
Computational and Memory Analysis of Tegra SoCs

Andrew Milluzzi, Alan George, Herman Lam
NSF Center for High-Performance Reconfigurable Computing (CHREC)

Department of Electrical and Computer Engineering
University of Florida

Gainesville, Florida 32611
Email: {milluzzi, george, hlam}@chrec.org

Abstract—Low-power, embedded, GPU System-on-Chip (SoC)
devices provide outstanding computational performance, espe-
cially for compute-intensive tasks. While clusters of SoCs for
High-Performance Embedded Computing (HPEC) are not new,
the computational power of these supercomputers has long
lacked the efficiency of their more traditional, High-Performance
Computing (HPC) counterparts. With the advent of the Tegra
K1 and X1, the efficiency debate is significantly more complex.
These new devices can provide up to 500 GFLOPS of Float32
performance with a TDP of just 10 Watts. This paper investigates
the current state of NVIDIA SoCs, comparing and contrasting
their performance and power characteristics to high-end NVIDIA
accelerators. In order to perform this analysis, we leverage
two metrics, Computational Density (CD) and External Memory
Bandwidth (EMB), to provide a first-order estimate and then
normalize the results with Realizable Utilization (RU). RU is
a measurement of device efficiency, comparing observed bench-
marking results to the theoretical CD or EMB. From this analysis,
we are able to uncover which computational kernels might
show similar or improved performance on an HPEC cluster of
NVIDIA Tegra SoCs. Based on our observations, an SoC cluster
would be plausible for some power-constrained HPC applications.
Furthermore, the observed performance improvement in Tegra
devices suggests that a future GPU-SoC cluster could be an option
for a wide range of applications.

I. INTRODUCTION

Embedded computing continues to see significant gains in
performance. The current industry trends, focusing on low-
power devices, have contributed significant advances to the
field of High-Performance Embedded Computing (HPEC).
Many of these advances are seen in low-power System-on-
Chip (SoC) devices, running 64-bit ARM cores and a small
embedded GPU. Low-power devices, such as the Raspberry
Pi, Pine64, and ODRIOD, provide powerful CPU-focused
platforms that can run off a USB port. Their high performance
per Watt makes them an attractive compute platform. With the
rise of mobile gaming and graphics processing, chip vendors
have begun to include high-end graphics on their SoCs.

NVIDIA’s introduction of the Tegra K1 (Kepler archi-
tecture) and Tegra X1 (Maxwell architecture) SoCs made a
significant impact in the HPEC community. While the Tegra
SoCs focus on mobile gaming and tablet processing, the
inclusion of NVIDIA’s CUDA development language made the
devices accessible to developers. The latest generation Tegra
X1 achieves over 500 GFLOPS of Float32 performance at
just 10 Watts Thermal Design Power (TDP) [1]. Combining
hundreds of CUDA cores, these HPEC SoCs have even caught
the eye of traditional High-Performance Computing (HPC)
developers. The low-power, high-performance characteristics

of the Tegra SoCs suggest a compute efficiency similar to
their HPC counterparts. Metrics suggest a cluster of Tegra
SoCs could outperform NVIDIA’s highest-end GPUs or the
flexibility to scale to only what is needed for a given mission.
In addition, the thermal and physical characteristics of many
small devices could be more useful for HPEC applications.

In order for an SoC cluster to be practical, the individual
devices combined must be capable of showing improved
performance. First, we explore the theoretical maximum per-
formance through metrics. This application-independent upper
bound enables a first-order analysis to identify how com-
putational or memory bandwidth of SoCs scale up to the
TDP of an HPC device. Few applications will reach 100%
efficiency; benchmarking a range of compute-intensive to
memory-intensive kernels will provide insight into device
utilization. Based on analysis of metrics, benchmarking, and
utilization results, we will show that the Tegra SoCs have
few architectural bottlenecks and exhibit similar performance
trends to their HPC counterparts. After evaluating computa-
tional performance and memory bandwidth for several appli-
cations, Tegra SoCs show good potential for overcoming the
overhead of clustering.

The following sections of this paper explore the comparison
of an individual Tegra SoC versus a high-power GPU accelera-
tor in terms of performance gains and power savings. Through
metrics, benchmarking, and efficiency analysis of computa-
tional and memory-bandwidth characteristics of NVIDIA SoC
and HPC devices, this paper seeks to explore the feasibility of
an SoC cluster as a finer-grain power and performance solution
for HPEC applications.

II. RELATED WORK

The complex architecture of an SoC makes analysis a
difficult task. Existing work in device metrics presents a
methodology of comparing theoretical device performance by
computational units. Computational Density (CD), which is
presented in giga-operations per second (GOPS), evaluates the
maximum sustained amount of instructions issued by a device.
The total device CD is the frequency multiplied by the sum
of its processing cores, normalized for cycles per instruction
(CPI) as seen in Eq. 1. External Memory Bandwidth (EMB)
is presented in gigabytes per second (GB/s) and measures the
total memory bandwidth of a device as seen in Eq. 2. [2], [3]

CD = Frequency ×
∑
i

Corei
CPIi

(1)

978-1-5090-3525-0/16/$31.00 ©2016 IEEE

EMB =
∑
i

Frequencyi ×Bus Widthi × Porti (2)

In order to determine the efficiency of a given application,
we leverage and expand upon Realizable Utilization (RU), a
process established in [4] and [5]. RU leverages benchmarking
to observe application performance and relate those results
to metrics. RU seeks to establish a spectrum of utilization,
enabling a finer-grain understanding of the device. The work
presented in [6] seeks to investigate real-world performance in
a similar manner. However, [6] focuses on traditional GFLOPS
and memory bandwidth with a binary selection of kernels:
memory-bound and compute-bound. Their achievement in bi-
nary classification is impressive, but the labor involved in this
approach makes it unrealistic on a wider selection of devices.

The high computational efficiency of SoCs presents a
unique opportunity for cluster computing. SoC clusters will
suffer from individual compute limitations, but can show
overall performance gains as seen in [7]–[9]. Connectivity
is an issue for SoCs, as it is often limited to an Ethernet
connection. The authors in [7] saw networking issues for larger
applications, but still achieved 75 MFLOPS for their cluster
of dual-core ARM Cortex-A7 CPUs. The work presented
in [8] examines an SoC cluster with Zynq CPU-FPGA SoCs.
These devices show excellent performance due the flexibility
of the FPGA fabric. Furthermore, this paper dives into the
memory and communication overhead of their cluster, noting
that MPI communication and DRAM random access showed
comparable performance of approximately 30 MB/s. This
performance suggests good potential for SoC clustering and
the authors note there is potential for improvement with new
SoCs. Lastly, the work presented in [9] showcases the Tegra
K1 for two specific applications. From their conclusions, the
observed GPU performance lags that of its HPC counterparts
in terms of energy efficiency. This result is complicated by
the impressive efficiency seen in the Tegra K1’s ARM cores,
indicating the potential utility for a select set of applications
that can use both sets of cores.

III. APPROACH

Metrics or benchmarking alone present an incomplete
approach to this problem. Metrics provide a comparable max-
imum, but lack the application-specific details to understand
real-world performance. Conversely, kernel benchmarking is a
direct observation of real-world conditions, but is difficult to
scale as an architecture changes. However, both are important
tools in architecture analysis. Metrics provide the first-order
analysis, determining if it is even theoretically possible to
achieve comparable performance. The next step is to bench-
mark the individual devices with some common HPC kernels.
Ranging from computationally intensive matrix multiplica-
tion to memory-intensive matrix transposition, benchmarking
stresses the devices with real-world use. More computationally
balanced kernels, including 1D and 2D Fast Fourier Trans-
forms, provide insight to how observed performance changes
with the workload. The benchmarking results presented in this
paper represent the average of 1000 trials, reducing the effect
of interrupt handling or timing inaccuracies.

Relating metrics to real-world benchmarking can be a
complex challenge. There is some existing work with the
CD metric. Both [4] and [5] leverage Eqs. 3 and 4 for
calculating CD-RU. One common theme of both papers is that
computational operations only considers productive work done
on the data. Thus, there is some overhead in loop counters and
memory management not included. Furthermore, in keeping
with the CD metric, results consider operations performed
by the device, not mathematical operations. This focus on
device operations creates a level playing field when comparing
devices.

Benchmarkcomp =
Computational Ops

Execution T ime
(3)

RUCD = 100%× Benchmarkcomp

CD
(4)

While peak memory performance is important, real ap-
plications have memory overhead as well. In order to best
evaluate the potential of an SoC cluster, we must extend the
RU work in [4] to include EMB. Memory-usage patterns for
an application can introduce overhead. For instance, some
applications work well with line-based computation; while
others, such as matrix multiplication, can take advantage of a
block-based design. Given these considerations, the proposed
method for EMB-RU leverages Eqs. 5 and 6. The variable
i in Eq. 5 accounts for each instance of data movement in
an application. For simplicity, EMB-RU does not consider
individual variables as they typically reside on-chip in registers
or cache.

Benchmarkmem =

∑
i
Memory Opsi ×Data Sizei

Execution T ime
(5)

RUEMB = 100%× Benchmarkmem

EMB
(6)

The goal of RU is to aid in device comparisons by
linking device metrics and real-world results. By extending
this approach to consider memory systems, developers gain
new insight into potential optimizations and can better identify
device limitations. RU, however, is not a fixed result for a
given device or even a given kernel. RU varies on kernel,
implementation, dataset size, and Computational Intensity (CI).
In order to remove the implementation variation on each device
and focus on the kernel and problem size, each experiment
leverages NVIDIA-optimized libraries: CUBLAS and CUFFT.
CI is a metric to relate computation to data movement in an
application, defined by Eq. 7 for the scope of our work.

CI =
CD Ops

CD Ops+ EMB Ops
(7)

For some kernels, CI can also vary with dataset size. This
variance is due to leveraging device caching and data reuse.
It is an important consideration for GPU and FPGA devices,
where extensive parallelism can lead to data starvation. Most
GPU developers design around on-device memory. A common
example of this method is a block-based matrix multiplication

978-1-5090-3525-0/16/$31.00 ©2016 IEEE

TABLE I. METRICS OF DEVICES STUDIED [1], [10]–[12]

Device CD Float32 CD Float64 EMB Power
(GOPS) (GOPS) (GB/s) (Watts)

NVIDIA Tegra K1 182.40 7.60 14.93 8
(GPU only, Kepler)
NVIDIA Tegra X1 256.00 8.00 25.60 10
(GPU only, Maxwell)
NVIDIA K20X 1967.60 655.87 250.00 235
(Kepler)
NVIDIA K40 2145.60 715.20 288.40 235
(Kepler)
NVIDIA Titan X SC 3462.14 108.19 336.48 250
(Maxwell)

implementation. The block size is typically determined by
number of threads and on-chip memory size. This approach
enables fewer external memory transfers while computing each
block, resulting in a high CI and better performance.

In summary, RU analysis requires some knowledge about
the device and the benchmark. As shown in subsequent
sections, this approach begins with computing the device
metrics to quickly gain insight into the devices under study. To
complete RU analysis of a device, the only additional infor-
mation required is execution time for each benchmark under
study on the device at a certain dataset size. The following
sections showcase how this approach can be used to evaluate
multiple GPUs and identify efficiency trends in determining the
potential of an SoC cluster. Considering common HPC kernels
that range from compute to memory bound, this approach in-
vestigates if the sum of the individual Tegra SoCs can achieve
comparable performance to their HPC counterparts, when also
considering application efficiency. These HPC kernels include
matrix multiplication, matrix transposition and both 1D and
2D Fast Fourier Transforms (FFT). Since computational kernel
and dataset size are important factors, CI will also be explored.

IV. DEVICE METRICS AND COMPUTATIONAL INTENSITY
ANALYSIS

Device metrics and CI establish the scope for the RU
analysis of GPUs. By examining the maximum theoretical
computational power and memory bandwidth for a device. This
first-order analysis, combined with TDP, reveals extremely
high performance per Watt for both SoCs. CI analysis for
the highly-optimized implementations of the kernels studied,
reveals clear resource trends. Both metrics and CI provide the
basis for further RU analysis and confirm the potential for
scalable SoC cluster computing.

A. Device Metrics

In order to determine if a cluster of SoCs can achieve
similar performance in the same power envelope, we first
must have the CD and EMB metrics for each device. Table I
presents the metrics results and TDP for each GPU under
study according to their published datasheets. CD is computed
according to Eq. 1 for Float32 and Float64 precisions, and
EMB is calculated according to Eq. 2. For a simpler and direct
comparison, the ARM cores are ignored for the NVIDIA Tegra
K1 and NVIDIA Tegra X1.

The metrics show some initially interesting results for the
Kepler family of devices. Despite the 15 SMX units in the
K40, we only see a 11.76× performance gain over the Tegra

Fig. 1. Comparison of CI for multiple kernels under study.

K1. The disproportionate difference is due to variations in
the clock frequency between the two devices. We also see
nearly a 29.38× power difference between the Tegra K1 and
K40. This lower-power consumption leads to a significant
difference in performance per Watt, but it is not proportional
to the performance gain. Furthermore, we see a 20× differ-
ence in memory bandwidth between the Tegra K1 and K40
devices. These initial metrics would lend credence to the idea
of combining multiple low-power chips to achieve greater
performance on the order of the supercomputer-grade K20X
or K40 due to the significant power differential. Also note,
we are not considering any contribution from the ARM cores
(although their power consumption is considered in the 5 Watt
TDP).

The Maxwell architecture also shows interesting results.
The Titan X SC is 25× the power of the Tegra X1; however,
it is only 13.52× the GPU performance of the Tegra X1. This
suggests that a cluster of Tegra X1s could provide enough
performance to compete with the Titan X SC, with less power.
Furthermore, the EMB metrics mirror the performance metrics:
the Titan X SC is 13.14× the bandwidth of the Tegra X1. The
metrics also show that the Tegra K1 and Tegra X1 have similar
Float64 performance. The low ratio of Float64 to Float32
cores is unusually low for the Kepler architecture, but it is
a documented design choice in the Maxwell architecture. The
similar Float64 CD scores for the SoCs suggest that both will
be compute bound and have similar benchmarking results for
double precision datasets.

B. Computational Intensity

Understanding the computational load of the kernels under
study is an important factor in determining the impact of
the RU results. Some kernels are obvious, such as matrix
transposition. In this case the only work done on the data
is reordering its layout in memory, thus it has a CI of 0%.
Fig. 1 shows the CI of our kernels under study at various
dataset sizes according to Eq. 7. Matrix multiplication is
initially dominated by memory operations. Taking advantage
of a block-based implementation, it quickly becomes almost
exclusively computational.

One of the more interesting kernels is that of the FFT. The
vector 1D FFT shows constant intensity around 49% computa-
tional due to the data-usage patterns between transforms. The

978-1-5090-3525-0/16/$31.00 ©2016 IEEE

Fig. 2. Comparison of CD-RU of GPUs for Float32 Matrix Multiplication
showing peak efficiency as CI increases.

2D FFT shows a similar trend to the matrix multiplication,
albeit with much less variance. The range of 2D FFT is
between roughly 45% and 55% as seen in Fig. 1.

V. REALIZABLE UTILIZATION ANALYSIS

With metrics and CI well defined for the scope of our work,
RU analysis provides new insight into device characteristics.
Variations in implementation details can often rob even the
most powerful devices of computational performance. RU
analysis relates the impact of the optimizations to the device
architecture. This measure also enables new comparisons be-
yond the traditional bounding limitations. By leveraging RU
analysis on a spectrum of benchmarks, performance trends and
tradeoffs can quickly be identified. In the end, this combination
of performance trends and potential for optimization can aid
in determining how to best leverage a device. In some cases
these observations might result in batch operations or multiple
kernels executing at once. In the device selection phase of a
project, understanding device utilization can be invaluable and
often steer the decision-making process.

A. Matrix Multiplication

Matrix Multiplication (MM) quickly becomes a computa-
tional bound kernel, pushing each device to their maximum
performance. While small dataset sizes are dominated by
memory transfers, the reuse of data in the algorithm enables
a on-device caching and fewer external memory operations.
These two distinct trends can be seen in Figs. 2 and 3. As CD-
RU quickly rises for large sizes and high CI in Fig. 2, Fig. 3
shows a dramatic decline in EMB-RU due to data reuse and
the algorithm taking advantage of the GPU’s shared memories.

Close analysis of the Tegra K1 and Tegra X1 CD-RU
results in Fig. 2 show that both devices do begin to saturate.
The Tegra X1 constantly has the highest RU score, indicating
that the 256 Float32 cores are well utilized. The Tegra K1
has a lower CD-RU than the Tegra X1, due to the slower
DDR3 memory. As a result, the Tegra K1 does not demonstrate
the same computational efficiency of the K40, consistent
with the observations in [9]. The Tegra K1 does see CD-
RU increase for larger CI, where memory use is less of the
overall instruction count. From this observation, while the
Tegra K1 has impressive compute power, the only applications

Fig. 3. Comparison of EMB-RU of GPUs for Float32 Matrix Multiplication
showing an increase, then decrease as CI increases.

Fig. 4. Comparison of CD-RU of GPUs for Float64 Matrix Multiplication
showing saturation for embedded GPUs at high CI.

that capitalize on the available resources are kernels with low
memory requirements.

From the results in Fig. 2, it is clear that the SoCs are
tracking similar CD-RU MM scores to their HPC counterparts.
While the Tegra devices show a higher CD-RU score, this
efficiency is due to limited computational resources. Analysis
of the observed efficiency suggests that scaling would be
feasible for compute bound applications on the Tegra X1 and
to a lesser extent, the Tegra K1. This result is further supported
by the EMB-RU MM scores in Fig. 3. Each devices shows a
similar tend of tapering off near larger dataset sizes and higher
CI, suggesting that the performance limitations in the Tegra
K1 are mostly computational. The characteristics for the Tegra
SoCs in terms of both CD and EMB are similar to the Titan
X SC, K20X, and K40, showing that all GPUs considered are
compute bound for MM.

Neither the Tegra K1 nor the Tegra X1 are designed for
Float64 acceleration. Fig. 4 confirms this tradeoff for all de-
vices in the Maxwell architecture family and Tegra K1. These
devices reach nearly 100% CD-RU well before their Kepler
HPC counterparts, a clear sign of computational resource
limitation. The extremely limited double-precision resources
would suggest for applications that rely on the Float64 data
type, neither SoC in a cluster is a good candidate to scale in
a cluster. This trend holds true for all kernels studied due to

978-1-5090-3525-0/16/$31.00 ©2016 IEEE

Fig. 5. Increasing CD-RU of GPUs for Float32 1D FFT against dataset size.

the extreme lack of Float64 resources.

B. 1D Fast Fourier Transform

The 1D FFT has roughly equal memory and computational
requirements. This trend is seen in its CI score in Fig. 1.
Furthermore, since this kernel is a vector operation, its CI
is very consistent among dataset sizes. The structure of the
FFT forces an implicit compute barrier halfway through the
computation. The barrier causes performance to be skewed
as it is nearly impossible to hide memory accesses with
computation. This algorithmic structure poses a large problem
for a highly-parallel GPU, as is clearly visible in Fig. 5.

The results in Fig. 5 show that for small size FFTs, GPUs
are inefficient with a CD-RU score very close to 0%. While
peak CD-RU of any device may only make it to 15%, it
does show a positive trend, which suggests that smaller dataset
sizes are difficult to spread over the GPU cores. This limited
utilization is also mirrored in the EMB-RU scores presented in
Fig. 6. EMB-RU peaks out around 30% on the HPEC devices
and between 20% and 25% for the HPC devices. The EMB-RU
scores do suggest that both the Tegra K1 and Tegra X1 could
be efficiently combined into a cluster. From the RU scores
in Fig. 5, cluster of at least 16 Tegra X1s could match the
performance of Titan X SC, showing good potential for HPEC
cluster applications. This is a larger margin than seen with the
MM kernel, suggesting that as compute requirements decrease
and memory requirements remain low, the clustering potential
increases.

C. 2D Fast Fourier Transform

The 2D FFT shares similar CI with the 1D FFT, but also
has similar variance to MM as seen in seen in its CI score in
Fig. 1. While the range of this variance is greatly reduced, it
becomes a factor due to the corner turn in the middle of the
kernel. Like the 1D FFT, the CD-RU scores in Fig. 7 are very
low, but show a positive trend. The memory hiding issues are
reduced as the corner turn requires all values to move through
the GPU a second time.

The impact of the corner turn can be seen in Fig. 8. The
EMB-RU is much higher for each device, with all GPUs reach
at least 50% for large dataset sizes and high computational
intensity. As seen with both the 1D FFT and MM kernels,

Fig. 6. Saturating EMB-RU of GPUs for Float32 1D FFT.

Fig. 7. Increasing CD-RU of GPUs for Float32 2D FFT against CI.

Fig. 8. Saturating EMB-RU of GPUs for Float32 2D FFT against CI.

the SoCs have higher utilization, due to the limited memory
bandwidth.

Unlike MM and the 1D FFT, the CD-RU and EMB-RU
results of the 2D FFT suggest that a cluster of Tegra K1s
or Tegra X1s could scale very well, potentially exceeding the
performance of their HPC counterparts. In order to match the
performance of the K20X or K40, a cluster of 18 Tegra K1s
would be required. This cluster would consume about 150
Watts, well below the TDP of either device. Likewise, at least
19 Tegra X1s would be required to match the performance

978-1-5090-3525-0/16/$31.00 ©2016 IEEE

Fig. 9. Comparison of RU vs. dataset size for CUBLAS Matrix Transposition
on Tegra K1, K20X, and K40 GPUs.

of the Titan X SC based on RU scores, resulting in potential
power savings of almost 60 Watts. This low utilization is due
to the structure of the FFT kernel, providing the GPU many
idle cores to execute other applications and overhead.

D. Matrix Transposition

Matrix transposition (MT) is at the opposite end of the CI
spectrum from MM. The CD-RU for a transposition is 0%,
which is in line with the 0% CI score. Fig. 9 shows the results
of square-matrix transposition on Tegra K1, K20X, and K40
GPUs. The implementation leverages the CUBLAS library for
maximum performance and productivity. Due to the smaller
memory size and contiguous blocks of memory on the shared
memory space of the Tegra K1 and Tegra X1, the maximum-
sized matrix is only about 16 MB.

Tegra K1, Tegra X1, and Titan X SC show impressive
EMB-RU. Peaking out at approximately 80% RU, the Tegra
K1 bests the RU scores of both the Kepler and Maxwell
architectures shown in Fig. 9. There are some significant
differences in memories between GDDR5, DDR4, and DDR3
on the HPC GPUs, Tegra X1, and Tegra K1, respectively. Tegra
K1 and Tegra X1 are limited to a 64-bit memory bus, compared
with 384 on the GDDR5 memories. SoC memory is a shared
space between the Linux kernel running on the ARM cores and
GPU computation. This bottleneck was suspect for the limited
MM performance of Tegra K1. However, the Tegra K1’s high
EMB-RU score in Fig. 9 suggests that limitations are not due
to the Linux OS, but rather the speed of the DDR3 memories.
The faster DDR4 memory of the Tegra X1 is reflected in the
slightly lower EMB-RU score, of 70% of its 25.6 GB/s EMB.
The high EMB-RU of the Tegra X1 may also be a factor of the
Maxwell architecture as the Titan X has higher utilization than
the K20X and K40 GPUs. With regards to potential scaling,
due to the nature of the kernel and the limited EMB of the
Tegra SoCs, neither is a good candidate. Since the GPU and
CPUs in the Tegra SoCs share the memory controllers, MT
would likely starve any other tasks or significantly degrade
performance.

VI. CONCLUSIONS AND FUTURE WORK

The recent advances in SoC technology have resulted in
large performance gains for HEPC. While many common SoC

boards such as the Raspberry Pi, ODROID, Beagleboard, have
been assembled into clusters, their performance per Watt has
lagged behind that of most modern accelerators. However,
the introduction of the NVIDIA Tegra K1 in 2014 and the
NVIDIA Tegra X1 in late 2015 has enabled a well-supported
ARM and CUDA ecosystem that is familiar to HPC and HPEC
developers alike, while delivering unmatched performance. It
is this theoretical and observed performance that enables a
Tegra SoC cluster to be a plausible HPEC solution.

In examining the metrics for each device, both Tegra SoCs
show high CD and EMB power-efficiency. While benchmark-
ing performance lags that of other NVIDIA GPUs, the RU
trends are only slightly elevated. Factoring in the difference
in power consumption, both SoCs show excellent compute
efficiency, in some cases better than their HPC counterparts. In
order to evaluate real-world efficiency, we explore CD-RU and
EMB-RU on each SoC with a set of HPC-oriented benchmarks.
Analyzing the RU results on both embedded and high-power
devices, we are able to gain insight into the potential for scaling
SoC performance.

Not all applications show scalable performance on either
Tegra SoC. Kernels that are extremely memory bound, such as
Matrix Transposition, will suffer due to the slower memories.
More computationally balanced kernels, such as a 2D FFT,
could see speed up with a cluster of either SoC and offer
more fine-grain system power and performance control. With
compute-intensive kernels, such as Matrix Multiplication, a
cluster of Tegra X1 could be a plausible competitor to more
HPC-focused NVIDIA devices. The Tegra K1 does not scale
as well with 64 fewer cores, limiting its utility to more power-
limited applications. For both devices, potential clustering
only shows benefits for Float32 operations due to the limited
Float64 resources. These results show a clear trend that, with
each new generation, a cluster of NVIDIA Tegra SoCs is
becoming a viable finer-grain replacement for HPC computing.

Further work would investigate the impact of implementa-
tions of each kernel to better understand potential SoC-specific
optimizations. While this initial analysis only considers exter-
nal memory and compute performance, latency from communi-
cation networks would likely impact results. By understanding
the impact of various implementation choices, communication
latency could be hidden or leveraged to increase communica-
tion throughput. Building upon implementation optimizations,
this information could be combined to understand how Tegra
SoCs could be used in tandem with other HPC accelerators to
better address the computational needs of large systems.

ACKNOWLEDGMENTS

This work was funded by the industry and government
members of the NSF CHREC Center, as well as the I/UCRC
Program of the National Science Foundation under Grant
No. IIP-1161022. The authors would like to thank Aishwarya
Dhandapani, Ishan Dalal, Athira Ajaykumar, Yathindra Kota,
and Peter Harduvel of the NSF Center for High-Performance
Reconfigurable Computing at the University of Florida for
assisting with the calculation and confirmation of the metrics
presented.

978-1-5090-3525-0/16/$31.00 ©2016 IEEE

REFERENCES

[1] NVIDIA. (2015) Nvidia tegra x1: Nvidia’s new mobile
superchip, version 1.0. Apress. Accessed: 2016-4-20. [Online].
Available: http://international.download.nvidia.com/pdf/tegra/Tegra-X1-
whitepaper-v1.0.pdf

[2] J. Williams, C. Massie, A. George, J. Richardson, K. Gosrani, and
H. Lam, “Characterization of fixed and reconfigurable multi-core de-
vices for application acceleration,” ACM Transactions on Reconfig-
urable Technology and Systems (TRETS), vol. 3, no. 4, pp. 19:1–19:29,
Nov. 2010.

[3] J. Richardson, S. Fingulin, D. Raghunathan, C. Massie, A. George,
and H. Lam, “Comparative analysis of hpc and accelerator devices:
Computation, memory, i/o, and power,” in Proceedings of High-
Performance Reconfigurable Computing Technology and Applications
Workshop (HPRCTA), ser. SC ’10, New Orleans, LA, nov 2010.

[4] J. Richardson, A. George, and H. Lam, “Performance analysis of
gpu accelerators with realizable utilization of computational density,”
in Proceedings of Symposium on Application Accelerators in High-
Performance Computing (SAAHPC), Chicago, IL, July 2012.

[5] A. Milluzzi, J. Richardson, A. George, and H. Lam, “A multi-tiered
optimization framework for heterogeneous computing,” in High Perfor-
mance Extreme Computing Conference (HPEC), 2014 IEEE, Sept 2014,
pp. 1–6.

[6] E. Konstantinidis and Y. Cotronis, “A practical performance model for
compute and memory bound gpu kernels,” in Parallel, Distributed and
Network-Based Processing (PDP), 2015 23rd Euromicro International

Conference on, March 2015, pp. 651–658.
[7] Z. Krpic, G. Horvat, D. agar, and G. Martinovi, “Towards an energy

efficient soc computing cluster,” in Information and Communication
Technology, Electronics and Microelectronics (MIPRO), 2014 37th
International Convention on, May 2014, pp. 178–182.

[8] P. Moorthy and N. Kapre, “Zedwulf: Power-performance tradeoffs of a
32-node zynq soc cluster,” in Field-Programmable Custom Computing
Machines (FCCM), 2015 IEEE 23rd Annual International Symposium
on, May 2015, pp. 68–75.

[9] J. Zhang, S. You, and L. Gruenwald, “Tiny gpu cluster for big spatial
data: A preliminary performance evaluation,” in 2015 IEEE 35th In-
ternational Conference on Distributed Computing Systems Workshops,
June 2015, pp. 142–147.

[10] NVIDIA. (2014) Nvidia’s next generation cuda compute architecture:
Kepler gk110/210, version 1.1. Apress. Accessed: 2016-4-20. [Online].
Available: http://images.nvidia.com/content/pdf/tesla/NVIDIA-Kepler-
GK110-GK210-Architecture-Whitepaper.pdf

[11] NVIDIA. (2014) Nvidia tegra k1: A new era in mobile
computing, version 1.0. Apress. Accessed: 2016-4-20. [Online].
Available: http://international.download.nvidia.com/pdf/tegra/Tegra-X1-
whitepaper-v1.0.pdf

[12] M. Harris. (2014) Maxwell: The most advanced
cuda gpu ever made. Accessed: 2016-4-20. [On-
line]. Available: https://devblogs.nvidia.com/parallelforall/maxwell-
most-advanced-cuda-gpu-ever-made/

978-1-5090-3525-0/16/$31.00 ©2016 IEEE

