in a sample set at a given point in fluence exposure.

In this experiment, the set of fluence-to-failure samples for
a given design and version is derived from the neutron beam
count log and the test run log. As explained in Section V, these

Authorized licensed use limited to: Brigham Young University. Downloaded on April 12,2021 at 15:48:08 UTC from IEEE Xplore. Restrictions apply.

286 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 65, NO. 1, JANUARY 2018

Fig. 9. Reliability plots of the neutron test results with reliability models fitted to the cross section of the unmitigated and mitigated design.

logs contained time-stamped information on fluence exposure
and failure events during a test run. Using the time stamps,
the fluence-to-failure was determined for each observed failure
in the experiment (i.e., fluence exposure of FPGA between a
full reconfiguration and a subsequent functional failure). For
each event, the fluence-to-failure is known.

Fig. 9 shows the plotted reliability graphs of all of the test
designs. The circles represent the unmitigated data points, and
the triangles represent the TMR with scrubbing data points.
These points are generated as the percentage of surviving
samples at a given fluence exposure. In the beginning, all
samples are operating correctly. As fluence exposure increases,
fewer samples continue to survive.

Reliability models have been developed for simplex sys-
tems, TMR systems, and TMR systems with repair [32]. These
models are fitted to neutron radiation data points in Fig. 9 by
adjusting parameters in the mean-time-to-failure (MTTF) to
match the cross section of the design. The MTTF of a simplex
system and a TMR system with a repair system is

MTTFsimplex = 1

λ
, MTTFTMRw/repair = 5 + μ

λ

6λ
.

For this application, the MTTF is viewed as an average neutron
fluence exposure to failure. The failure rate λ is substituted
with the cross section of the unmitigated design. The repair
rate μ is solved for by setting the MTTF of the TMR
system with repair to the inverse of mitigated cross section
and substituting λ with the unmitigated cross section. With
these parameters adjusted, the respective reliability curves
are plotted as overlays on the graphs in Fig. 9. The solid
line is the unmitigated simplex model, and the dashed line

is the mitigated TMR with repair (i.e., CRAM scrubbing)
model.

VII. DISCUSSION

The primary goal of this paper is to compare the dynamic
SEU sensitivity of FPGA designs across different SRAM-
based FPGA architectures. Comparison of unmitigated results
compares the architectural impact on dynamic SEU sensitivity.
Comparison of mitigated results reflects the benefits of TMR
and scrubbing across the different designs and architectures.
A secondary goal of this paper is to compare the low-level,
single-bit cross section of the devices.

The unmitigated cross section of the designs was similar
across FPGA architectures. This cross section reflects the
dynamic SEU sensitivity of the unmitigated designs across
architectures, which is affected by logic synthesis, technology
mapping, placement, and routing in addition to the architec-
ture of the target FPGA. Each design was synthesized and
implemented separately using tools from Intel and Xilinx
for the Stratix V and the Kintex 7, respectively. Despite the
independent implementations, the unmitigated cross section of
a design on the Stratix V is within a factor of 1.4× to that of
the same design on the Kintex 7 (i.e., σStratix V/σKintex 7).

TMR and CRAM scrubbing mitigation techniques bene-
fited both designs on both targeted FPGAs. Applying TMR
and CRAM scrubbing to designs reduced the dynamic SEU
sensitivity of the designs by a factor of 4× to 54×. TMR
favored the AES design on the Stratix V and the B13 design
on the Kintex 7. There was a greater relative improvement in
cross section for the TMR’d version of the AES design on the
Stratix V than on the Kintex 7, and the actual cross section

Authorized licensed use limited to: Brigham Young University. Downloaded on April 12,2021 at 15:48:08 UTC from IEEE Xplore. Restrictions apply.

KELLER et al.: DYNAMIC SEU SENSITIVITY OF DESIGNS ON TWO 28-nm SRAM-BASED FPGA ARCHITECTURES 287

on the Stratix V is also less than that of the Kintex 7. The
opposite is true for the TMR’d version of the B13 design. This
suggests that TMR benefits are design and device-dependent.

At the low-level device sensitivity, the single-bit cross
sections between the two devices are within a factor of 2× of
each other. The neutron cross section of a single CRAM cell on
the Kintex 7 matches the measurement reported by Xilinx [34].
As expected, the low-level device sensitivity between the two
FPGAs is very similar.

VIII. CONCLUSION

Unmitigated and mitigated versions of two benchmark
designs were tested for SEU sensitivity on similar FPGAs
with different architectures. Neutron radiation testing shows
that TMR and scrubbing benefited both designs on both
FPGAs. Similarities were found between the two FPGAs in the
dynamic SEU sensitivity of the unmitigated version of each
design and in the low-level single-bit CRAM cross section.
The SEU mitigated versions of each design favored opposite
FPGAs suggesting that benefits from TMR are both the design
structure and the FPGA architecture-dependent. Single point
failures within the TMR implementation, such as cross-domain
errors for TMR on a single FPGA [31], require further study
and research and will be addressed in future work. The process
used in this paper to compare mitigation techniques across
architectures could be applied to other FPGAs and benchmark
designs. It was found that the FPGAs tested in this paper are
fairly comparable to each other for dynamic SEU sensitivity
of a particular design mapped to the FPGA and that TMR and
scrubbing reduced the designs’ dynamic SEU sensitivity by a
factor of 4–54× in neutron radiation testing.

REFERENCES

[1] R. C. Baumann, “Soft errors in advanced semiconductor devices—Part I:
The three radiation sources,” IEEE Trans. Device Mater. Rel., vol. 1,
no. 1, pp. 17–22, Mar. 2001.

[2] M. Bellato, M. Ceschia, M. Menichelli, A. Papi, J. Wyss, and
A. Paccagnella, “Ion beam testing of SRAM-based FPGA’s,” in Proc.
6th Eur. Conf. Radiat. Effects Compon. Syst., Sep. 2001, pp. 474–480.

[3] A. Lesea, S. Drimer, J. J. Fabula, C. Carmichael, and P. Alfke,
“The rosetta experiment: Atmospheric soft error rate testing in differing
technology FPGAs,” IEEE Trans. Device Mater. Rel., vol. 5, no. 3,
pp. 317–328, Sep. 2005.

[4] M. Ceschia et al., “Identification and classification of single-event upsets
in the configuration memory of SRAM-based FPGAs,” IEEE Trans.
Nucl. Sci., vol. 50, no. 6, pp. 2088–2094, Dec. 2003.

[5] L. Sterpone and M. Violante, “Analysis of the robustness of the TMR
architecture in SRAM-based FPGAs,” IEEE Trans. Nucl. Sci., vol. 52,
no. 5, pp. 1545–1549, Oct. 2005.

[6] M. Alderighi, F. Casini, S. D’Angelo, M. Mancini, S. Pastore, and
G. R. Sechi, “Evaluation of single event upset mitigation schemes for
SRAM based FPGAs using the FLIPPER fault injection platform,”
in Proc. 22nd IEEE Int. Symp. Defect Fault-Tolerance VLSI Syst.,
Sep. 2007, pp. 105–113.

[7] K. S. Morgan, D. L. McMurtrey, B. H. Pratt, and M. J. Wirthlin,
“A comparison of TMR with alternative fault-tolerant design techniques
for FPGAs,” IEEE Trans. Nucl. Sci., vol. 54, no. 6, pp. 2065–2072,
Dec. 2007.

[8] P. Adell, G. Allen, G. Swift, and S. McClure, “Assessing and mitigating
radiation effects in Xilinx SRAM FPGAs,” in Proc. Eur. Conf. Radiat.
Effects Compon. Syst. (RADECS), Sep. 2008, pp. 418–424.

[9] J. M. Johnson and M. J. Wirthlin, “Voter insertion algorithms for
FPGA designs using triple modular redundancy,” in Proc. 18th Annu.
ACM/SIGDA Int. Symp. Field Programm. Gate Arrays (FPGA), 2010,
pp. 249–258.

[10] A. M. Keller and M. J. Wirthlin, “Benefits of complementary
SEU mitigation for the LEON3 soft processor on SRAM-based
FPGAs,” IEEE Trans. Nucl. Sci., vol. 64, no. 1, pp. 519–528,
Jan. 2017.

[11] H. M. Quinn et al., “A test methodology for determining space readiness
of Xilinx SRAM-based FPGA devices and designs,” IEEE Trans.
Instrum. Meas., vol. 58, no. 10, pp. 3380–3395, Oct. 2009.

[12] H. Quinn et al., “Using benchmarks for radiation testing of microproces-
sors and FPGAs,” IEEE Trans. Nucl. Sci., vol. 62, no. 6, pp. 2547–2554,
Dec. 2015.

[13] Intel Corp. Stratix V Device Overview. Accessed: Sep. 26, 2017.
[Online]. Available: https://www.altera.com/en_US/pdfs/literature/hb/
stratix-v/stx5_51001.pdf

[14] Xilinx Inc. 7 Series FPGAs Data Sheet: Overview. Accessed:
Sep. 26, 2017. [Online]. Available: https://www.xilinx.com/support/
documentation/data_sheets/ds180_7Series_Overview.pdf

[15] M. Chang, “Device architecture,” in Reconfigurable Computing,
S. Hauck and A. Dehon, Eds. Burlington, MA, USA: Morgan Kaufmann,
2008, ch. 1.

[16] Xilinx Inc. 7 Series FPGAs CLB User Guide. Accessed: Sep. 6, 2017.
[Online]. Available: https://www.xilinx.com/support/documentation/
user_guides/ug474_7Series_CLB.pdf

[17] Intel Corp. Stratix V Device Handbook. Accessed: Oct. 31, 2017.
[Online]. Available: https://www.altera.com/en_US/pdfs/literature/
hb/stratix-v/stx5_core.pdf

[18] Intel Quartus Prime Standard Edition Handbook, vol. 2, Intel Corp.,
Mountain View, CA, USA, May 2017. Accessed: Sep. 26, 2017.
[Online]. Available: https://www.altera.com/enUS/pdfs/literature/hb/qts/
qts-qps-5v2.pdf

[19] DE5-Net FPGA Development Kit. Accessed: Sep. 8, 2017. [Online].
Available: http://de5-net.terasic.com

[20] Xilinx Kintex-7 FPGA KC705 Evaluation Kit. Accessed: Aug. 30, 2017.
[Online]. Available: https://www.xilinx.com/products/boards-and-
kits/ek-k7-kc705-g.html

[21] F. Corno, M. S. Reorda, and G. Squillero, “RT-level ITC’99 benchmarks
and first ATPG results,” IEEE Des. Test. Comput., vol. 17, no. 3,
pp. 44–53, Jul. 2000.

[22] AES::Overview::OpenCores. Accessed: Oct. 8, 2017. [Online]. Avail-
able: https://opencores.org/project,tiny_aes

[23] H. R. Zarandi and S. G. Miremadi, “Dependability evaluation of Altera
FPGA-based embedded systems subjected to SEUs,” Microelectron.
Rel., vol. 47, nos. 2–3, pp. 461–470, Feb. 2007.

[24] Brigham Young Univ., Provo, UT, USA. (Sep. 2009). BYU
EDIF Tools. Accessed: Sep. 26, 2017. [Online]. Available:
http://byuediftools.sourceforge.net

[25] J. Johnson et al., “Using duplication with compare for on-line error
detection in FPGA-based designs,” in Proc. IEEE Aerosp. Conf.,
Mar. 2008, pp. 2322–2332.

[26] Measurement and Reporting of Alpha Particle and Terrestrial Cosmic
Ray-Induced Soft Errors in Semiconductor Devices, Standard JESD89A,
JEDEC Solid State Technology Association, 2006. [Online]. Available:
https://www.jedec.org/sites/default/files/docs/JESD89A.pdf

[27] H. Quinn, “Challenges in testing complex systems,” IEEE Trans. Nucl.
Sci., vol. 61, no. 2, pp. 766–786, Apr. 2014.

[28] H. M. Quinn, D. A. Black, W. H. Robinson, and S. P. Buchner,
“Fault simulation and emulation tools to augment radiation-hardness
assurance testing,” IEEE Trans. Nucl. Sci., vol. 60, no. 3,
pp. 2119–2142, Jun. 2013.

[29] P. Ramachandran, P. Kudva, J. Kellington, J. Schumann, and P. Sanda,
“Statistical Fault Injection,” in Proc. IEEE Int. Conf. Depend. Syst. Netw.
FTCS DCC (DSN), Jun. 2008, pp. 122–127.

[30] A. M. Keller, “Using on-chip error detection to estimate
FPGA design sensitivity to configuration upsets,” M.S. thesis,
Dept. Elect. Comput. Eng., Provo, UT, USA, 2017. [Online]. Available:
http://scholarsarchive.byu.edu/etd/6302/

[31] H. Quinn, K. Morgan, P. Graham, J. Krone, M. Caffrey, and
K. Lundgreen, “Domain crossing errors: Limitations on single device
triple-modular redundancy circuits in Xilinx FPGAs,” IEEE Trans. Nucl.
Sci., vol. 54, no. 6, pp. 2037–2043, Dec. 2007.

[32] D. Siewiorek and R. Swarz, Reliable Computer Systems, 3rd ed. Natick,
MA, USA: A K Peters, 1998.

[33] M. L. Shooman, Reliability of Computer Systems and Networks: Fault
Tolerance, Analysis, and Design. Hoboken, NJ, USA: Wiley, 2002.

[34] Xilinx Inc. Device Reliability Report. Accessed: Sep. 22, 2017.
[Online]. Available: https://www.xilinx.com/support/documentation/
user_guides/ug116.pdf

Authorized licensed use limited to: Brigham Young University. Downloaded on April 12,2021 at 15:48:08 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

