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Abstract—This paper presents DrSEUs (Dynamic robust 
Single-Event Upset simulator), a novel fault injector that uses 
the Simics full-system simulator. Fault-injection testing enables 
the use of commercial off-the-shelf (COTS) processors in 
space, which are susceptible to radiation-induced faults but are 
desirable due to the lower cost and higher performance of 
COTS devices. The de facto standard for fault injection is 
radiation-beam testing, which is often prohibitively expensive 
and time-consuming. Our methodology provides a means to 
iteratively decrease design vulnerabilities through rapid fault 
injection prior to beam testing. Additionally, our methodology 
can supplement beam-test results by targeting injections at 
individual components of interest that are difficult to isolate in 
beam tests. Our fault-injection mechanism uses simulation 
checkpoints, allowing DrSEUs to target a wide range of system 
components for injection. The deterministic nature of Simics 
checkpoints enables the repeatability of injection results and 
the monitoring of latent faults propagating through the system. 
We demonstrate the injection capabilities and analysis features 
of DrSEUs by presenting fault-injection results for an image-
processing application. 
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1. INTRODUCTION 
Space systems typically employ radiation-hardened 
processors to maintain high levels of reliability in the harsh 
environment of space. However, lower reliability 
commercial processors bring many advantages that appeal 
to space-system designers, including increased performance, 
power efficiency, and lower cost. Fault-injection testing is 
required to study the dependability of these components 
before launch. The de facto standard of fault injection for 
space-computing devices is radiation-beam testing, since 
beam testing irradiates components in a manner similar to 
space radiation. Unfortunately, radiation-beam testing is an 
expensive and time-consuming process. To minimize cost, 
designers often use alternative forms of fault-injection to 
iteratively analyze and improve their designs before arriving 
at the beam. 

Designers employ many forms of fault injection, including 
hardware-based, software-based, and simulation-based 
injection, where each type comes with tradeoffs. Hardware-
based fault injection, including radiation-beam testing, is the 
most representative of the harsh environment of space, but 
risks causing permanent damage to the device under test 
(DUT). Software-based fault injection does not risk any 
damage to the DUT, but requires altering the target system’s 
software in a way that may undesirably affect how faults 
manifest as errors. Simulation-based fault injection is 
unique because simulations offer the most visibility into and 
control over the DUT. However, the accuracy of results 
depends on the fidelity of the simulation models. We chose 
the Simics toolset, detailed in [1] and [2], from Wind River 
for this research because of Simics’ extensibility and 
capability to run full target-application binaries on simulated 
processors. We can apply the methodology presented in this 
paper to any processor model in the Simics catalog (and 
possibly to other full-system simulators); however the target 
processor for this research is the Freescale P2020, a dual-
core, PowerPC-based processor studied by JPL [3] and 
featured in the Proton400k single-board space computer 
from Space Micro [4]. 

Our methodology relies on Simics’ checkpointing feature, 
which can save and restore the entire state of the simulated 
system at any point during execution. Our methodology 
uses these checkpoints to perform injections and compare 
the injected system state to a previously established gold 
system state (i.e., without fault injection). Since these 
checkpoints contain the entire state of the system, we can 
target a wide range of components for injection. We 
perform fault injections on these checkpoints without any 
interaction with Simics, such that the target system, and 
even Simics, is unaware of the injection of faults. 
Furthermore, these checkpoints ensure that all fault-
injection runs are isolated from one another, facilitating 
error diagnosis and classification. These checkpoints also 
allow for the detection of latent faults that exist in the 
system that may not affect the target application’s execution 
but can manifest as errors in subsequent operations. 

The remainder of this paper is organized as follows. Section 
2 covers related work, including a survey of existing fault 
injectors. In Section 3, we discuss the scope of our 
methodology and the unique features of our fault injector. 
DrSEUs, the Dynamic robust Single-Event Upset simulator, 
includes analysis features that neatly organize and display 
campaign results in tables and charts enabling advanced 
analysis. We present our fault-injection methodology in 
Section 4. Section 5 presents the experimental setup for our 
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fault-injection campaign that we performed on an edge-
detection, image-processing application. In Section 6, we 
present our analysis of the fault-injection campaign, which 
demonstrates the depth of analysis achievable through 
manipulating the variety of information DrSEUs collects. 
We also study the effects of latent faults by performing 
additional computation when latent faults exist in the 
system. These detailed results are only possible through 
simulation-based fault injection, as controlling the number 
and location of single-event upsets is not possible with 
radiation-beam testing nor do hardware testbeds offer the 
visibility required for the detection of latent faults. We 
present our conclusions in Section 7 and discuss future work 
for this research. 

2. RELATED WORK 
The effects of radiation on electronics are an important area 
of research for space computing. Karnik et al. present a 
study on the interactions of radiation particles with VLSI 
circuits in [5]. In order to simulate these effects in the lab 
and understand the impact of these effects on system 
reliability, researchers can perform fault-injection testing. 
Quinn et al. explain the importance of fault-injection testing 
as a means to assess a system’s reliability in the presence of 
harmful radiation in [6]. 

Researchers have classified and compared several methods 
for performing fault injections, as in [7] and [8]. There are 
four primary categories of fault injection, each with unique 
advantages and disadvantages, including hardware-based, 
software-based, simulation-based, and emulation-based. 

Hardware-based Fault Injection 

Hardware-based fault injection is composed of two 
subcategories, fault injection with or without physical 
contact, as discussed in [7] and [8]. Hardware-based fault 
injection without physical contact is most similar to what a 
device would experience in a space environment. This 
method uses either radiation or electromagnetic interference 
to cause faults in the DUT. Hardware-based fault injection 
with physical contact uses either active probes or socket 
insertion to introduce voltage or current changes to the 
DUT. This category of fault injection can simulate open 
faults, short circuits, bit flips, spurious current, power 
surges, or stuck-at faults. Drawbacks to hardware-based 
fault injection include possible damage to the DUT and the 
necessity to modify the DUT. 

Software-based Fault Injection 

Software-based fault injection is popular since it is portable, 
does not usually require any hardware modifications to the 
DUT, and does not risk damage to the DUT. However, 
software-based fault injection also comes with 
disadvantages, for example not being able to inject faults 
into places that are not accessible through software, such as 
caches. Software-based fault injectors also introduce the 
possibility of disturbing the processing workload in 
unintended ways. For example, adding additional software 

required for performing injection may alter the scheduling 
and timing of system tasks, as discussed in [7]. 

The Simple Portable Fault Injector (SPFI), is a software-
based fault injection tool presented in [9]. SPFI uses the 
GNU Debugger (GDB) to pause execution and randomly 
inject single-bit flips into CPU registers and memory values 
during the execution of a targeted application. However, the 
use of GDB as the injection mechanism limits injection 
scope to the targeted application. Therefore, it is not 
possible to study the effects of injected faults on the 
remainder of the system (e.g., operating system, device 
drivers). 

JPL’s Implementation of a Fault Injector (JIFI) is similar to 
SPFI, but uses ptrace (the Unix system call used by GDB to 
control other processes) instead of GDB to inject faults, 
offering lower-level access to the system [10]. JIFI requires 
modification of the targeted application to include specific 
function calls that perform fault injections. 

Many other software-based fault injectors exploit the 
interrupt-handling capabilities of modern processors to 
trigger code that performs injections. These are commonly 
referred to as code emulating upsets (CEU) and are studied 
in [11], [12], [13], and [14]. 

Simulation-based Fault Injection 

Simulations also serve as a testbed for fault injection. In 
fact, injecting faults in a simulation model has some 
advantages over injection in a physical system. Simulations 
operate at different levels of abstraction, which allows the 
use of multiple fault models. Due to the tight integration of 
fault-injection mechanisms and system-simulation models, 
fault injections become transparent from the target system’s 
point of view. Simulations also provide the most visibility 
into and control over both the target system and the fault-
injection mechanism. 

Simulation-based fault injectors can use hardware 
description language (HDL) models of targeted devices as 
in [14]. Unfortunately, obtaining HDL models of 
commercial processors is often difficult. Instead, researchers 
can perform fault injections using full-system simulators, 
which provide all of the functionality required to run full 
software stacks for the targeted device. Velazco et al. [15] 
use d3sim, a DSP simulator, to inject faults into a simulation 
of the DSP32C. Other studies have used Simics, another 
full-system simulator detailed in [1] and [2], as a testbed for 
fault injection. For example, Bastien implements the 
Saboteur Module [16] as a Simics module to inject faults in 
the simulation of an x86 processor. This module is capable 
of injecting transient or permanent faults into CPU registers, 
memory or I/O data busses, and memory address busses. In 
[17], Chao et al. modified Sam, a chip multithreading 
(CMT) simulator from Sun Microsystems built atop Simics 
[18], in order to develop the Full system Simulator-based 
Fault Injection (FSFI) tool and perform testing on the 
UltraSPARC T2 processor. 
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Emulation-based Fault Injection 

The final fault-injection category is emulation based. This 
category is similar to HDL-based simulation fault-injection. 
However, instead of using an HDL simulator to perform 
injections, the DUT is synthesized onto a field 
programmable gate array (FPGA) and augmented with fault-
injection mechanisms. The study in [19] presents a 
methodology for emulation-based fault injection on both the 
MicroBlaze and Leon3. 

Simics 

Simics, detailed in [1] and [2], provides cycle-accurate 
simulations at the instruction-set level and includes 
simulation models for peripheral components, such as 
memory and interrupt controllers, PCI, Ethernet, etc. Simics 
allows for the execution of unmodified operating systems, 
firmware, device drivers, middleware, network stacks, and 
of course applications. The internal state of the processor, 
memory contents, and executing instructions are all exposed 
during simulation. Another important Simics feature for our 
methodology is the ability to save a checkpoint, containing 
the entire state of the system, which can be later loaded in 
Simics to continue the simulation from the same state. 

3. DRSEUS OVERVIEW 
Our fault-injection methodology benefits from the 
advantages of simulation-based fault injection. Most 
notably, the high level of visibility into the system provides 
a wide range of components to target for injection. This 
property also allows us to study the propagation of faults 
throughout the system as well as the effects of latent faults. 
Unlike most of the fault injectors surveyed in the previous 
section, DrSEUs does not require any modifications to the 
DUT, including both software and (simulated) hardware 
modifications. This property also extends to the simulator 
itself, since our fault-injection mechanism is external to 
Simics. In fact, our methodology is extendable to other full-
system simulators, so long as the simulators provide the 
same level of simulation, allow access to the same interfaces 
to the DUT, and can save checkpoint files containing the 
state of the entire system at a given point in time. 

Our methodology is not meant to replace radiation testing. 
Instead, it enables system designers to better prepare for 
radiation tests by iteratively improving their designs through 
fault-injection testing. This preparation allows designers to 
maximize the effectiveness of beam time, which is typically 
a limited resource. Our methodology also provides much 
greater control in targeting device components for injections 
than is possible with radiation beams. Therefore, when 
designers find individual components that are exceptionally 
sensitive to radiation-induced faults, our methodology 
allows them to supplement radiation-test results with 
targeted fault injections to study the effects on the system in 
greater detail. 

DrSEUs simulates two of the most important single-event 
effects (SEE): single-event upsets (SEU) and single-event 

functional interrupts (SEFI). However, there are certain 
SEEs and other radiation effects that Simics, and 
consequently our fault injector, cannot accurately model. 
These include single-event transients (SET), single-event 
latchup (SEL), single-event burnout (SEB), single-event 
gate rupture (SEGR), and cumulative effects like total dose. 
While Simics can model SETs in certain components of the 
system (address and data buses), this functionality would 
require modifying the simulation model to include fault-
injection modules. Our methodology aims to be completely 
transparent in order to avoid effects caused by the 
unintended consequences of modifying the DUT. As 
previously stated, we inject faults into checkpoints outside 
the context of Simics to achieve transparency. Other 
simulation-based, fault-injection techniques that use 
register-transfer level (RTL) models are capable of 
simulating SETs in a wider range of components (including 
combinatorial-logic networks). However, acquiring the RTL 
models for commercial processors is usually not possible. 
Simulating SELs, SEBs, and SEGRs would require much 
lower-level modeling akin to SPICE-based simulations. 
These lower-level simulations cannot offer the same 
magnitude of performance that Simics provides for system-
level simulations. 

In order to achieve high performance, DrSEUs can perform 
multiple injections in parallel to speed up campaign 
progress. Each injection instance uses a private instance of 
Simics to isolate the simulation. The experiment in this 
paper uses as host a quad-core Core i7 processor with eight 
threads to instantiate eight parallel instances of the fault 
injector in order to keep the host busy at all times. Our 
methodology can easily scale to computing clusters in order 
to perform massively parallel fault-injection campaigns. Our 
performance is limited to the number of CPU cores and 
available Simics licenses (each instance of Simics requires a 
license). 

DrSEUs also includes many features to aid in fault-injection 
campaign analysis. One of these components is a web 
application that organizes results into tables and charts that 
are dynamically generated. We present some of these charts 
in the experiment section of this paper. A filtering capability 
is included to narrow down the data in the tables and charts 
to only the results of interest. Each result includes the 
associated injection data, DUT console output, Simics 
console output, and lists of latent faults located in registers, 
TLB entries, and memory blocks. Checkpoint regeneration 
is another powerful feature to aid in analysis. Due to the 
deterministic nature of Simics simulations, DrSEUs can 
regenerate injected system checkpoints and launch these 
checkpoints in Simics allowing further analysis of 
interesting results. This feature also allows designers to use 
Simics’ advanced debugging capabilities to further study 
faults. 
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4. METHODOLOGY 
Figure 1 shows the architecture of our fault injector. 
DrSEUs interfaces with Simics through standard in 
(STDIN) and out (STDOUT), allowing DrSEUs to control 
and monitor Simics. Simics connects the DUT’s serial 
console to a pseudo-terminal on the host, mimicking the 
serial connection to a physical device, allowing DrSEUs to 
issue commands and monitor execution. Simics also 
forwards a network port from the host to the DUT, via a 
virtual Ethernet connection. This network connection allows 
DrSEUs to send and receive files, including application 
binaries and input/output files. If the simulated device does 
not include an Ethernet interface, Simics provides a 
SimicsFS kernel module that can mount the host’s file 
system and transfer files. Finally, DrSEUs modifies 
checkpoint files, created by Simics, in order to perform fault 
injections. DrSEUs can then load these modified checkpoint 
files in Simics to continue the simulation from an injected 
state. 

 

Figure 1. Fault injector architecture 

Before performing any fault injections, we augment the 
targeted application with signal handlers that print easy-to-
parse messages indicating which signal the application 
encounters. These signal handlers are not required but can 
facilitate error diagnosis and classification. Optionally, we 
can also augment the targeted application with messages 
that print statistics, such as the number of detected errors, so 
DrSEUs can include these statistics in the logged results. 

Our methodology begins with the creation of a new fault-
injection campaign, outlined in Figure 2. At this stage, 
DrSEUs starts Simics with a script that instantiates all 
components of the DUT and creates connections to the host. 
Once Simics has instantiated all components and 
connection, the DUT boots Linux. Next, DrSEUs uses SCP 
(Secure Copy, which copies files using the Secure Shell, or 
SSH, protocol) to transfer application binaries and input 
files to the DUT via Simics’ forwarded network port. 

After transferring the necessary files, DrSEUs times the 
execution of the targeted application. In this step, the DUT 
runs the targeted application and Simics measures the 
number of elapsed DUT clock cycles. Dividing the 

measured cycles by the desired number of gold checkpoints 
calculates the number of cycles that should separate the 
checkpoints. To create these gold checkpoints, DrSEUs 
halts the simulation and queues a command for the DUT to 
run the targeted application. Then, for each desired gold 
checkpoint, Simics advances the simulation the appropriate 
number of cycles and creates a checkpoint. Finally, after 
Simics creates the last checkpoint, DrSEUs resumes the 
simulation and uses SCP to transfer the output file to the 
host for later comparison. 

 
Figure 2. Campaign creation 

Performing Fault Injections 

We use the gold checkpoints as the entry point for our fault-
injection mechanism. Checkpoints contain the entire state of 
the simulation for a given point in time, including memory 
contents, general-purpose register values, CPU control-
register values (e.g. program counter), SoC peripheral 
component controller (e.g. Ethernet controller) register 
values, and translation-lookaside buffer (TLB) entries. 
DrSEUs targets all of the components contained on the 
processor for injection, excluding caches as they are not 
included by default in Simics’ models. We plan to include 
cache models for fault injection in future work, as we 
discuss further in Section 7. DrSEUs does not target 
memory contents or other devices external to the processor 
for injection. 

As shown in block 1 of Figure 3, DrSEUs begins each fault-
injection iteration by randomly picking one of the gold 
checkpoints for injection (excluding the final checkpoint, as 
the application has already completed execution by this 
point) and copying all files associated with this checkpoint 
to the injection directory. By modifying a copy of a gold 
checkpoint for each iteration, DrSEUs achieves two 
desirable characteristics. First, this process provides 
isolation between iterations, facilitating error diagnosis and 
classification. Second, campaign progression is accelerated 
because Simics does not need to repeat the device 
instantiation and DUT boot process for each iteration. 
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Figure 3. Fault injection 

In block 2 of Figure 3, DrSEUs randomly chooses a register 
or TLB entry for injection and uses the number of bits each 
target contributes to the overall system to distribute 
injection probability. DrSEUs then injects a fault by flipping 
a random bit of the selected target in the copied checkpoint 
and loads the modified checkpoint in Simics. Because fault 
injections take place outside the context of Simics, the DUT 
(and even Simics) is unaware that an injection has occurred. 

 

Figure 4. Injection and checkpoint comparison 

Execution monitoring begins in block 3 of Figure 3. In this 
phase, Simics advances the simulation the appropriate 
number of cycles and saves the next checkpoint. DrSEUs 
then compares this checkpoint with the corresponding gold 
checkpoint in order to track the propagation of faults (in 
memory blocks, TLB entries, and register values) 
throughout the system. DrSEUs repeats this process, 
comparing each checkpoint with the equivalent gold 
checkpoint. Figure 4 demonstrates the injection and 

comparison process for an example campaign of 5 
checkpoints, where DrSEUs chooses checkpoint 3 for 
injection. In the fault-injection campaign that we present in 
the next section, we skip checkpoint comparison until the 
final gold checkpoint in order to reduce the time required 
for execution monitoring. After comparison with the final 
gold checkpoint, DrSEUs continues the simulation and 
monitors the DUT’s console, shown in blocks 4 and 5 of 
Figure 3, checking for messages related to execution errors 
(including signal handler messages and Linux kernel errors) 
while using a timeout to detect if the DUT is hanging. If the 
application completes without any execution errors, DrSEUs 
uses SCP to retrieve the output file for comparison with the 
gold output file (retrieved during campaign creation) to 
check for data errors, shown in block 6 of Figure 3. In the 
case where the application completes successfully yet 
DrSEUs detects faults when comparing checkpoints, 
DrSEUs runs the target application a second time to 
determine the impact of these latent faults on the system. 
Finally, DrSEUs logs all results for later analysis, as shown 
in block 7 of Figure 3. 

DrSEUs can perform multiple fault-injection iterations in 
parallel to accelerate campaign progression. To achieve this, 
DrSEUs concurrently injects multiple checkpoints and 
launches each checkpoint in a separate instance of Simics. 
Each instance of Simics uses unique pseudo-terminals and 
host network ports for execution monitoring, preventing any 
cross communication between simulated DUTs. 

5. EXPERIMENT SETUP 
In this section, we present our experimental setup for a case 
study, which we analyze in the next section. Our experiment 
includes a fault-injection campaign for a Simics simulation 
of Freescale’s PowerPC-based P2020 running an edge-
detection, image-processing application. The campaign uses 
1000 checkpoints to provide a fine granularity for injection 
time and includes over 71,000 fault injections. 

Injection & Result Descriptions 

Figure 5 shows each component of the P2020 targeted for 
injection and the components’ contribution to bits targeted 
for injection. These include: configuration, control, and 
status registers (CCSR); CPU control registers (i.e., program 
counter, memory-management assist registers, etc.); direct 
memory access (DMA) controller registers; e500 coherency 
module (ECM) registers; enhanced local-bus controller 
(ELBC) registers; enhanced secure digital host controller 
(ESDHC) registers; enhanced serial peripheral interface 
(ESPI) controller registers; enhanced three-speed Ethernet 
controller (ETSEC) registers; general-purpose input/output 
(GPIO) registers; general-purpose registers (GPR); I2C 
module registers; L2 SRAM registers; memory controller 
(MC) registers; PCI express controller registers; 
programmable interrupt controller (PIC) registers; RapidIO 
controller registers; TLB entries; and universal serial bus 
(USB) controller registers. 
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Figure 5. P2020 component contributions to bits 

targeted for injection 

Table 1 lists and describes each of the result classifications 
for fault-injection iterations. In Section 6, we group the 
figures included in our analysis by outcome (for detail) or 
by category (for conciseness). 

Application Description 

Edge detection, and convolution in general, is an essential 
part of high-level algorithms in machine vision. Feature 
detection uses convolution-based edge detection to find 
corners or points of interest, which computer-vision 
algorithms can use to autonomously determine image 
quality. Spacecraft sensors can generate large amounts of 
raw data, yet downlink capabilities are limited. Therefore, it 
is necessary to perform image processing in situ and 
intelligently transmit only interesting images in order to 
conserve bandwidth. 

In our case study, we implement convolution using Fourier 
transforms instead of the direct form of convolution. FFT 
convolution is favorable because processing in the 
frequency domain is less computationally intensive for 
typical space-camera image resolutions and large kernels. 
This optimization consists of performing the image 
processing in the frequency domain (by multiplying the 
transformed kernel and image) and then computing the 
inverse FFT on the result, as shown in Figure 6. 

 

Figure 6. Stages in image-processing application 

 

 

 

Table 1. Fault injection classifications 

Category Outcome Description 

No Error 

Latent Faults 
Application executed successfully, 
but DrSEUs detected faults when 

comparing checkpoints 

Masked 
Faults 

Application executed successfully, 
and DrSEUs did not detect any 

faults when comparing checkpoints 

Persistent 
Faults 

Application executed successfully, 
and the only fault DrSEUs detected 
when comparing checkpoints was 

the originally injected fault 

Data Error 

Detected 
Data Error 

Application completed execution, 
but reported data errors 

Silent Data 
Error 

Application completed execution, 
but output file did not match gold 

output file 

Execution 
Error 

Hanging 
Application failed to complete 

execution and DUT became 
unresponsive 

Illegal 
Instruction 

Application failed to complete 
execution due to an illegal 

instruction (not reported by signal 
handler) 

Kernel Error Application failed to complete 
execution due to Linux kernel error 

Segmentation 
Fault 

Application failed to complete 
execution due to a segmentation 

fault (not reported by signal 
handler) 

Signal 
SIGILL 

Application failed to complete 
execution and signal handler 
reported SIGILL was raised 

Signal 
SIGIOT 

Application failed to complete 
execution and signal handler 
reported SIGIOT was raised 

Signal 
SIGSEGV 

Application failed to complete 
execution and signal handler 

reported SIGSEGV was raised 

Signal 
SIGTRAP 

Application failed to complete 
execution and signal handler 

reported SIGTRAP was raised 

Simics 
Error 

Address Not 
Mapped 

Simulation halted due to 
unmapped memory address 

Dropping 
Memop 

Simulation halted due to 
unmapped memory address 

SCP Error Missing 
Output 

Application completed execution, 
but SCP failed to retrieve the 

output file from the DUT 

Post-
Execution 

Error 
* 

Latent fault outcome where a 
subsequent run of the application 

failed 

  

Read Input 
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Convert to 
Grayscale Perform FFT

Perform 
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6. ANALYSIS AND RESULTS 
This section demonstrates the advanced analysis made 
possible by DrSEUs. We collect a variety of information 
during fault-injection campaigns, which allows us to 
organize the results in different ways to gain unique insights 
into the system and our targeted application. 

Randomness of Injections 

Before beginning our analysis, we demonstrate the 
randomness of injections. Figure 7 shows that DrSEUs 
evenly distributes the randomly injected faults over all bits 
targeted for injection, as these injection ratios closely match 
the bit ratios shown in Figure 5. 

 
Figure 7. Total injections performed for each target, 

grouped by category 

Due to the great disparity in sizes among the injection 
targets, Figure 7 impedes the visualization of outcomes that 
result from injections into some of the targets. To facilitate 
analysis, Figure 8 reorganizes the data of Figure 7 to show 
the percentage of outcomes for each target.  

 
Figure 8. Percentage of injections for each target, 

grouped by outcome 

Detail of Results 

We can also view the results for each register within a 
selected target. For example, Figure 9 shows results for 

injections in each general-purpose register. By compiling 
the results in this manner, we can perform further analysis to 
correlate the vulnerability and usage of each general-
purpose register. For example, the PowerPC architecture 
commonly uses r1 the stack pointer, which explains the 
occurrence of SIGSEGV signals (denoting a segmentation 
fault). We can inspect general-purpose register usage by 
analyzing a targeted application’s assembly-language 
representation, which a disassembler can facilitate. 

 
Figure 9. Total injections performed for each general-

purpose register, grouped by outcome 

Overview of Result Categories 

Figure 10 shows an overview for the injection campaign, 
with results grouped by category. As shown in the figure, 
most injected faults result in the no error category and do 
not affect the application’s execution or output. 

 
Figure 10. Campaign overview of result categories 

No Error—While the results in the no error category did not 
affect the targeted application’s execution or output, Figure 
11 shows half of these results stem from the latent and 
persistent fault outcomes, indicating the injected fault still 
affects the system. In these cases, we perform a second 
execution of the application to determine the effects of these 
latent faults on subsequent operations. Although the targeted 
application is unaffected, we note that other applications, or 
possibly the Linux kernel, can later suffer from an error. We 
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explore this possibility further in the analysis of the post-
execution error category, shown in Figure 16. 

 
Figure 11. Outcomes in no error category 

Data Error—Data error is the most common category that 
results in errors. All of the data errors for this application 
are silent data errors, as this application did not include any 
form of fault-tolerance to detect data errors. Figure 12 plots 
the severity of data errors for each target, demonstrating that 
injections into the Ethernet controller are the most 
destructive errors for the output data. These destructive 
errors are attributed to the fact that we use Ethernet to 
retrieve the output file from the DUT. Fortunately, Figure 
13 shows the number of injections into the Ethernet 
controller resulting in data errors is quite low. 

 
Figure 12. Average data match percentage for targets, 

filtered for data errors 

 
Figure 13. Total injections for targets, filtered for data 

errors 

Execution Error—The next most common result category is 
execution error. Figure 14 shows the breakdown of 
outcomes that fall under this category. The most common 
outcome in the execution error category is hanging, where 
the device simply becomes unresponsive. After these 
outcomes are segmentation faults (caught and uncaught), 
followed by illegal instructions (caught and uncaught). 

 
Figure 14. Outcomes in execution error category 

Simics Error—Simics error is the next most common 
category. Both of the outcomes that fall under this category 
result from the system attempting to access a memory 
address that is unmapped. In a physical system, this would 
result in an execution error. However, in Simics, these 
actions prevent the simulation from advancing. 
Unsurprisingly, all faults that result in Simics errors are due 
to TLB injections. 

SCP Error—We classify an iteration in the SCP error 
category when an error occurs while trying to retrieve the 
output file from the DUT (over SCP). We can filter the chart 
in Figure 7 to only display results in the SCP error category 
resulting in Figure 15, which clearly shows that SCP errors 
most commonly result from injections into the Ethernet 
controller, which is not surprising given that SCP 
communication takes place over Ethernet. 

 
Figure 15. Injection targets resulting in SCP errors 
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Post-Execution Error—The final injection result category is 
post-execution error. We classify an iteration in this 
category if, after the target application executes 
successfully, DrSEUs detects latent or persistent faults in 
the system and a second execution of the application fails. 
Figure 16 shows the breakdown of outcomes in the post-
execution error category. The figure clearly shows that the 
faults in this category cause errors at the system level and 
result in kernel errors and system unresponsiveness, leading 
us to the hypothesis that other results in the latent- and 
persistent-fault categories can still lead to system errors 
even if the injected faults did not have an immediate effect 
on the target application. 

 
Figure 16. Outcomes in post-execution error category 

Injection Time

Plotting the results over injection time (or checkpoint 
number) presents a unique view into the vulnerability of the 
target application. Figure 17 applies a moving average filter 
to the results to increase the clarity of trends showing that 
there are three distinct phases of our application that are 
more vulnerable than the rest of the application. Monitoring 
the devices console output while creating the gold 
checkpoints in the campaign creation process allows us to 
correlate ranges of checkpoints with processing stages. 
Table 2 shows this correlation. It is now apparent that the 
forward and inverse FFT phases of the application are by far 
the most vulnerable, as the first two areas of elevated errors 
occur during the forward FFT phase and the third are of 
elevated errors occurs during the inverse FFT phase. 

Table 2. Checkpoints for each application stage 

Execution Phase Checkpoint Range 
Read input image 0-1 

FFT preparation 1-32 

Forward FFT 32-605 

Complex multiplication 605-643 

Inverse FFT 643-964 

Save output image 964-999 

 

 

 

 
Figure 17. Injections over time 
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Latent Faults 

The unique ability of our fault injector to detect latent faults 
in the system allows us to measure the spread of faults 
throughout the system. Figure 18 shows the average number 
(across all results) of registers and memory blocks that an 
injected fault corrupts.  We can see that only a few injection 
targets contribute significantly to the propagation of faults, 
and these are CPU, GPR, and TLB. Furthermore, there is a 
correlation between the targets in Figure 18 that cause a fault 
in about one register on average and the targets in Figure 8 
that generally result in persistent faults. 

 
Figure 18. Fault propagation 

7. CONCLUSION 
This paper has presented our methodology for performing 
fault-injection testing on simulated commercial CPUs using 
Simics. The nature of the simulation allows us to observe, in 
great detail, the effects of injected faults on the system and 
target software. Our methodology allows designers to 
rapidly perform fault-injection campaigns to prepare for and 
supplement radiation-beam testing. We also presented a case 
study to demonstrate the powerful analysis made possible by 
our fault injector. We performed the case study’s fault-
injection campaign on a simulation of the Freescale P2020 
running an image-processing application, which is 
representative of a real space-processing system. 

Processor caches interesting for fault injection as caches 
occupy a large proportion of a device’s area and therefore 
can account for a significant amount of SEUs within a 
device. While Simics does not include models of device 
caches by default, Simics does supply tools for creating 
cache models. We plan to augment the simulation of the 
P2020 with L1 and L2 caches so that we can target these 
caches for fault injection. 

Work is currently underway to add support for the ARM 
Cortex-A9 processor to DrSEUs. We chose to add support 
for this device as there are two A9 cores included on 
Xilinx’s Zynq SoC, which is featured in the CHREC Space 
Processor (CSP) [20] [21]. We are also working to expand 
our injection capabilities to physical devices by injecting 
faults via JTAG (for both Freescale P2020 and ARM A9), 

which will allow us to make comparisons between the 
results seen in simulation and those seen on physical 
devices. 
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