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Abstract— The mean-shift algorithm provides a unique 

non-parametric and unsupervised clustering solution to image 

segmentation and has a proven record of very good 

performance for a wide variety of input images. It is essential 

to image processing because it provides the initial and vital 

steps to numerous object recognition and tracking 

applications. However, image segmentation using mean-shift 

clustering is widely recognized as one of the most compute-

intensive tasks in image processing, and suffers from poor 

scalability with respect to the image size (N pixels) and number 

of iterations (k): O(kN2). Our novel approach focuses on 

creating a scalable hardware architecture fine-tuned to the 

computational requirements of the mean-shift clustering 

algorithm. By efficiently parallelizing and mapping the 

algorithm to reconfigurable hardware, we can effectively 

cluster hundreds of pixels independently. Each pixel can 

benefit from its own dedicated pipeline and can move 

independently of all other pixels towards its respective cluster. 

By using our mean-shift FPGA architecture, we achieve a 

speedup of three orders of magnitude with respect to our 

software baseline. 

Keywords—mean-shift; image segmentation; hardware 

acceleration; FPGA; reconfigurable computing 

I. INTRODUCTION 

Nearly 30 years ago in 1975, Fukunaga and Hosteler 
proposed a clustering technique [1] that would later make a 
considerable impact in the clustering domain due to its 
unique unsupervised and non-parametric nature. In 1995 
Cheng [2] established a rigorous mathematical background 
for the algorithm, proving its convergence in a finite number 
of iterations and giving it the familiar “mean-shift” name. 
The contributions of Comaniciu & Meer in the early 2000s 
demonstrated the performance advantages of the mean-shift 
algorithm [3], by efficiently applying it to image-processing 
applications, mainly image segmentation, tracking and edge 
detection. For image segmentation, the mean-shift algorithm 
has become an increasingly popular solution, yielding good 
results and providing a solid stepping stone for high-level 
vision tasks [4]. Image segmentation maps the input image 
to smaller pixel regions that share a common feature. This 
method helps in analyzing and interpreting the image, 
transforming it from a random collection of pixels to a 
unique arrangement of recognizable objects. Image 
segmentation is used to locate and separate objects from the 
background and from each other, to find boundaries, 
contours or any general region of interest. It is also 

instrumental to a multitude of domains with applications in 
computer/machine vision, medical imaging/diagnosis [5], 
satellite imaging and face recognition [6] to name just a few. 
However, Fukunaga and Hosteler stated in their first 
publication that their algorithm “may be costly in terms of 
computer time and storage.” Even for today’s much 
improved computational platforms, their assessment remains 
true. The task is particularly challenging because the 
algorithm scales poorly with both the number of pixels (N) 
and number of iterations (k): O(kN

2
).  

Speeding up multidimensional clustering in statistical 
data analysis has been the focal point of numerous papers 
that have employed different techniques to accelerate the 
clustering algorithms. These techniques primarily focus on 
incorporating better distance functions, better techniques for 
stopping early, and data-dimensionality reductions [7]. 
Other approaches have transitioned from conventional CPU 
platforms to GPUs [8] and many-node CPU platforms [9], in 
an effort to accelerate the convergence speed. Recently, 
efforts to accelerate the mean-shift algorithm have focused 
on FPGA technology [10] and have achieved the most 
promising results to date. In this paper, we tackle the 
problem of prohibitive execution time by first breaking the 
algorithm down to its smallest grain, which is the single-
pixel movement. We start by first showing that the fine 
granularity of this algorithm allows all pixels to be shifted in 
parallel towards their respective clusters due to their 
computational independence. By first designing a pipeline 
dedicated to the individual movement of one pixel, and then 
scaling this approach to incorporate hundreds more, we 
demonstrate that the algorithm can be accelerated without 
incurring significant overhead. The computational platform 
we propose is ideal for this scenario, consisting of gate-array 
fabric on which these pipelines can be replicated, so that 
each one can process individual pixel movement over 
multiple iterations. This embarrassingly parallel approach is 
first replicated to effectively utilize all FPGA resources and 
then further scaled up to a board-level architecture (4 
coupled FPGAs). The speedup we achieve, by unrolling the 
outer loop and clustering pixels in parallel (wide 
parallelism) while pipelining the inner loop and 
accumulating pairwise pixel interaction every clock cycle 
(deep parallelism), is more than one-thousand fold.  

The organization of the paper will proceed by first 
establishing the mathematical background and presenting a 
quick overview of the baseline algorithm. In Section III, the 
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proposed parallel architecture model is presented in detail. 
In Section IV, we present numerical results while section V 
outlines future work and our continued efforts to optimize 
and further scale our current architecture. Finally, in Section 
VI, we draw conclusions and key insight from this work.  

II. MATHEMATICAL BACKGROUND 

A. Mean-shift description 

The mean-shift algorithm has been intuitively called a 

“hill climbing” technique, because the data points move in 

the direction of the estimated gradient. It is also commonly 

named a “mode seeking” algorithm, because the data points 

cluster around the nearest density maxima (the modes of the 

data). The underlying fundamental approach of the mean-

shift is to transform the sampled feature space into a 

probability density space and locate the peaks of the 

probability density function (PDF). The regions of highest 

density are the cluster centers. This method is considered an 

unsupervised clustering method because the number of 

clusters and their location is determined only by the 

distribution of the data set.  

B. Mathematical framework 

 The Parzen window technique is a very popular way of 
evaluating the PDF of a random variable. The kernel density 
estimator for a 3-dimensional space given n samples can be 
expressed as: 
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where h is the kernel size or bandwidth parameter. A wide 
range of kernel functions can be used in estimating the PDF. 
The most frequently used kernel and the one we have chosen 
to evaluate the PDF with is the Gaussian kernel: 
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The next step is to calculate the gradient of the PDF  
  ̂( ) and set it equal to zero for finding the peaks of the 
density function. The resulting mean-shift equation using the 
Gaussian kernel is: 
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The term m(x) is the new location of point x while the 
distance traveled by the point from location x to m(x) is 
coined as the “mean-shift” distance. 

III. HARDWARE ARCHITECTURE 

A. Approach 

We have chosen to focus on the Gaussian mean-shift 
(GMS) algorithm for several key reasons. GMS is primarily 
a non-parametric and unsupervised clustering technique. This 
advantage makes it a perfect candidate for an autonomous 
setting where human guidance is restricted. GMS does not 
require any prior information with respect to the number of 

clusters, their shape, or the distribution of the data. The 
mean-shift algorithm is also embarrassingly parallel due to 
its high granularity, and can be efficiently mapped to 
hardware for faster execution without sacrificing 
performance. Pixels move in the direction of the estimated 
PDF gradient at every iteration, but the gradient vector 
estimation (Eq. 3) can be evaluated at every pixel location in 
parallel. This key advantage is leveraged through our 
hardware design.  

Each pixel in the dataset maps to a unique point in the 
feature space based on its grayscale value, along with an x 
and y coordinate location (pixel(x, y, grayscale)). Even 
though this is an iterative algorithm, as pixels in the feature 
space converge toward their respective clusters, their new 
locations are never updated in the original image (as in the 
blurring GMS). The gradient vector is estimated based on the 
pixel distribution of the original image, allowing us to 
achieve hazard-free parallelization across multiple devices as 
long as each device has a copy of the entire image in 
memory. Each FPGA could thus segment a different region 
of the image without encountering boundary problems.  

By successfully exploiting the inherent mean-shift 
parallelism, we have designed a scalable hardware 
architecture capable of clustering hundreds of pixels in 
parallel. Each pixel benefits from its own dedicated pipeline 
and moves independent of all other pixels towards its cluster.  
This approach can be easily scaled to incorporate multiple 
FPGAs without incurring significant overhead as can be 
observed in the experimental results section. By parallelizing 
the mean-shift algorithm and clustering regions of the image 
consisting of hundreds of pixels in parallel, we have 
leveraged the advantages of reconfigurable computing and 
efficiently decreased computational complexity (loop 
unrolling).  

B. Pipeline Architecture 

 Image segmentation requires the pairwise distance 
computations of all pixels for evaluating the PDF.  Since we 
utilize the Gaussian kernel to estimate the PDF we designed 
a hardware block (Fig. 1) that can quickly compute squared 
Euclidean distances.  

The pipelined design allows a new pixel to be input every 
clock cycle, and enables us to efficiently stream pixel values 
from memory without stalling. The Euclidean distance block 
is further integrated in the pipeline design for evaluating the 
Gaussian kernel. Since the architecture features a 32-bit 
fixed-point implementation the exponential function used in 
Eq. 2 is quantized to a finite look-up table. Fig. 2 shows a 
graph of our quantized (10 values) exponential 
approximation overlapping the true analog function.  

 

Fig. 1.  Pipelined Euclidean distance hardware diagram. 
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Fig. 3 shows a complete diagram of the 32-bit fixed-point 
pipeline. The input pixel_i (x, y and z value) is the pixel 
being moved by the pipeline to a new location, while pixel_j 
(x, y and z values) represents streaming pixel values from 
memory. All computational blocks are fully pipelined and 
can handle a steady stream of input pixels from memory. The 
four outputs in Fig. 3 represent the numerator and 
denominator values of Eq. 3. By dividing the first three 
outputs with the last output, we obtain the new x, y and z 
locations of the “mean-shifted” pixel (Eqs. 4, 5, 6).  
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Each pipeline could have its dedicated fixed-point divider to 
compute the results shown in Eqs. 4, 5 and 6. However, the 
hardware resources required by a fixed-point divider would 
pose considerable restrictions on the number of pipelines that 

would fit on the FPGA. Fig. 4 shows a more conservative 
approach for the hardware resource utilization. The pipelined 
32-bit divider is shared to service all pipelines with the 
addition of two extra multiplexers. The multiplexers serve 
the purpose of delaying each pipeline output by one clock 
cycle. This approach helps us save considerable hardware 
resources while only adding a negligible time penalty (less 
than 0.1% of the overall execution time).  

The application is scaled by replicating the pipelines to 
efficiently allocate all the available FPGA hardware 
resources. Each pipeline is dedicated to servicing the 
movement of one pixel. The last remaining step is to 
configure the pipelines for multiple iterations by closing the 
feedback loop from the output registers back to the pipeline 
input registers (Fig. 4).   

C. Dataflow 

The algorithm follows a repetitive pattern. The pixels 

being moved towards their modes are read from memory 

and stored in the onboard input delay registers (Fig. 4). The 

entire image is then streamed from memory to every 

pipeline (low memory bandwidth needed) and the output 

results are stored in the output delay registers. This process 

is repeated for multiple iterations until every pixel 

converges to a mode. A new batch of pixels is then read 

from memory until the entire image is serviced. 

 
 

Fig. 2.  Look-up table estimation of exponential function. 
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Fig. 4.  Feedback loop closed for running multiple iterations.  
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Fig. 3.  Pipeline block diagram. 
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D. Fast and accurate exploration of design space 

In previous subsections, we described the hardware 
architecture for image segmentation that is scalable to 
multiple FPGAs. Some readers may notice that our design is 
not fully optimized (e.g., pipeline stalls while loading a new 
batch of dedicated pixels). We made this informed decision 
to focus on more productive design choices from the entire 
design space.  

We created abstract models that contain timing 
parameters and high-level behavioral code. Using these 
models we estimated the execution time. We identified four 
design paths that were considered as shown in Table 1. Every 
path consists of several steps, each of which represents a 
distinct feature added to the design, including new 
functionality such as multi-iteration (e.g., path 1), and 
optimizations such as double-buffering (e.g., path 2). We 
then predicted execution times for every step along each 
path. Combining this information, we created the 
productivity curve for each path as shown in Fig. 5. We 
concluded that path two (optimization of the pipelines), does 
not provide much speedup to either 1-iteration or 5-iteration 
designs and that scaling to multiple FPGAs clearly provides 
the most productive way of achieving higher performance. 

IV. EXPERIMENTAL RESULTS 

A. Platform Description 

The RC platform used to test the performance of our 
proposed architecture is Novo-G, a reconfigurable 
supercomputer housed at the NSF Center for High-
Performance Reconfigurable Computing (CHREC) [11]. 
The FPGAs targeted for implementing the scalable mean-
shift architecture are Altera Stratix-III E260s as part of the 
GiDEL PROCStar III quad-FPGA boards. This family of 
FPGAs features 768 18×18 multipliers and 256K logic 
elements, with 4.25GB of dedicated memory in three 
parallel banks. The software baseline is coded in C, 
compiled using GCC with optimization –O4, and executed 
on an AMD 2.26 GHz Xeon E5520 with 4GB of DDR400 
RAM.   

B. Performance Results 

Our architecture first incorporates eight pipelines and is 
gradually scaled by increasing this number up to a maximum 
of 128 pipelines on one FPGA. From our compilation results 
we conclude that our limiting resource is the DSP block 18-
bit elements. A maximum of 128 pipelines could fit on one 
Stratix III E260 FPGA allowing us to effectively compute 
the PDF gradient at 128 different locations in parallel and 
cluster 128 pixels at the same time. The two contributing 
factors to the achieved performance are the pipelined 
architecture (deep parallelism), along with the parallelized 
pipeline approach (wide parallelism). Not only can we 
cluster multiple pixels in parallel but we can also clock in a 
new pixel from memory to each pipeline without stalling. 
Fig. 6 shows the correlation between the number of pipelines 
and the speedup achieved on one FPGA. As expected the 
speedup is linearly dependent on the amount of loop 
unrolling. 

As we continue scaling our architecture beyond one 
FPGA, the overhead associated with the host-to-FPGA data 
transfers prevent the linear trend in speedup observed for one 
FPGA. Fig. 7 shows the speedup increase as multiple FPGAs 
are used to tackle the segmentation task. We can conclude 
that our proposed hardware architecture accelerates the 
mean-shift algorithm over 1000 times using four FPGAs and 
can continue to be further scaled to incorporate more FPGAs 
due to its low overhead characteristics. Speedup is not only 
increased through scaling the architecture to cluster more 
pixels in parallel, but also by running multiple iterations 
inside a pipelined architecture.  

C. Segmentation Visual Results 

For testing the performance of our fixed-point 
architecture we segmented two grayscale images of various 
complexities and resolutions, and compared our hardware 

Table 1. Design paths based on 1-FPGA 1-iteration design 

 

 
 

Fig. 5. Predicted execution time of design paths. 

 

 
Fig. 6.  Speedup achieved as number of pipelines are increased. 
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Fig. 7.  Speedup achieved for multi-FPGA image segmentation. 

  



 

fixed-point results to a floating-point software 
implementation. We then calculated the mean squared error 
(MSE) between the final location of the pixels in the 
floating-point implementation and our hardware fixed-point 
architecture. The MSE values of 187 for the cameraman 8-
bit 256 by 256 grayscale image and 100 for the flower 8-bit 
512 by 512 grayscale image are then compared to the radius 
of the smallest cluster. For the cameraman image the 
smallest cluster radius is 213 while for the flower image the 
smallest radius is 202. In both cases the MSE values are 
smaller than the radii of the smallest clusters, meaning that 
our fixed-point quantization errors do not significantly 
affect the final segmentation results. Another measure that 
quantifies our clustering accuracy is the misclassification 
error. The misclassification errors for the two images prove 
that less than 10% of pixels converge to a different cluster in 
hardware and software. For each segmentation experiment, 
the kernel size is fixed to 128, while each pixel is clustered 
over 32 iterations. Figs. 8 and 9 show each grayscale image 
next to the segmented results for both our fixed point 
architecture and a software floating point implementation. In 
both the software and hardware segmentation figures, each 
cluster is colored in using a different grayscale value. Since 
we employed a large kernel size (128) we expect the PDF to 
be relatively smooth with few maxima resulting in relatively 
low number of segments. Also note that the main 
differences in Figs. 8 and 9 are in the way the background is 
segmented and not the foreground objects. 

V. FUTURE WORK 

The current architecture has been scaled to run on a 
maximum of four Stratix III E260 FPGAs on the GiDEL 
PROCStar III board. However, our speedup results show 
that the increase in overhead associated with a multi-FPGA 
implementation is marginal, and that the architecture can be 
further scaled for increased speedup on multiple boards. Our 
future work will focus on scaling the mean-shift architecture 
beyond the current board-level design. Also, since speedup 
is dependent on the number of pipelines we can fit on every 
FPGA, we will target larger Stratix IV and V FPGAs. 

VI. CONCLUSIONS 

The mean-shift algorithm provides a non-parametric and 

unsupervised clustering technique that is used in a multitude 

of applications ranging from object recognition, to tracking 

and quality control to name just a few. Image segmentation 

is a low-level image processing task that can be solved using 

mean-shift clustering. Although the mean-shift approach 

yields good results for image segmentation, its 

computational challenges have prohibited its impact in the 

image processing domain, with runtimes that have precluded 

real-time applications. This paper proposes a scalable 

architecture that accelerates the mean-shift by allocating 

dedicated hardware to clustering hundreds of pixels in 

parallel. Due to the high granularity of the mean-shift 

algorithm, we can evaluate the PDF gradient vector at 

different locations of the feature space in parallel, which 

allows us to move the pixels in parallel toward their 

respective clusters.  Our scalable architecture consists of 

fixed-point 32-bit pipelines that are replicated to effectively 

utilize all hardware resources of the FPGA fabric. Our 

proposed architecture is tested on a PROCStar III board 

using all four Stratix III E260 FPGAs. The maximum 

achieved speedup for a 464 by 332 8-bit grayscale image is 

1164, while the small overhead penalty associated with 

scaling the architecture to incorporate multiple FPGAs 

shows that our design can be further scaled to span multiple 

boards for better speedup results.  
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Fig. 8. Left to right: Cameraman: 256 by 256 8-bit grayscale image, 

floating-point segmentation and fixed-point segmentation result.  

 
Fig. 9. Left to right: Flower: 512 by 512 8-bit grayscale image, floating-

point segmentation and fixed-point segmentation result. 


