

A Scalable RC Architecture
for Mean-Shift Clustering

Stefan Craciun
*
, Student Member, IEEE, Gongyu Wang

*,
Student Member, IEEE,

Alan D. George
*
, Fellow, IEEE, Herman Lam

*
, Member, IEEE, Jose C. Principe

†
, Fellow, IEEE

*
NSF Center for High-Performance Reconfigurable Computing (CHREC)

†
Computational Neuro-Engineering Laboratory (CNEL)

Department of Electrical and Computer Engineering, University of Florida Gainesville, Florida, 32611-6200

(email: craciun@chrec.org, wangg@chrec.org, george@chrec.org, hlam@chrec.org, principe@cnel.ufl.edu)

Abstract— The mean-shift algorithm provides a unique

non-parametric and unsupervised clustering solution to image

segmentation and has a proven record of very good

performance for a wide variety of input images. It is essential

to image processing because it provides the initial and vital

steps to numerous object recognition and tracking

applications. However, image segmentation using mean-shift

clustering is widely recognized as one of the most compute-

intensive tasks in image processing, and suffers from poor

scalability with respect to the image size (N pixels) and number

of iterations (k): O(kN2). Our novel approach focuses on

creating a scalable hardware architecture fine-tuned to the

computational requirements of the mean-shift clustering

algorithm. By efficiently parallelizing and mapping the

algorithm to reconfigurable hardware, we can effectively

cluster hundreds of pixels independently. Each pixel can

benefit from its own dedicated pipeline and can move

independently of all other pixels towards its respective cluster.

By using our mean-shift FPGA architecture, we achieve a

speedup of three orders of magnitude with respect to our

software baseline.

Keywords—mean-shift; image segmentation; hardware

acceleration; FPGA; reconfigurable computing

I. INTRODUCTION

Nearly 30 years ago in 1975, Fukunaga and Hosteler
proposed a clustering technique [1] that would later make a
considerable impact in the clustering domain due to its
unique unsupervised and non-parametric nature. In 1995
Cheng [2] established a rigorous mathematical background
for the algorithm, proving its convergence in a finite number
of iterations and giving it the familiar “mean-shift” name.
The contributions of Comaniciu & Meer in the early 2000s
demonstrated the performance advantages of the mean-shift
algorithm [3], by efficiently applying it to image-processing
applications, mainly image segmentation, tracking and edge
detection. For image segmentation, the mean-shift algorithm
has become an increasingly popular solution, yielding good
results and providing a solid stepping stone for high-level
vision tasks [4]. Image segmentation maps the input image
to smaller pixel regions that share a common feature. This
method helps in analyzing and interpreting the image,
transforming it from a random collection of pixels to a
unique arrangement of recognizable objects. Image
segmentation is used to locate and separate objects from the
background and from each other, to find boundaries,
contours or any general region of interest. It is also

instrumental to a multitude of domains with applications in
computer/machine vision, medical imaging/diagnosis [5],
satellite imaging and face recognition [6] to name just a few.
However, Fukunaga and Hosteler stated in their first
publication that their algorithm “may be costly in terms of
computer time and storage.” Even for today’s much
improved computational platforms, their assessment remains
true. The task is particularly challenging because the
algorithm scales poorly with both the number of pixels (N)
and number of iterations (k): O(kN

2
).

Speeding up multidimensional clustering in statistical
data analysis has been the focal point of numerous papers
that have employed different techniques to accelerate the
clustering algorithms. These techniques primarily focus on
incorporating better distance functions, better techniques for
stopping early, and data-dimensionality reductions [7].
Other approaches have transitioned from conventional CPU
platforms to GPUs [8] and many-node CPU platforms [9], in
an effort to accelerate the convergence speed. Recently,
efforts to accelerate the mean-shift algorithm have focused
on FPGA technology [10] and have achieved the most
promising results to date. In this paper, we tackle the
problem of prohibitive execution time by first breaking the
algorithm down to its smallest grain, which is the single-
pixel movement. We start by first showing that the fine
granularity of this algorithm allows all pixels to be shifted in
parallel towards their respective clusters due to their
computational independence. By first designing a pipeline
dedicated to the individual movement of one pixel, and then
scaling this approach to incorporate hundreds more, we
demonstrate that the algorithm can be accelerated without
incurring significant overhead. The computational platform
we propose is ideal for this scenario, consisting of gate-array
fabric on which these pipelines can be replicated, so that
each one can process individual pixel movement over
multiple iterations. This embarrassingly parallel approach is
first replicated to effectively utilize all FPGA resources and
then further scaled up to a board-level architecture (4
coupled FPGAs). The speedup we achieve, by unrolling the
outer loop and clustering pixels in parallel (wide
parallelism) while pipelining the inner loop and
accumulating pairwise pixel interaction every clock cycle
(deep parallelism), is more than one-thousand fold.

The organization of the paper will proceed by first
establishing the mathematical background and presenting a
quick overview of the baseline algorithm. In Section III, the

This work was supported in part by the I/UCRC Program of the National

Science Foundation under Grant Nos. EEC-0642422 and IIP-1161022.

proposed parallel architecture model is presented in detail.
In Section IV, we present numerical results while section V
outlines future work and our continued efforts to optimize
and further scale our current architecture. Finally, in Section
VI, we draw conclusions and key insight from this work.

II. MATHEMATICAL BACKGROUND

A. Mean-shift description

The mean-shift algorithm has been intuitively called a

“hill climbing” technique, because the data points move in

the direction of the estimated gradient. It is also commonly

named a “mode seeking” algorithm, because the data points

cluster around the nearest density maxima (the modes of the

data). The underlying fundamental approach of the mean-

shift is to transform the sampled feature space into a

probability density space and locate the peaks of the

probability density function (PDF). The regions of highest

density are the cluster centers. This method is considered an

unsupervised clustering method because the number of

clusters and their location is determined only by the

distribution of the data set.

B. Mathematical framework

 The Parzen window technique is a very popular way of
evaluating the PDF of a random variable. The kernel density
estimator for a 3-dimensional space given n samples can be
expressed as:

 ̂()

∑ (

)

where h is the kernel size or bandwidth parameter. A wide
range of kernel functions can be used in estimating the PDF.
The most frequently used kernel and the one we have chosen
to evaluate the PDF with is the Gaussian kernel:

 ()

The next step is to calculate the gradient of the PDF
 ̂() and set it equal to zero for finding the peaks of the
density function. The resulting mean-shift equation using the
Gaussian kernel is:

 ()
∑

()

∑

()

The term m(x) is the new location of point x while the
distance traveled by the point from location x to m(x) is
coined as the “mean-shift” distance.

III. HARDWARE ARCHITECTURE

A. Approach

We have chosen to focus on the Gaussian mean-shift
(GMS) algorithm for several key reasons. GMS is primarily
a non-parametric and unsupervised clustering technique. This
advantage makes it a perfect candidate for an autonomous
setting where human guidance is restricted. GMS does not
require any prior information with respect to the number of

clusters, their shape, or the distribution of the data. The
mean-shift algorithm is also embarrassingly parallel due to
its high granularity, and can be efficiently mapped to
hardware for faster execution without sacrificing
performance. Pixels move in the direction of the estimated
PDF gradient at every iteration, but the gradient vector
estimation (Eq. 3) can be evaluated at every pixel location in
parallel. This key advantage is leveraged through our
hardware design.

Each pixel in the dataset maps to a unique point in the
feature space based on its grayscale value, along with an x
and y coordinate location (pixel(x, y, grayscale)). Even
though this is an iterative algorithm, as pixels in the feature
space converge toward their respective clusters, their new
locations are never updated in the original image (as in the
blurring GMS). The gradient vector is estimated based on the
pixel distribution of the original image, allowing us to
achieve hazard-free parallelization across multiple devices as
long as each device has a copy of the entire image in
memory. Each FPGA could thus segment a different region
of the image without encountering boundary problems.

By successfully exploiting the inherent mean-shift
parallelism, we have designed a scalable hardware
architecture capable of clustering hundreds of pixels in
parallel. Each pixel benefits from its own dedicated pipeline
and moves independent of all other pixels towards its cluster.
This approach can be easily scaled to incorporate multiple
FPGAs without incurring significant overhead as can be
observed in the experimental results section. By parallelizing
the mean-shift algorithm and clustering regions of the image
consisting of hundreds of pixels in parallel, we have
leveraged the advantages of reconfigurable computing and
efficiently decreased computational complexity (loop
unrolling).

B. Pipeline Architecture

 Image segmentation requires the pairwise distance
computations of all pixels for evaluating the PDF. Since we
utilize the Gaussian kernel to estimate the PDF we designed
a hardware block (Fig. 1) that can quickly compute squared
Euclidean distances.

The pipelined design allows a new pixel to be input every
clock cycle, and enables us to efficiently stream pixel values
from memory without stalling. The Euclidean distance block
is further integrated in the pipeline design for evaluating the
Gaussian kernel. Since the architecture features a 32-bit
fixed-point implementation the exponential function used in
Eq. 2 is quantized to a finite look-up table. Fig. 2 shows a
graph of our quantized (10 values) exponential
approximation overlapping the true analog function.

Fig. 1. Pipelined Euclidean distance hardware diagram.

add

subpixj x-value

add

register

sub

sub

mult

mult

mult

pixi x-value

pixi y-value

pixi z-value

pixj y-value

pixj z-value

Fig. 3 shows a complete diagram of the 32-bit fixed-point
pipeline. The input pixel_i (x, y and z value) is the pixel
being moved by the pipeline to a new location, while pixel_j
(x, y and z values) represents streaming pixel values from
memory. All computational blocks are fully pipelined and
can handle a steady stream of input pixels from memory. The
four outputs in Fig. 3 represent the numerator and
denominator values of Eq. 3. By dividing the first three
outputs with the last output, we obtain the new x, y and z
locations of the “mean-shifted” pixel (Eqs. 4, 5, 6).

∑

 (
‖ ‖

)

∑

 (
‖ ‖

)

∑

 (
‖ ‖

)

∑

 (
‖ ‖

)

∑

 (
‖ ‖

)

∑

 (
‖ ‖

)

Each pipeline could have its dedicated fixed-point divider to
compute the results shown in Eqs. 4, 5 and 6. However, the
hardware resources required by a fixed-point divider would
pose considerable restrictions on the number of pipelines that

would fit on the FPGA. Fig. 4 shows a more conservative
approach for the hardware resource utilization. The pipelined
32-bit divider is shared to service all pipelines with the
addition of two extra multiplexers. The multiplexers serve
the purpose of delaying each pipeline output by one clock
cycle. This approach helps us save considerable hardware
resources while only adding a negligible time penalty (less
than 0.1% of the overall execution time).

The application is scaled by replicating the pipelines to
efficiently allocate all the available FPGA hardware
resources. Each pipeline is dedicated to servicing the
movement of one pixel. The last remaining step is to
configure the pipelines for multiple iterations by closing the
feedback loop from the output registers back to the pipeline
input registers (Fig. 4).

C. Dataflow

The algorithm follows a repetitive pattern. The pixels

being moved towards their modes are read from memory

and stored in the onboard input delay registers (Fig. 4). The

entire image is then streamed from memory to every

pipeline (low memory bandwidth needed) and the output

results are stored in the output delay registers. This process

is repeated for multiple iterations until every pixel

converges to a mode. A new batch of pixels is then read

from memory until the entire image is serviced.

Fig. 2. Look-up table estimation of exponential function.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 5 10 15

Lo
ok

-U
p

Ta
bl

e
Va

lu
es

Exponential Sampled Values

quantized exponential

exp

Fig. 4. Feedback loop closed for running multiple iterations.

Mux

128

to 1

sel1

Mux

384

to 1

Pipeline

1

sel2

pipeline

divider

Pipeline

128

Mux

2 to

1

sel

feedback

new pix

1

location

new pix

2

location
new pix

3

location

new pix

127

location

new pix

128

location

Mux

2 to

1

sel

feedback

old pix

1

location

old pix

2

location
old pix

3

location

old pix

127

location

old pix

128

locationin
p

u
t

d
e

la
y

lin
e

 (
in

iti
a

l
p

ix
e

l
lo

ca
tio

n
s
) o

u
tp

u
t d

e
la

y
 lin

e
 (n

e
w

 p
ixe

l lo
ca

tio
n

s
)

Fig. 3. Pipeline block diagram.

right

shift

exp

lookup

table
mult

delay

accum

delay

delay

register

pixj x-value

pixj y-value

pixj z-value

add

subpixj x-value

add

register

sub

sub

mult

mult

mult

pixi x-value

pixi y-value

pixi z-value

pixj y-value

pixj z-value

accum

mult accum

mult accum

D. Fast and accurate exploration of design space

In previous subsections, we described the hardware
architecture for image segmentation that is scalable to
multiple FPGAs. Some readers may notice that our design is
not fully optimized (e.g., pipeline stalls while loading a new
batch of dedicated pixels). We made this informed decision
to focus on more productive design choices from the entire
design space.

We created abstract models that contain timing
parameters and high-level behavioral code. Using these
models we estimated the execution time. We identified four
design paths that were considered as shown in Table 1. Every
path consists of several steps, each of which represents a
distinct feature added to the design, including new
functionality such as multi-iteration (e.g., path 1), and
optimizations such as double-buffering (e.g., path 2). We
then predicted execution times for every step along each
path. Combining this information, we created the
productivity curve for each path as shown in Fig. 5. We
concluded that path two (optimization of the pipelines), does
not provide much speedup to either 1-iteration or 5-iteration
designs and that scaling to multiple FPGAs clearly provides
the most productive way of achieving higher performance.

IV. EXPERIMENTAL RESULTS

A. Platform Description

The RC platform used to test the performance of our
proposed architecture is Novo-G, a reconfigurable
supercomputer housed at the NSF Center for High-
Performance Reconfigurable Computing (CHREC) [11].
The FPGAs targeted for implementing the scalable mean-
shift architecture are Altera Stratix-III E260s as part of the
GiDEL PROCStar III quad-FPGA boards. This family of
FPGAs features 768 18×18 multipliers and 256K logic
elements, with 4.25GB of dedicated memory in three
parallel banks. The software baseline is coded in C,
compiled using GCC with optimization –O4, and executed
on an AMD 2.26 GHz Xeon E5520 with 4GB of DDR400
RAM.

B. Performance Results

Our architecture first incorporates eight pipelines and is
gradually scaled by increasing this number up to a maximum
of 128 pipelines on one FPGA. From our compilation results
we conclude that our limiting resource is the DSP block 18-
bit elements. A maximum of 128 pipelines could fit on one
Stratix III E260 FPGA allowing us to effectively compute
the PDF gradient at 128 different locations in parallel and
cluster 128 pixels at the same time. The two contributing
factors to the achieved performance are the pipelined
architecture (deep parallelism), along with the parallelized
pipeline approach (wide parallelism). Not only can we
cluster multiple pixels in parallel but we can also clock in a
new pixel from memory to each pipeline without stalling.
Fig. 6 shows the correlation between the number of pipelines
and the speedup achieved on one FPGA. As expected the
speedup is linearly dependent on the amount of loop
unrolling.

As we continue scaling our architecture beyond one
FPGA, the overhead associated with the host-to-FPGA data
transfers prevent the linear trend in speedup observed for one
FPGA. Fig. 7 shows the speedup increase as multiple FPGAs
are used to tackle the segmentation task. We can conclude
that our proposed hardware architecture accelerates the
mean-shift algorithm over 1000 times using four FPGAs and
can continue to be further scaled to incorporate more FPGAs
due to its low overhead characteristics. Speedup is not only
increased through scaling the architecture to cluster more
pixels in parallel, but also by running multiple iterations
inside a pipelined architecture.

C. Segmentation Visual Results

For testing the performance of our fixed-point
architecture we segmented two grayscale images of various
complexities and resolutions, and compared our hardware

Table 1. Design paths based on 1-FPGA 1-iteration design

Fig. 5. Predicted execution time of design paths.

Fig. 6. Speedup achieved as number of pipelines are increased.

0

50

100

150

200

250

300

350

400

450

0 50 100 150

Sp
ee

d
u

p

Number of Pipelines

Fig. 7. Speedup achieved for multi-FPGA image segmentation.

fixed-point results to a floating-point software
implementation. We then calculated the mean squared error
(MSE) between the final location of the pixels in the
floating-point implementation and our hardware fixed-point
architecture. The MSE values of 187 for the cameraman 8-
bit 256 by 256 grayscale image and 100 for the flower 8-bit
512 by 512 grayscale image are then compared to the radius
of the smallest cluster. For the cameraman image the
smallest cluster radius is 213 while for the flower image the
smallest radius is 202. In both cases the MSE values are
smaller than the radii of the smallest clusters, meaning that
our fixed-point quantization errors do not significantly
affect the final segmentation results. Another measure that
quantifies our clustering accuracy is the misclassification
error. The misclassification errors for the two images prove
that less than 10% of pixels converge to a different cluster in
hardware and software. For each segmentation experiment,
the kernel size is fixed to 128, while each pixel is clustered
over 32 iterations. Figs. 8 and 9 show each grayscale image
next to the segmented results for both our fixed point
architecture and a software floating point implementation. In
both the software and hardware segmentation figures, each
cluster is colored in using a different grayscale value. Since
we employed a large kernel size (128) we expect the PDF to
be relatively smooth with few maxima resulting in relatively
low number of segments. Also note that the main
differences in Figs. 8 and 9 are in the way the background is
segmented and not the foreground objects.

V. FUTURE WORK

The current architecture has been scaled to run on a
maximum of four Stratix III E260 FPGAs on the GiDEL
PROCStar III board. However, our speedup results show
that the increase in overhead associated with a multi-FPGA
implementation is marginal, and that the architecture can be
further scaled for increased speedup on multiple boards. Our
future work will focus on scaling the mean-shift architecture
beyond the current board-level design. Also, since speedup
is dependent on the number of pipelines we can fit on every
FPGA, we will target larger Stratix IV and V FPGAs.

VI. CONCLUSIONS

The mean-shift algorithm provides a non-parametric and

unsupervised clustering technique that is used in a multitude

of applications ranging from object recognition, to tracking

and quality control to name just a few. Image segmentation

is a low-level image processing task that can be solved using

mean-shift clustering. Although the mean-shift approach

yields good results for image segmentation, its

computational challenges have prohibited its impact in the

image processing domain, with runtimes that have precluded

real-time applications. This paper proposes a scalable

architecture that accelerates the mean-shift by allocating

dedicated hardware to clustering hundreds of pixels in

parallel. Due to the high granularity of the mean-shift

algorithm, we can evaluate the PDF gradient vector at

different locations of the feature space in parallel, which

allows us to move the pixels in parallel toward their

respective clusters. Our scalable architecture consists of

fixed-point 32-bit pipelines that are replicated to effectively

utilize all hardware resources of the FPGA fabric. Our

proposed architecture is tested on a PROCStar III board

using all four Stratix III E260 FPGAs. The maximum

achieved speedup for a 464 by 332 8-bit grayscale image is

1164, while the small overhead penalty associated with

scaling the architecture to incorporate multiple FPGAs

shows that our design can be further scaled to span multiple

boards for better speedup results.

VII. REFERENCES

[1] K. Fukunga, L. D. Hosteler, “The Estimation of the Gradient of a
Density Function, with Application in Pattern Recognition,” IEEE
Trans. Information Theory (IT), Vol. 21, Issue. 1, pp. 32-40, Jan.
1975

[2] Y. Cheng, “Mean Shift, Mode Seeking, and Clustering,” IEEE Trans.
Pattern Analysis and Machine Intelligence, Vol. 17, No. 8, pp. 790-
799, Aug. 1995.

[3] D. Comaniciu, P. Meer, “Mean Shift Analysis and Applications,”
Proc. Seventh International Conference on Computer Vision, pp
1197-1203, Sept. 1999

[4] M. J. Deilamani, R. N. Asli, “Moving Object Tracking Based on
Mean Shift Algorithm and Features Fusion,” International
Symposium on Artificial Intelligence and Signal Processing, pp. 48-
53, June 2011.

[5] P. Bai, C. Fu, M Cao, Y. Han, “Improved Mean Shift Segmentation
Scheme for Medical Ultrasound Images,” Fourth International
Conference on Bioinformatics and Biomedical Engineering (iCBBE),
pp. 1-4, June 2010

[6] A. Yamashita, Y. Ito, T. Kaneko, H. Asama, “Human Tracking with
Multiple Cameras Based on Face Detection and Mean Shift,” IEEE
International Conference on Robotics and Biometrics, pp. 1664-1671,
Dec. 2011.

[7] W. Al-Nuaimy, Y. Huang, A. Eriksen, V. T. Nguyen, “Automatic
Feature Selection for Unsupervised Image Segmentation,” Applied
Physics Letters, Vol. 77, Issue: 8, pp. 1230-1232, Aug. 2000.

[8] J. Zhang, S. Luo, X. Liu, “Weighted Mean Shift Object Tracking
Implemented on GPU for Embedded Systems,” International
Conference on Control Engineering and Communications Technology
(ICCECT), pp. 982-985, Dec. 2012.

[9] H. Wang, J. Zhao, H. Li, J Wang, “Parallel Clustering Algorithms for
Image Processing on Multi-Core CPUs,” International Conference on
Computer Science and Software Engineering, Vol. 3, pp. 450-453,
2008.

[10] U. Ali, M. B. Malik, K. Munawar, “FPGA/Soft-Processor Based
Real-Time Object Tracking System,” Fifth Southern Conference on
Programmable Logic (SPL), pp 33-37, April 2009.

[11] A. George, H. Lam, and G. Stitt, “Novo-G: At the Forefront of
Scalable Reconfigurable Computing,” IEEE Computing in Science &
Engineering (CiSE), Vol. 13, No. 1, Jan/Feb. 2011, pp. 82-86.

Fig. 8. Left to right: Cameraman: 256 by 256 8-bit grayscale image,

floating-point segmentation and fixed-point segmentation result.

Fig. 9. Left to right: Flower: 512 by 512 8-bit grayscale image, floating-

point segmentation and fixed-point segmentation result.

