
Communication Visualization for Bottleneck Detection of 
High-Level Synthesis Applications 

John Curreri, Greg Stitt, Alan George 
NSF Center for High-Performance Reconfigurable Computing 

Department of Electrical and Computer Engineering 
University of Florida 

{curreri, gstitt, george}@chrec.org 

  

ABSTRACT 
High-level synthesis tools increase FPGA productivity but can 
decrease performance compared to register-transfer level designs. 
To help optimize high-level synthesis applications, we introduce a 
bottleneck detection tool that provides a developer with a 
visualization of communication bandwidth between all 
application processes, while identifying potential bottlenecks via 
color coding. We evaluated the tool using third-party applications 
to identify and optimize bottlenecks in just several minutes, which 
achieved speedups ranging from 1.25x to 2.18x compared to the 
original FPGA execution. Overhead was modest with less than 
2% resource overhead and 3% frequency overhead.   

Categories and Subject Descriptors 
B.5.2 [Register-Transfer-Level Implementation]: Design Aids 
– Verification 

General Terms 
Measurement, Performance, Design, Verification. 

Keywords 
High-level synthesis; visualization; performance analysis; 
bottleneck detection. 

1. INTRODUCTION 
High-level synthesis (HLS) tools [2][8] increase productivity by 
allowing developers to program field-programmable gate arrays 
(FPGAs) using higher abstractions than register-transfer-level 
(RTL) code. However, higher abstractions can result in 
performance bottlenecks that are challenging for developers to 
identify due to a lack of visibility into the synthesized circuit 
structure and runtime behavior.  

Although software developers commonly use performance 
analysis tools to identify bottlenecks, there is a lack of such tools 
for FPGAs, especially for circuits generated from high-level 
synthesis. One of the key capabilities missing from existing 
FPGA performance-analysis approaches is visualization of 
communication bandwidth between different application 

processes. Without this information, a developer often must guess 
at the problem in order to perform optimizations, or has to add 
extra code to profile the circuit, which would be impractical for 
large applications. Alternatively, the developer must analyze the 
synthesized RTL code, which is not practical for many 
developers. 

In this paper, we enable such visualization and bottleneck 
detection for high-level synthesis. The presented tool provides the 
developer with a high-level bandwidth visualization of all 
communication between application processes for both the CPU 
and FPGA and graphically identifies bottlenecks via color coding. 
To measure bandwidth, the tool automatically adds hardware 
counters and software timers to the application code, executes the 
application, and then uses the measurements to generate the 
communication visualization of the application. Optimizing the 
bottlenecks shown by the visualization required only several 
minutes of developer effort with speedups ranging from 1.25x to 
2.18x compared to the original FPGA application with a modest 
2% resource overhead and 3% frequency overhead. 

2. RELATED RESEARCH 
Visualization and analysis tools have been heavily researched [6] 
for identifying software bottlenecks. To our knowledge, there are 
few studies on performance analysis of HLS-generated circuits. 
Performance analysis has been developed for ASICs by Calvez et 
al. [1] and FPGA circuits by DeVille et al. [4], but neither study 
targets HLS tools. Related work exists for performance analysis 
[7] of HDL applications, but that work is not appropritae for HLS 
applications due to lack of source-code correlation and bandwidth 
visualizations. Previous work exists for performance analysis of 
HLS applications and visualization using a modified version of 
PPW [3]. The techniques in this paper complement this previous 
timing-based performance analysis by providing instrumentation 
for bandwidth measurement and communication visualizations. 

3. COMMUNICATION VISUALIZATION 
This section discusses the visualizations and corresponding 
bottleneck detection and instrumentation techniques. 

3.1 Visualizations 
High-level synthesis generates an application-specific graph of 
processes mapped to different devices (e.g., FPGA, CPU, 
memory), where edges between processes correspond to 
communication. The presented visualizations display this graph 
along with measured bandwidths for each edge. 

Although the proposed techniques potentially apply to any high-
level synthesis tool with constructs equivalent to parallel 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
FPGA’12, February 22–24, 2011, Monterey, California, USA. 
Copyright 2012 ACM  978-1-4503-1155-7/12/02...$10.00. 
 



processes, in this paper we target Impulse-C. In Impulse-C, 
communication channels fall into two categories: streaming and 
DMA transfers. Streaming transfers use buffers between two 
communicating processes. Direct memory access (DMA) transfers 
move data to/from dedicated memory such as SRAM.   

The visualization tool initially constructs a directed graph based 
on the source code of the application. The tool visualizes 
resources such as CPUs, FPGAs, and memories using boxes.  The 
tool visualizes processes as nodes (i.e., ovals) that are placed into 
the box of the corresponding resource. For each communication 
API call in the application code, the tool creates a corresponding 
edge between nodes. Streaming buffers are shown as diamonds.  

Figure 1 shows an example of streaming communication in 
Impulse-C, along with the corresponding visualization of the 
process top writing to a stream buffer p1. Figure 2 shows an 
example of a DMA-communication call inside a function and the 
corresponding visualization of an FPGA processs top writing to 
an SRAM using a buffer datamemx. Memory used for DMA is 
shown as a separate box from the CPU or FPGA and the buffer is 
displayed as a separate box inside of the corresponding memory. 

As shown in Figure 3, the tool annotates each edge with the 
measured bandwidths, as discussed in Section 3.3, in addition to 
the percentage of maximum possible bandwidth. Note that the 
percentages correspond only to the time that each process 
transfers data. For example, a process may execute for 100 cycles 
without data transfers, which would not affect the measured 
bandwidth. Therefore, a percentage of 100% does not necessarily 
suggest a saturated channel, but rather the efficient use of the 
channel. For example, if multiple processes read from a single 
memory at different times, both read channels could potentially 
achieve 100% bandwidth. To simplify bottleneck detection, the 
edges of the graph corresponding to data transfers are color coded 
with varying shades of red below 50% bandwidth and shades of 
green above 50% bandwidth.  

3.2 Bottleneck Detection 
This section describes analysis techniques to detect 
communication bottlenecks, which can be used manually or 
automated to suggest potential optimizations.   

Streaming transfer bottlenecks can occur when a streaming buffer 
is full, in which case input bandwidth is lower than output 
bandwidth, as shown in Figure 3(a). Although such a bandwidth 
difference may be counterintuitive due to buffers normally being 
used to balance bandwidth, as stated in the previous section, the 
bandwidths only correspond to times that each process transfers 
data. In this situation, lower input bandwidth occurs because the 
producer process must block when the buffer is full, which 
increases the time for transfers and reduces bandwidth. To 

optimize this bottleneck, a designer can increase the buffer size, 
which allows the producer process to execute for longer before 
the buffer fills. Alternatively, the consumer process can be 
optimized via pipelining, different stream widths, etc. 

Empty stream buffers are another common bottleneck, which 
cause the consumer process to block, resulting in low output 
bandwidth, as shown in Figure 3(b). To optimize this bottleneck, 
the producer bandwidth should be increased using numerous 
possibilities including changing streaming widths, pipelining, or 
switching to a different communication method.   

An additional bottleneck can be caused by low bandwidths on 
both sides of the streaming buffer. This bottleneck can be caused 
by multiple problems, such as streaming bursts of data into 
streaming buffers that become full and empty at different times. 
Section 4.2 gives an additional example. To reduce this 
bottleneck, a combination of both optimization methods can be 
used.  

Memory buffers have common bottlenecks due to simultaneous 
transfers, in which case processes making DMA calls must block, 
resulting in decreased bandwidth. To reduce this bottleneck, 
synchronization can be added between processes to more 
effectively share bandwidth. Using small DMA transfer sizes can 
also cause bottlenecks, which can be optimized by sending larger 
chunks of data to increase bandwidth. 

In some situations, DMA transfers to external memory can result 
in bottlenecks appearing on other edges. For example, for a 
process writing to memory, the physical bandwidth of the 
memory may become saturated, in which case streaming buffers 
upstream will eventually become full. 

 

Figure 1: Streaming-communication call visualization 
 

Figure 2: Streaming-communication call visualization 

 

Figure 3: Example of (a) full and (b) empty streaming buffers. 

a) b) 



3.3 Instrumentation and Measurement 
To measure bandwidth of each communication channel, the tool 
instruments the high-level code to measure the amount of data 
transferred and the total transfer time, which includes idle time as 
a result of blocking.  In software, the tool adds a wrapper around 
each communication call type (e.g., stream read) that measures 
the time and records the transfer size. 

FPGA processes are instrumented by adding monitoring circuits 
to each communication call. During execution, the monitoring 
circuits store measured bandwidths locally in registers, which are 
extracted by the microprocessor after the application has finished. 
For Impulse-C, the invocation of a communication API call is 
specified by a specific state in a state machine. Counters are used 
to monitor cycles spent in a particular call, from which total 
transfer time can be determined given the clock frequency. 

Some communication calls have a static transfer size while others 
can change dynamically. For a static transfer size, the fixed size 
of each transfer can be parsed from the source code and the total 
data can be determined by the measured number of invocations. 
For dynamic transfer sizes, a counter is used to sum the total bytes 
transferred each time the process invokes the API call. 

To measure the maximum bandwidth of a particular type of 
communication, the tool runs benchmarks that perform four types 
of transfers between processes for both streaming and DMA 
communication: CPU to CPU, from CPU to FPGA, from FPGA to 
CPU, and FPGA to FPGA.  

4. EXPERIMENTAL RESULTS 
Although ideally the proposed techniques would be integrated 
into a high-level synthesis tool, Impulse-C is proprietary, so we 
instead added instrumentation to the application code using Perl 
scripts. A Java GUI front end is used to select files and 
instrumentation features such as which processes and states 
should be monitored. The resulting visualization uses Graphviz. 

We evaluated the techniques on two different platforms. The first 
platform was the XtremeData XD1000, which contains a dual-
processor motherboard with an Altera Stratix-II EP2S180 FPGA 
in one of the Opteron sockets. The second platform was one node 
of the Novo-G supercomputer [5], which uses a GiDEL 
PROCStar III card with four Stratix-III EP3SE260 FPGAs. 
Impulse-C 3.3 is used for the XD1000 while Impulse-C 3.6 with 
an in-house platform support package is used for Novo-G.   

4.1 Triple DES 
Triple DES is a block cipher used for encryption.  The application 
consists of a modified version of code provided by Impulse-C. 
We evaluated this application on the XD1000 platform.   

Figure 4 shows the resulting visualization, which solely uses 
streaming communication. By analyzing the visualization, we 
identified a bottleneck (shown by the two arrows) corresponding 
to transfers between the CPU and FPGA. This bottleneck was 
caused by the low FPGA-to-CPU bandwidth relative to the FPGA 
internal bandwidth.  The stream buffer blocks_decrypted_ic has a 
higher input bandwidth than output bandwidth indicating that 
streaming communication is blocked because the buffer is empty.   

To optimize the application, we exploited DMA transfers to 
increase transfer rates between the CPU and FPGA, which 
enabled a 2.18x speedup and required about half an hour to 

complete (not including synthesis times). Logic overhead for the 
instrumented code was 2%. Clock frequency overhead was 3%. 

4.2 Molecular Dynamics 
Molecular Dynamics (MD) simulates interactions between atoms 
and molecules over discrete time intervals.  For our experiments, 
the simulation computes forces of 16,384 molecules. Serial C MD 
code was obtained from Oak Ridge National Lab and optimized to 
run on the XD1000 FPGA using Impulse-C. 

By analyzing the visualization in Figure 5, we identified a 
bottleneck resulting from all of the streaming buffers with the 
letter p becoming full. Also, the streaming buffers with the letter a 
have low bandwidth both on the inputs and outputs due to the 
streaming buffer becoming full and the bottom process blocking 
during stream reads.  The bottom process requires data from all a 
streams to be ready simultaneously for its stream read state.  If 
one a buffer becomes empty, then the other can become full while 
the bottom process waits for data.   

To reduce the bottleneck, we increased the buffer size, which only 
required several minutes of effort and achieved a speedup of 
1.25x. The speedup compared to the serial baseline running on the 
2.2 GHz Opteron improved from 6.2x to 7.8x. 

4.3 Backprojection 
Backprojection is a DSP algorithm for tomographic 
reconstruction of data via image transformation.  We evaluated 
this application on all four FPGAs of the ProcStar-III board in the 
Novo-G supercomputer. Although the figure is omitted for 
brevity, the resulting visualization showed an obvious bottleneck 
where PCI data transfers are 8-25% of peak speeds due to full 
streaming buffers.  

This bottleneck could potentially be reduced by increasing the 
buffer size. However, we were unable to perform this 
optimization due to a lack of full Impulse-C support on Novo-G 
that limits streaming buffer sizes. Similarly, we could increase 

 

Figure 4: Visualization of streaming Triple DES. 



bandwidths using DMA transfers, but the current Impulse-C 
support also excludes DMA transfers.  

5. CONCLUSIONS 
In this paper, we introduced a communication visualization tool 
for high-level synthesis that allows a developer to quickly locate 
communication bottlenecks. The application's processes and 
communication calls are visualized as a directed graph with edges 
between the CPU, FPGA and buffers. By analyzing the graph for 
bandwidth distribution and ratios, developers can identify 
bottlenecks and often quickly apply optimizations. Case studies 
showed the detection and optimization of bottlenecks, which 
resulted in FPGA application speedups ranging from 1.25x to 
2.18x. In addition, the tool provides source-code correlation, 
which hides the high-level-synthesis-generated code from the 
application developer.  Future work includes automating analysis 
and providing suggestions for optimization.  The visualization can 
also be expanded by including performance analysis of 
computation for each process. 

6. ACKNOWLEDGMENTS 
This work was supported in part by the I/UCRC Program of the 
National Science Foundation under Grant No. EEC-0642422. The 
authors gratefully acknowledge vendor equipment and/or tools 
provided by Altera, Impulse Accelerated Technologies, Nallatech, 
and Xilinx. 

7. REFERENCES 
[1] Calvez, J.P. and Pasquier, O. Performance monitoring and 

assessment of embedded HW/SW systems. In Proc. 
International Conference on Computer Design (ICCD), 52-
57, 1995. 

[2]  Canis, A., Choi, J., Aldham, M., Zhang, V., Kammoona, A., 
Anderson, J. H., Brown, S., and Czajkowski, T.. Legup: 
high-level synthesis for FPGA-based processor/accelerator 
systems. In FPGA’11: Proceedings of the 19th ACM/SIGDA 
International Symposium on Field Programmable Gate 
Arrays, 33–36, 2011. 

[3] Curreri, J., Koehler, S., George, A., Holland, B., and Garcia, 
R. Performance analysis framework for high-level language 
applications in reconfigurable computing. ACM Transactions 
on Reconfigurable Technology and Systems (TRETS), 3, 1, 
(Jan. 2010), 1-23. 

[4] DeVille, R., Troxel, I., and George, A.D. Performance 
monitoring for run-time management of reconfigurable 
devices. International Conference on Engineering of 
Reconfigurable Systems and Algorithms (ERSA), 175-181, 
2005. 

[5] George, A., Lam, H., and Stitt, G.. Novo-g: at the forefront 
of scalable reconfigurable supercomputing. Computing in 
Science Engineering, 13, 1 (Jan-Feb 2011), 82-86. 

[6] Heath, M. and Etheridge, J. Visualizing the performance of 
parallel programs. Software, IEEE, 8, 5, (Sep. 1991), 29-39. 

[7] Koehler, S., Curreri, J., and George, A.D. Performance 
analysis challenges and framework for high-performance 
reconfigurable computing. Parallel Computing, 34, 4-5, 
(2008), 217-230. 

[8] Villarreal, J., Park, A., Najjar, W., and Halstead, R.. 
Designing modular hardware accelerators in c with roccc 2.0. 
In Field-Programmable Custom Computing Machines, 
Annual IEEE Symposium on, 127-134, 2010. 

 

 

Figure 5: Bandwidth visualization for Molecular Dynamics (half of FPGA cropped to enlarge image). 


