
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 64, NO. 1, JANUARY 2017 519

Benefits of Complementary SEU Mitigation for the
LEON3 Soft Processor on SRAM-Based FPGAs

Andrew M. Keller, Student Member, IEEE, and Michael J. Wirthlin, Senior Member, IEEE

Abstract— A variety of mitigation techniques have been
demonstrated to reduce the sensitivity of FPGA designs to
soft errors. Without mitigation, SEUs can cause failure by
altering the logic, routing, and state of a design operating on an
SRAM-based FPGA. Various combinations of SEU mitigation
and repair techniques are applied to the LEON3 soft-core proces-
sor to study the effects and complementary nature of each tech-
nique. This work focuses on Triple modular redundancy (TMR),
configuration memory (CRAM) scrubbing, and internal block
memory (BRAM) scrubbing. All mitigation methods demonstrate
some improvement in both fault injection and neutron radiation
testing. Results in this paper show complementary SEU miti-
gation techniques working together to improve fault-tolerance.
The results also suggest that fault injection can be a good
way to estimate the cross section of a design before going to
a radiation test. TMR with CRAM scrubbing demonstrates a
27× improvement whereas TMR with both CRAM and BRAM
scrubbing demonstrates approximately a 50× improvement.

Index Terms— BRAM scrubbing, configuration scrubbing,
Feedback TMR, FPGA, LEON3, neutron beam test, reliability,
SEU mitigation, soft processors, TMR.

I. INTRODUCTION

ASOFT-CORE processor is a hardware description of
a microprocessor that can be implemented on a field

programmable gate array (FPGA) or other device. Several
soft core processors are available commercially and as open-
source IP cores. These processors are often distributed in
a hardware description language and can be customized for
specific applications [1]. Implemented on an FPGA, these
processors can be modified remotely after they have been
deployed.

Soft-core processors on commercial SRAM-based FPGAs
could be used in radiation environments, provided that they
are sufficiently immune to output errors. An FPGA design,
a soft-core processor in this case, operates on the fabric of
the FPGA and is configured into the programming data of the
FPGA. This data is susceptible to single event upsets (SEUs).
Since the processor is configured into the FPGA, an SEU
may alter the logic, routing, or state of the processor core
and cause failure. Fortunately, SEU mitigation techniques have

Manuscript received July 9, 2016; revised September 29, 2016,
November 10, 2016, November 25, 2016, and November 28, 2016; accepted
November 29, 2016. Date of publication December 1, 2016; date of current
version February 28, 2017. This work was supported by the I/UCRC Program
of the National Science Foundation under grant 1265957.

The authors are with the NSF Center for High-Performance Reconfigurable
Computing (CHREC), Brigham Young University, Provo, UT 84602 USA
(e-mail: andrewmkeller@byu.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNS.2016.2635028

been shown to improve the reliability of soft-core processors
on SRAM-based FPGAs [2].

SEU mitigation techniques are targeted towards specific
SEU failure modes of SRAM-based FPGAs [3], [4]. There
are two major types of bits within an FPGA’s programming
data: configuration (CRAM) bits and internal block memory
(BRAM) bits. Data associated with routing resources, lookup
tables, control signals, and the contents of smaller memory
modules (e.g. shift-registers, LUTRAMs, flip-flops) are stored
in CRAM bits. Data associated with the contents of larger
block memory modules are stored in BRAM bits. The contents
of on-chip memory modules may be altered by the design dur-
ing operation. Because of the varied accessibility of program-
ming data, complementary SEU mitigation techniques must be
combined in order to provide more complete protection from
SEUs.

A previous experiment [5] applied triple modular redun-
dancy (TMR), internal block memory (BRAM) scrubbing and
configuration memory (CRAM) scrubbing to the LEON3 soft-
core processor to improve its fault-tolerance. Only the fully
mitigated design was evaluated (i.e. with all three SEU mitiga-
tion techniques). These techniques work together to improve
the fault-tolerance of the processor. To evaluate the effects
and complementary nature of each technique, the work in
this paper tests various combinations of these SEU mitigation
techniques on the LEON3 soft processor. Five combinations of
SEU mitigation techniques are tested: unmitigated, TMR only,
TMR with BRAM scrubbing, TMR with CRAM scrubbing,
and TMR with both BRAM and CRAM scrubbing.

Both fault injection and neutron radiation testing are used to
evaluate each variation of the LEON3 processor. Each varia-
tion demonstrates an improvement in fault-tolerance. As more
techniques are combined together, the amount of improvement
increases. For some variations, more improvement is seen in
radiation testing than in fault injection. The results in this
paper demonstrate complementary SEU mitigation techniques
working together to improve fault-tolerance. The results also
suggest that fault injection can be a good way to estimate
the cross section of a design before going to a radiation test.
Both fault injection and neutron radiation testing demonstrate
a 27× improvement for TMR with CRAM scrubbing, and
approximately a 50× improvement for TMR with both CRAM
and BRAM scrubbing.

II. FAULT-TOLERANT LEON3 SOFT PROCESSOR

The LEON3 is an open-source 32-bit soft-core processor
that is technology independent and can be implemented on

0018-9499 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Brigham Young University. Downloaded on May 12,2022 at 16:47:41 UTC from IEEE Xplore. Restrictions apply.

520 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 64, NO. 1, JANUARY 2017

SRAM-based FPGAs. The processor is well documented and
has a strong user group for support [6]. For this paper, only
the core architecture of the LEON3 and a minimal set of
peripherals are included in the experiment. Caching is also
disabled to facilitate error detection. This configuration limits
the scope of possible SEU failure modes. It also allows the
experiment to focus on the benefits of SEU mitigation and
repair techniques, as observed in fault injection and neutron
radiation testing. This paper uses the same configuration of
the LEON3 system as [5].

Because of its size and complexity, the LEON3 is a good
representative design for demonstrating the benefits of com-
plementary SEU mitigation and repair techniques on SRAM-
based FPGAs. In harsh radiation environments, it also exhibits
many of the SEU failure modes typical to SRAM-based
FPGAs. Complementary SEU mitigation and repair techniques
are applied to the LEON3 soft processor to improve its
fault-tolerance. The benefits demonstrated in this design are
applicable to other SRAM-based FPGA designs.

SEUs in an FPGAs’ programming data can alter the design
operating on the FPGA and lead to failure. The main cause of
SEU failure modes in FPGAs are SEUs in routing resources,
lookup tables, control signals, and memory module data. SEUs
in routing resources may cause nets to disconnect, short to
power or ground, or bridge with other nets in the design.
SEUs in lookup tables and control signals can corrupt logic
and alter the functionality of primitive blocks used by the
design. SEUs in memory module data can corrupt the state of a
design [3], [4].

Complementary SEU mitigation and repair techniques work
together to improve an FPGA design’s fault-tolerance and
prevent SEU failure modes from occurring. TMR masks SEUs
to prevent failure. Scrubbing repairs SEUs to prevent accumu-
lation that would break TMR. Separate scrubbing mechanisms
must be used to scrub BRAM bits and CRAM bits because of
their accessibility. Specific forms of TMR, BRAM scrubbing,
and CRAM scrubbing are applied to the LEON3 for this study.

A. Triple Modular Redundancy

TMR protects the designs from errors in the routing
resources, lookup tables, control signals, and internal state.
It does so by voting between three redundant copies of the
design to mask SEUs. So long as two or more of the redundant
copies are functioning correctly, up to and including the voter,
the output of the module will be correct as well.

The form of TMR used in this experiment is called fine-
grain feedback TMR. As illustrated in Figure 1, fine-grain
feedback TMR replicates the design at the lowest level pos-
sible (e.g., at the primitive level) and partitions the redundant
copies by placing majority voters in the feedback structures of
the circuit. Feedback TMR places voters in the feedback paths
of the circuit. Voters themselves are also triplicated. Each of
these aspects decrease the SEU sensitivity of TMR [7], [8].

TMR alone cannot protect against SEU accumulation across
more than one redundant copy within the same partition. This
includes SEUs in FPGA configuration memory as well as on-
chip memory modules, such as block RAMs or shift-registers.

Fig. 1. Fine-grain Feedback TMR

Fig. 2. Internal BRAM Scrubbing

In order to prevent this kind of failure, an SEU repair mech-
anism, such as scrubbing, must be combined with TMR [9].
Also, without coupling TMR with reliability-oriented place
and route tools, a single SEU in routing could affect more
than one redundant copy, breaking TMR [10].

B. Internal Block Memory Scrubbing

Scrubbing BRAM bits repairs SEUs as they occur and
prevents the failure of additional protection mechanisms, such
as TMR or ECC, that can result from the accumulation of
SEUs. BRAM bits are grouped together into blocks called
BRAM modules. These modules are user configurable and
provide a limited number of access ports to the associated
BRAM bits. Protecting BRAM modules with scrubbing can
be challenging if all available ports are already in use.

Only memory that does not change value very often will
benefit from scrubbing. Memory that changes often overwrites
any previous SEUs, preventing accumulation. No scrubbing is
applied to the register file of the LEON3 processor because
the values of the registers change frequently. In this imple-
mentation of the LEON3 processor, if the caches were enable
enabled, they too would not benefit from being scrubbed for
similar reasons [11].

In the experiment of this paper, Internal memory scrubbing
of the ROM and RAM modules of the LEON3 is performed
by continuously writing the correct value of memory to each
address. For TMR, the correct value is determined by voting
between the redundant copies. The ROM and RAM modules
of the LEON3 consume only a single port of the dual-port
BRAM modules used by the processor. This leaves the other
port available for scrubbing. Figure 2 shows how one port of
the BRAM module is used by the LEON3, while the other
port is used for scrubbing. The scrubbing logic loops through
each address in memory. This logic is also protected by
TMR [5], [12].

Authorized licensed use limited to: Brigham Young University. Downloaded on May 12,2022 at 16:47:41 UTC from IEEE Xplore. Restrictions apply.

KELLER AND WIRTHLIN: BENEFITS OF COMPLEMENTARY SEU MITIGATION FOR THE LEON3 SOFT PROCESSOR ON SRAM-BASED FPGAs 521

Other memory protection techniques, such as ECC, can also
benefit from scrubbing. Encoding is used to mask SEUs in
ECC protected memory. Without correcting upsets in memory,
by either overwriting them with new values or scrubbing them,
eventually enough SEUs will accumulate to cause the ECC
method to fail [12].

BRAM scrubbing only prevents SEU accumulation in the
BRAM modules to which it is applied. This protection does
not prevent an incorrect value from being written to the
memory. If an incorrect value is written to more than one
redundant copy of a TMR protected memory, it cannot be
corrected by scrubbing.

C. Configuration Memory Scrubbing

CRAM scrubbing repairs the circuit when SEUs occur
in configuration bits that do not change value during
design operation, (e.g., routing and logic bits). It pro-
tects against breaking TMR by preventing the accumula-
tion of SEUs. In order to prevent the accumulation of
SEUs, the scrub cycle period must be faster than the upset
rate.

For this paper, external readback configuration scrubbing
was performed on the LEON3 design. This type of configura-
tion scrubbing compares the current configuration of the FPGA
against a golden copy to determine where SEUs have occurred.
When an SEU is detected, it is repaired by writing the correct
value from the golden copy back to the FPGA via partial
reconfiguration. Configuration scrubbing was performed over
JTAG using a custom high-speed JTAG controller. External
scrubbing has been shown to greatly reduce the sensitive cross
section of a design [13].

III. DESIGN SEU TEST INFRASTRUCTURE

Using both fault injection and radiation testing, several
variations of the LEON3 processor and associated mitigation
techniques are tested for SEU fault tolerance. The same testing
infrastructure is used for all design variations and in both
fault injection and radiation testing. Using the same testing
infrastructure for all design versions minimizes the variation in
SEU response due to differences in the testing infrastructure.
This section will summarize the SEU testing infrastructure
used on the LEON3 for both fault injection and radiation
testing.

The primary purpose of the SEU test infrastructure is to
detect when the design under test, the LEON3 soft processor
in this case, operates incorrectly or deviates in any way from
its specified behavior. There are a variety of different methods
for identifying FPGA design failures including: comparing the
design output with a predetermined test vector, comparing
the final output of the design processor with a predetermiend
output value, and operating the design in lockstep with an
identical “golden” design that is not subject to failures. The
mechanism for identifying SEU induced faults within the
LEON3 processor involves the use of two lockstep LEON3
processor systems running in parallel on the same FPGA
device as shown in Figure 3.

Fig. 3. Single-Chip SEU Testing Infrastructure.

To provide a relatively low-level of fault detection,
108 bus signals1 from each LEON3 processor are compared on
a clock-by-clock basis. A wide, multi-bit comparison circuit
simultaneously checks each bus signal and a reduction circuit
combines the results of all comparator circuits into a single
fault error signal. Because an error may be detected for only a
single clock cycle, the signal is latched to ensure that the fault
is identified. As suggested in Figure 3, this comparison and
reduction logic, along with additional control signals and I/O
resources, resides on the FPGA with the two duplicate copies
of the LEON3 module. The copies are independent from each
other; each has its own memory submodules, peripherals, and
system bus.

Placing two copies of the LEON3 in the same FPGA for
fault detection has a number of advantages and limitations. The
advantages of performing this testing on a single device is that
the testing infrastructure is relatively simple and only a single
FPGA board is needed to perform the experiment. Because
both processors are located on the FPGA, the checking logic
can run at a faster rate allowing the processors to run faster
than if they are split between two FPGAs. The disadvantages
of this approach is that the fault detection logic is inside the
single device and subject to SEU induced failures. The on-
chip error detection also consumes logic thus limiting the size
of the design that can be tested.

To reduce SEU induced failures within the self checking
logic, full TMR with frequent voting was applied to the self-
checking logic. This TMR checking circuitry was used in all
of the LEON3 design variations. The TMR comparison and
reduction logic is costly in terms of logic resources because of
the large number of signals being compared. Table I shows the
number of resources dedicated to various components of the
final designs; the percent of total device resources consumed
is shown in parenthesis.

A failure is defined as anytime the bus signals of the two
LEON3 systems do not agree with each other. Because caching
is disabled, bus activity is elevated and better reflects the
functional state of the processor and connected peripherals.
To keep the design active the LEON3s execute the Dhrys-
tone 2.1 benchmark in a continuous loop. Doing so allows
SEU induced errors to propagate throughout most of the
system and be detected as a failure. If an SEU is masked

1To processor– transfer done (1 bit), response type (2 bits), read data bus
(32 bits); to peripherals– address bus (32 bits), read/write (1 bit), transfer type
(2 bits), transfer size (3 bits), burst type (3 bits), write data bus (32 bits).

Authorized licensed use limited to: Brigham Young University. Downloaded on May 12,2022 at 16:47:41 UTC from IEEE Xplore. Restrictions apply.

522 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 64, NO. 1, JANUARY 2017

TABLE I

LEON3 DESIGN VARIATION UTILIZATION

by TMR or repaired before corrupting the state of the design,
it will not cause a failure. Note also that if an SEU causes both
LEON3 systems to fail in exactly the same way, the failure
will go undetected. It is assumed, since the processors are
independent, that this scenario is unlikely.

For external sampling of the failure state, the triplicated
failure status registers are attached to a JTAG Boundary Scan.
Two or more of the triplicated registers set high indicate that
a failure has occurred. Once a failure has occurred a full
device reconfiguration must take place in order to reset these
registers and begin the test again. Both fault injection and
radiation testing use these signals to collect data and conduct
the experiment.

IV. LEON3 SEU MITIGATION VARIATIONS

The SEU mitigation techniques described in Section II
all work together to provide significant improvements in the
overall SEU sensitivity of the LEON3 processor in radi-
ation environments. The impact of each technique on the
overall improvement, however, is not clear. This work seeks
to understand the impact of each SEU mitigation technique
by creating a variety of LEON3 processor systems with
different combinations of these SEU mitigation techniques.
Each variation of SEU mitigation techniques will be tested
using both fault injection and radiation testing to measure the
improvement in overall SEU sensitivity. The relative improve-
ment of each variation will help identify the impact of each
individual mitigation technique. The following five versions
of the LEON3 were created: Unmitigated, TMR Only, TMR
with BRAM Scrubbing, TMR with CRAM Scrubbing, and
TMR with CRAM and BRAM Scrubbing. This section will
summarize each of these five LEON3 variations.

Although the LEON3 processor design varies with each
experiment, all of the design variations are organized with the
same on-chip testing infrastructure shown in Figure 3. In each
design variation, the same control signals and error detection
logic is used to identify faults.

A. Unmitigated

The “Unmitigated” design is the baseline reference LEON3
processor that provides no spatial SEU mitigation techniques.
Without any additional internal mitigation hardware, this

processor is the smallest of the different processor variations
(see Table I). It is expected that this design will be the
most sensitive to ionizing radiation and that all other design
variations will provide greater SEU immunity. All other design
variations will be compared to the SEU response of this
baseline unmitigated design.

Although no structural mitigation was provided in this
design, CRAM scrubbing was performed during the fault
injection and radiation testing. This scrubbing was performed
to protect the comparison and reduction error detection logic
used by the testing infrastructure2. In some instances, an SEU
mitigation approach consisting of only configuration scrubbing
may provide sufficient mitigation for designs without any
internal feedback [14].

B. TMR Only

A second version of the LEON3 processor was created
that applies fine-grain feedback TMR to the processor logic.
This triplicated logic and voting will mask logic and routing
errors that are induced by single-event upsets. As expected,
this version of the processor is significantly larger than the
unmitigated baseline version (3.9× the slice count as seen
in Table I).

In this “TMR Only” variation, no BRAM or CRAM scrub-
bing is performed during system testing. Without a scrubbing
repair mechanism, an accumulation of SEUs will cause the
TMR design to fail. Conventional reliability modeling suggests
that applying TMR without repair results in a system with a
lower mean-time to failure than an unmitigated design [15].
However, a reduction in SEU design sensitivity is expected
because the additional voters used in feedback TMR provide
significant isolation between TMR domains.

C. TMR and BRAM Scrubbing

TMR and scrubbing work together to mask errors and repair
errors. This design variation adds BRAM scrubbing to the
TMR LEON3 processor described above. BRAMs are used in
the LEON3 design to implement ROM and RAM modules for
the instructions and data memory of the processor. Although
the BRAM memories are triplicated with TMR, scrubbing will
prevent the accumulation of errors within the memory.

BRAM scrubbing requires additional logic resources
to implement the scrubbing logic and memory voting
(see Figure 2). The TMR and BRAM scrubbing circuit is
4.8× larger than the unmitigated baseline design (see Table I).
It is expected that TMR with BRAM scrubbing will provide
greater SEU protection than TMR alone because the memories
are able to mask single-bit errors and do not accumulate
multiple errors.

D. TMR w/CRAM Scrubbing

In this design variation, the “TMR only” variation is
augmented with configuration scrubbing (CRAM Scrubbing).

2In retrospect, it would have been interesting to test the Unmitigated design
with and without CRAM scrubbing to better understand the failure behavior
of the comparison and reduction logic.

Authorized licensed use limited to: Brigham Young University. Downloaded on May 12,2022 at 16:47:41 UTC from IEEE Xplore. Restrictions apply.

KELLER AND WIRTHLIN: BENEFITS OF COMPLEMENTARY SEU MITIGATION FOR THE LEON3 SOFT PROCESSOR ON SRAM-BASED FPGAs 523

TMR masks upsets that cause errors in the routing and logic
bits of CRAM; CRAM scrubbing repairs SEUs as they occur
to prevent the buildup of errors within the processor logic.
If buildup occurs, TMR may be unable to mask future SEUs,
which would allow them to cause errors. Integrating TMR with
a repair mechanism (CRAM scrubbing in this case) provides
a significant decrease in SEU sensitivity over TMR alone.

Unlike BRAM scrubbing, CRAM scrubbing does not
require additional logic resources in the LEON3 processor.
The same design used for the “TMR Only” variation is used
for this design variation, but in this case the TMR design is
supplemented with an external CRAM scrubbing mechanism
(see Section II).

E. TMR, Internal Memory Scrubbing, and
Configuration Scrubbing

The final design variation integrates all of the SEU mitiga-
tion techniques described in Section II (TMR, internal BRAM
scrubbing and CRAM scrubbing). Together these techniques
should yield the greatest decrease in SEU sensitivity because
they are complementary and cover the greatest number of SEU
failure modes.

V. FAULT INJECTION

All five variations of the LEON3 processor were tested
using fault injection or the artificial injection of upsets within
the configuration memory. Injecting faults into the configu-
ration memory through fault injection provides a mechanism
for emulating the faults within the configuration memory that
would otherwise occur through ionizing radiation. Compared
to neutron radiation testing, fault injection is relatively inex-
pensive and is able to collect data at a relatively high speed.
The limitations of fault injection include the inability to inject
faults in all FPGA state, including BRAMs, and the inability
to inject faults with the same characteristics that may occur
within a radiation test beam or in an actual space orbit (i.e.,
multi-cell upsets and with random inter arrival times) [16].

A. Approach

To emulate the behavior that would occur within a radiation
test, a random fault injection campaign was conducted for this
experiment. This means that the configuration bits are selected
at random for fault insertion much like the upsets that occur
in a well constructed radiation test. The primary goal of a
fault injection experiment is to determine the sensitive CRAM
bits within the FPGA that cause the LEON3 processor to fail
when upset. After a randomly selected CRAM bit is upset,
the behavior of the processors are carefully monitored to see if
either of the two LEON3 processors deviates from the other. If
a deviation is detected, the CRAM bit is classified as sensitive;
otherwise, the CRAM bit is classified as non-sensitive. A large
number of CRAM bits must be upset and categorized to obtain
sufficient statistical confidence.

This random fault injection campaign follows the flow
shown in Figure 4. Injected faults and detected failures are
recorded and used for analysis. This test procedure follows

Fig. 4. Fault Injection Flowchart

Fig. 5. A custom high-speed JTAG controller (left) is used to perform
automated fault injection testing on a Xilinx Kintex 7 FPGA (right).

the methodology of [17]. Since some of the variations of
the LEON3 tested by fault injection do not include CRAM
scrubbing, an additional check is made to see if CRAM
scrubbing should be emulated. If scrubbing is enabled, the
last injected fault is repaired before injecting another fault.
Otherwise, faults are are allowed to accumulate, emulating
SEU behavior without CRAM scrubbing.

The process of inserting faults into the configuration mem-
ory is performed using the JTAG configuration interface of
the FPGA. A high-speed and programmable JTAG controller
is attached to the interface and emulates random fault injection
via partial reconfiguration. It takes 6.9 ms on average to inject
a fault. This includes reading an entire frame of configuration
data (404 bytes), inverting the selected bit, and writing the data
back to the FPGA. To allow errors to propagate, a 1 ms delay
is added between fault injection and checking for a failure.
At this rate 126.9 faults are injected per second. Figure 5
demonstrates the Kintex 705 evaluation board and the JTAG
controller used for the fault injection experiment.

B. Metrics

The primary metric used in the fault injection experiments
is design sensitivity or the percentage of CRAM bits that cause
a design failure when upset. This design sensitivity metric is
very similar to the design “cross section” metric that will be
used for the neutron radiation test results. Rather than testing

Authorized licensed use limited to: Brigham Young University. Downloaded on May 12,2022 at 16:47:41 UTC from IEEE Xplore. Restrictions apply.

524 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 64, NO. 1, JANUARY 2017

TABLE II

FAULT INJECTION RESULTS

each CRAM bit, the sensitivity of the design is estimated by
dividing the number of observed failures (k) by the number
of faults injected (n). This is equivalent to the maximum
likelihood estimator of the binomial distribution. A related
metric is the mean upsets to failure (MUTF) or the inverse
of the design sensitivity (i.e., n/k).

The standard deviation of the maximum likelihood estimator
is used to determine the 95% confidence interval between the
sensitivity of the random sample and that of the design as a
whole. The standard deviation is estimated using the following
equation:

σ =
√

k

n2

(
1 − k

n

)
. (1)

The percent error is calculated by dividing the standard
deviation by the maximum likelihood estimator. This value
represents how tight the confidence interval is around the
estimated sensitivity. Designs with lower sensitivity (i.e., fewer
sensitive bits) require much more fault injection to get good
results. During this experiment, 43 million configuration bits
were upset among all five of the LEON3 design variations to
obtain useful data (see Table III).

The number of sensitive bits in each design variation is
estimated by multiplying the total number of CRAM bits in
the device (72,823,424) by the sensitivity of the design. For
example, the sensitivity of the unmitigated design is measured
at.355%, which suggests that one in every 282 configuration
bits will cause the design to fail when upset. Therefore, the
total number of sensitive bits in the design is estimated at
258,440. The 95% confidence interval of this estimated is also
provided in Table III.

C. Results

The estimated design sensitivity of each of the five LEON3
design variations is shown in Table II. This sensitivity is for the
entire design, which includes two processors and testing logic.
Because the testing logic is included, only an overestimate of
the sensitivity for a single processor can be determined by
dividing the sensitivity in half. The same is true for the cross
section of a single processor in neutron radiation testing.

The improvement in design sensitivity, over the baseline
design, is also shown. This is calculated by dividing the sen-
sitivity of the baseline design by the sensitivity of the design

variation. All four LEON3 mitigated design variations demon-
strate an improvement over the unmitigated baseline design.
The TMR only variation (#2) demonstrates a 4× improvement
over the baseline– its improvement is limited since it allows
data corruption to accumulate within the internal memories.
Adding internal BRAM scrubbing (#3) further increases the
improvement by preventing BRAM error accumulation3. The
use of CRAM scrubbing is very important as it prevents the
accumulation of upsets within the configuration memory and
facilitates the proper operation of TMR. The combination of
all SEU mitigation techniques provides over 50× improvement
in design sensitivity over the unmitigated baseline design.

VI. NEUTRON RADIATION TEST

All five LEON3 design variations were tested with a neutron
radiation beam at the Los Alamos Neutron Science Center
(LANSCE) in November of 2015. This wide spectrum neutron
beam is commonly used for testing of integrated circuits
to estimate circuit sensitivity to terrestrial neutrons [18].
Although more expensive and difficult to conduct, radiation
testing provides a more accurate estimate of the sensitivity of
the design to single-event upsets since radiation testing upsets
all of the internal memory of the FPGA as well as single event
transients (SET) [19].

A. Approach

The experiments were conducted by configuring one of the
LEON3 design variations onto a Xilinx KC705 evaluation
board with the FPGA mounted normal to the 2 inch collimated
neutron beam, (see Figure 6). The dual LEON3 processor
test system operates continuously in the beam and LEON3
processor errors are identified by the internal self-detection
logic. When an error is detected, the error event is sent over
JTAG to the JTAG controller and the controller reconfigures
the FPGA with a clean design to initiate another test. The
JTAG controller is also used to perform CRAM scrubbing of
the device and to automate the test procedure. Automating
these tests is necessary because of the time it takes to collect
sufficient data for analysis.

3Although errors are not artificially injected into the BRAM, errors can
enter the BRAM through errors in the surrounding logic.

Authorized licensed use limited to: Brigham Young University. Downloaded on May 12,2022 at 16:47:41 UTC from IEEE Xplore. Restrictions apply.

KELLER AND WIRTHLIN: BENEFITS OF COMPLEMENTARY SEU MITIGATION FOR THE LEON3 SOFT PROCESSOR ON SRAM-BASED FPGAs 525

TABLE III

NEUTRON RADIATION DATA

Fig. 6. Neutron Radiation Test Setup.

At the end of a beam run, the number of processor errors, n,
is recorded along with the total neutron fluence. The neutron
fluence at the FPGA board is calculated by derating the
neutron fluence measured by the facility by a constant based
on the distance of the target to the beam cap. Multiple beam
runs are performed as needed to collect sufficient data to make
good cross section estimates.

B. Metrics

The primary metric used to estimate the design sensitivity
to ionizing radiation is the design cross section. The design
cross section is estimated by dividing the number of errors
observed in the test by the total fluence (neutrons per square
centimeter, n

cm2) of the radiation beam,

σ = Nerrors

Fluence
(2)

and has units of cm2. The design cross section measures
the cross section of the entire FPGA device running one
of the five LEON3 processor variations, which includes the
test architecture and two copies of the LEON3. The cross
section captures all failure mechanisms of the design including
CRAM upsets, BRAM upsets, upsets into hidden FPGA state,
and single-event functional interrupts (SEFI). This design
cross section measurement will be used to compare all five
LEON3 design variations against each other and facilitate the
comparison of the neutron radiation tests against the fault
injection tests (see Section VII).

C. Results

The results from the neutron radiation test are shown in
Table III. The estimated cross section for each design variation
is shown, including the number of failures observed, and the
total fluence. 95% confidence intervals for the cross section
estimate are computed using the standard deviation. The
standard deviation of the cross section was estimated using a
normal approximation of the Poisson mean with the equation:

σ =
√

Nerrors

Fluence
(3)

The percent error is the standard deviation divided by the
cross section and represents how tight the confidence interval
is. Because of the limited neutron radiation test time, it was
difficult to obtain sufficient testing statistics for all five design
variations. In particular, the “TMR No Scrubbing” (#2) and
the “TMR and CRAM Scrubbing” (#4) design variations have
very wide confidence intervals.

The estimates of the design cross section for each of the
four LEON3 design variations is less than the estimated design
cross section of the baseline unmitigated design suggesting
that these mitigation approaches are successful. The use of
successive SEU mitigation techniques provides a correspond-
ingly lower design cross section, with the lowest design cross
section obtained from design variation #5, which includes
TMR, BRAM scrubbing, and CRAM scrubbing. This combi-
nation of techniques reduced the estimated design cross section
by 49×.

The results during radiation testing, summarized in
Table III, are an improvement over the results obtained during
a similar experiment [5]. In this previous experiment, the
improvement in SEU sensitivity using all three mitigation
techniques was only 10× in spite of fault injection results
suggesting 51× improvement. The disparity between radia-
tion testing and neutron testing suggested problems with the
experimental setup. After thorough investigation, it was found
that the CRAM scrubber was only scrubbing one third of
the Kintex-7 325T FPGA. The CRAM scrubbing issue was
resolved for these experiments and the fault injection and
radiation testing are much closer in alignment.

Authorized licensed use limited to: Brigham Young University. Downloaded on May 12,2022 at 16:47:41 UTC from IEEE Xplore. Restrictions apply.

526 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 64, NO. 1, JANUARY 2017

TABLE IV

COMPARISON OF FAULT INJECTION AND NEUTRON RADIATION TESTING

D. Estimated Sensitive Bits

To facilitate the comparison of results obtained during
fault injection tests against results obtained during radiation
testing, the number of design “sensitive bits” is estimated
for each LEON3 design variation from radiation test results.
This “sensitive bits” estimate was calculated by dividing the
estimated neutron cross section of the full design by the cross
section of a single CRAM bit of the 7-series FPGA family.
The neutron cross section of a CRAM bit for this family was
previously measured at LANSCE at 6.99 × 10−15 [20]. The
estimated number of sensitive bits for each design variation is
summarized in Table III. The number of sensitive configuration
bits of the unmitigated design, for example, is estimated at
330,822 or.045% of the Block 0 configuration bitstream.

This approach for estimating the number of sensitive bits
is pessimistic and will overestimate the actual number of
sensitive bits in a design. Any mechanism that causes the
LEON3 processor to fail will be attributed to CRAM upsets.
Such failure mechanisms may include upsets with BRAM
bits, user Flip-Flops, SETs, and upsets within the hidden
state of the FPGA. This estimate will manifest these types
of failures as “sensitive CRAM bits” rather than their true
failure mechanism. In spite of this limitation, this estimate is
still useful in that it facilitates the comparison of sensitive bits
estimated from both fault injection and radiation testing.

VII. COMPARISON OF FAULT INJECTION AND

RADIATION TESTING RESULTS

Using the same five designs in a similar testing strategy
facilitates comparison of the results between the fault injection
experiments and the radiation testing experiments. Table IV
summarizes the key results from both sets of experiments
for all five LEON3 design variations to facilitate side-by-side
comparison (the results are copied from Tables II and III).
Before comparing the specific results from these tests it is
important to note that the confidence intervals of the radiation
test results are much larger than the confidence intervals of
fault injection (as noted by the “percent error”). This disparity
is due to the limited time available for radiation testing and
slow rate of upsets obtained in radiation testing in comparison
to fault injection.

A. SEU Sensitivity Improvement

The first method for comparing the two testing meth-
ods is to compare the “Improvement” of each of the SEU

Fig. 7. SEU Sensitivity Improvement for Each Design Variation

mitigation techniques. The improvement results indicate how
much each design variation reduced the SEU sensitivity over
the baseline unmitigated design. The improvement facilitates
comparison of the relative benefit of each mitigation technique
for both fault injection and radiation testing. All SEU miti-
gation techniques provide improvement and the improvement
increases as the mitigation techniques are combined. In spite of
the differences in the testing methodologies, the improvement
for fault injection and radiation testing is surprisingly similar
for most of the design variations (#1, #4, and #5). When all
techniques are combined, design variation #5 has the highest
improvement of roughly 50× for both fault injection and
radiation testing. The improvement observed in both testing
methodologies is plotted in Figure 7 including the confidence
interval bounds.

TMR only on the unmitigated design (#2) demonstrated
an improvement in reliability of 8.16× in radiation testing
and 4.05× in fault injection. The greater improvement seen
in radiation testing is likely due to the fact that radiation
testing upsets more system state than fault injection (such as
BRAM and user flip-flops) and TMR protects these additional
failure mechanisms that are not tested with fault injection. This
effect is more pronounced in the TMR and BRAM scrubbing
variation (#3) in which the radiation testing demonstrates a
16× improvement while the improvement for fault injection
is only 4.9×. This suggests that internal BRAM memory
scrubbing plays a significant component in improving the
SEU sensitivity of FPGA systems that employ internal BRAM
memory.

Configuration scrubbing plays a very important part in
reducing SEU design sensitivity as suggested by design

Authorized licensed use limited to: Brigham Young University. Downloaded on May 12,2022 at 16:47:41 UTC from IEEE Xplore. Restrictions apply.

KELLER AND WIRTHLIN: BENEFITS OF COMPLEMENTARY SEU MITIGATION FOR THE LEON3 SOFT PROCESSOR ON SRAM-BASED FPGAs 527

variations #4 and #5 that integrate active CRAM scrubbing.
This suggests there is a greater chance of failure due to
SEU accumulations in configuration memory than due to SEU
accumulations in BRAM for this design, or in other words
that the majority of bits utilized by the LEON3 design are
part of static configuration memory. This would explain why
configuration scrubbing has a greater positive impact on the
reliability of the TMR design than internal memory scrubbing.

B. Estimated Sensitive Bits

Another method for comparing the results between fault
injection and radiation testing is to compare the estimated
sensitive bits for each design variation. This approach facil-
itates absolute comparison of SEU sensitivity between fault
injection and radiation testing. The number of sensitive bits
is estimated for fault injection by multiplying the estimated
design sensitivity by the total number of configuration bits;
this number is estimated in radiation testing by dividing the
design sensitive cross section by the cross section of a single
configuration bit. The estimated number of sensitive bits for
all design variations in both testing approaches is summarized
in Table IV.

For the unmitigated design (#1), radiation testing estimates
a significantly higher number of sensitive bits than with fault
injection. This result is expected since more internal state
is upset during radiation testing than during fault injection
(BRAM, FFs, SETs, etc.). These data support the idea that
BRAMs are excluded from testing in fault injection but
included in radiation testing. These data also show the design
as slightly more susceptible to failure in the beam than in
fault injection, which is to be expected. This trend of higher
estimated sensitive bits also is seen in design variations #4
and #5 as well. The estimated number of sensitive bits for
designs #2 and #3 is lower for radiation testing than for fault
injection. These are the same designs that do not match in SEU
sensitivity improvement between radiation testing and fault
injection. For reasons that are not fully understood, CRAM
scrubbing has a greater effect during radiation testing than
fault injection.

VIII. CONCLUSION

The experiment in this paper tested more variations of
SEU mitigation techniques than [5], which only compares the
unmitigated design and the fully mitigated design (i.e., all
three SEU mitigation techniques applied). Five SEU mitigation
variations were tested: without SEU mitigation, TMR alone,
TMR with BRAM scrubbing, TMR with CRAM scrubbing,
and TMR with both BRAM scrubbing and CRAM scrubbing.
Testing these combinations helped isolate the benefits of each
SEU mitigation technique and explain the complementary
relationships between them. Both fault injection and neutron
radiation testing were conducted.

Improvement is measured in terms of sensitivity reduction
for fault injection and cross section reduction for neutron
radiation testing when compared to the unmitigated design.
The results from both fault injection and radiation testing
demonstrate that each variation of SEU mitigation techniques

improve the SEU sensitivity of the LEON3, and that improve-
ment increases as more mitigation techniques are combined.
For most design variations (#1, #4, and #5) improvement
observed by fault injection and radiation testing is similar.

When TMR or TMR with BRAM scrubbing are the only
mitigation techniques applied to the LEON3, more improve-
ment is observed by radiation testing than fault injection. This
is most likely due to the fact that radiation testing upsets more
FPGA state than fault injection. Combining BRAM scrubbing
with TMR boost improvement to 16× for radiation testing.
This suggests that BRAM scrubbing plays a significant role
in improving the SEU sensitivity of FPGA designs that use a
large number of BRAMs. Improvement gained from CRAM
scrubbing (27×) is greater than that of BRAM scrubbing, sug-
gesting that the majority of the bits utilized by LEON3 design
are part of static configuration memory. When all three SEU
mitigation techniques are combined (TMR, BRAM scrubbing,
and CRAM scrubbing), approximately 50× improvement is
observed by both test methods.

Future areas of study, for SEU mitigation of soft core
processors, have been identified. These areas include: the
separation of routing paths such that an SEU will not affect
multiple TMR domains [21], the insertion of scrubbing for
other internal memories, using fault injection and readback
data to identify and eliminate single point failures, and adding
software mitigation techniques.

REFERENCES

[1] J. G. Tong, I. D. L. Anderson, and M. A. S. Khalid, “Soft-core
processors for embedded systems,” in Proc. Int. Conf. Microelectron.,
2006, pp. 170–173.

[2] Y. Ichinomiya, S. Tanoue, M. Amagasaki, M. Iida, M. Kuga, and
T. Sueyoshi, “Improving the robustness of a softcore processor against
SEUs by using TMR and partial reconfiguration,” in Proc. 18th IEEE
Annu. Int. Symp. Field-Program. Custom Comput. Mach., May 2010,
pp. 47–54.

[3] P. Graham, M. Caffrey, J. Zimmerman, P. Sundararajan, and E. Johnson,
“Consequences and categories of SRAM FPGA configuration SEUs,”
in Proc. 5th Annu. Int. Conf. Military Aerosp. Program. Logic Devices,
2003, pp. 1–10. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.484.9371

[4] H. Quinn et al, “An introduction to radiation-induced failure modes
and related mitigation methods for Xilinx SRAM FPGAs,” in Proc. Int.
Conf. Eng. Reconfigurable Syst. Algorithms, 2008, pp. 139–145.

[5] M. Wirthlin, A. M. Keller, C. McCloskey, P. Ridd, D. Lee, and J. Draper,
“SEU mitigation and validation of the LEON3 soft processor using triple
modular redundancy for space processing,” in Proc. ACM/SIGDA Int.
Symp. Field-Program. Gate Arrays, 2016, pp. 205–214.

[6] Cobham Gaisler LEON3 Processor. [Online]. Avalable: http://www.
gaisler.com/index.php/products/processors/leon3

[7] M. Niknahad, O. Sander, and J. Becker, “FGTMR—Fine grain redun-
dancy method for reconfigurable architectures under high failure rates,”
in Proc. 15th North-East Asia Symp. Nano, Inf. Technol. Rel., 2011,
pp. 186–191.

[8] J. M. Johnson and M. J. Wirthlin, “Voter insertion algorithms for
FPGA designs using triple modular redundancy,” in Proc. 18th Annu.
ACM/SIGDA Int. Symp. Field Program. Gate Arrays, 2010, pp. 249–258.

[9] A. Manuzzato, S. Gerardin, A. Paccagnella, L. Sterpone, and
M. Violante, “Effectiveness of TMR-based techniques to mitigate alpha-
induced SEU accumulation in commercial SRAM-based FPGAs,” in
Proc. Conf. Radiation Effects Compon. Syst., 2007, pp. 98–104.

[10] L. Sterpone, M. Violante, and S. Rezgui, “An analysis based on fault
injection of hardening techniques for SRAM-based FPGAs,” IEEE
Trans. Nucl. Sci., vol. 53, no. 4, pp. 2054–2059, Aug. 2006.

[11] S. S. Mukherjee, J. Emer, T. Fossum, and S. K. Reinhardt, “Cache
scrubbing in microprocessors: Myth or necessity?” in Proc. 10th
IEEE Pacific Rim Int. Symp. Dependable Comput., Mar. 2004,
pp. 37–42.

Authorized licensed use limited to: Brigham Young University. Downloaded on May 12,2022 at 16:47:41 UTC from IEEE Xplore. Restrictions apply.

528 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 64, NO. 1, JANUARY 2017

[12] N. Rollins, M. Fuller, and M. J. Wirthlin, “A comparison of fault-tolerant
memories in SRAM-based FPGAs,” in Proc. IEEE Aerosp. Conf.,
Mar. 2010, pp. 1972–1983.

[13] M. Berg et al, “Effectiveness of internal vs. external SEU scrubbing
mitigation strategies in a Xilinx FPGA: Design, test, and analysis,” in
Proc. Conf. Radiat. Effects Compon. Syst., 2007, pp. 459–466.

[14] K. Morgan, M. Caffrey, P. Graham, E. Johnson, B. Pratt, and
M. Wirthlin, “SEU-induced persistent error propagation in
FPGAs,” IEEE Trans. Nucl. Sci., vol. 52, no. 6, pp. 2438–2445,
Dec. 2005.

[15] M. Straka and Z. Kotasek, “High availability fault tolerant architectures
implemented into FPGAs,” in Proc. 12th Euromicro Conf. Digital Syst.
Design, Archit., Methods Tools, 2009, pp. 97–104.

[16] P. S. Ostler et al., “SRAM FPGA reliability analysis for harsh radiation
environments,” IEEE Trans. Nucl. Sci., vol. 56, no. 6, pp. 3519–3526,
Dec. 2009.

[17] H. M. Quinn et al, “A test methodology for determining space readiness
of Xilinx SRAM-Based FPGA devices and designs,” IEEE Trans.
Instrum. Meas., vol. 58, no. 10, pp. 3380–3395, Oct. 2009.

[18] K. Schoenberg, “The lansce accelerator: A powerful tool for science
and applications,” in Proc. IEEE Particle Accelerator Conf., Jun. 2007,
p. 120.

[19] A. Spilla, et al, “Run-time soft error injection and testing of a
microprocessor using FPGAs,” in Proc. Workshop Test Methoden
Zuverlässigkeit Schaltungen Syst., 2011, pp. 1–6. [Online]. Available:
http://ais.informatik.uni-freiburg.de/publications/papers/spilla11tuz.pdf

[20] Xilinx Inc., Device Reliability Report, First Half 2016, accessed on
Nov. 28, 2016. [Online]. Available: https://www.xilinx.com/support/
documentation/userguides/ug116.pdf

[21] F. L. Kastensmidt, C. K. Filho, and L. Carro, “Improving reliability
of SRAM-based FPGAs by inserting redundant routing,” IEEE Trans.
Nucl. Sci., vol. 53, no. 4, pp. 2060–2068, Aug. 2006.

Authorized licensed use limited to: Brigham Young University. Downloaded on May 12,2022 at 16:47:41 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Aachen-Bold
 /ACaslon-AltBold
 /ACaslon-AltBoldItalic
 /ACaslon-AltItalic
 /ACaslon-AltRegular
 /ACaslon-AltSemibold
 /ACaslon-AltSemiboldItalic
 /ACaslon-Bold
 /ACaslon-BoldItalic
 /ACaslon-BoldItalicOsF
 /ACaslon-BoldOsF
 /ACaslonExp-Bold
 /ACaslonExp-BoldItalic
 /ACaslonExp-Italic
 /ACaslonExp-Regular
 /ACaslonExp-Semibold
 /ACaslonExp-SemiboldItalic
 /ACaslon-Italic
 /ACaslon-ItalicOsF
 /ACaslon-Ornaments
 /ACaslon-Regular
 /ACaslon-RegularSC
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /ACaslon-SemiboldItalicOsF
 /ACaslon-SemiboldSC
 /ACaslon-SwashBoldItalic
 /ACaslon-SwashItalic
 /ACaslon-SwashSemiboldItalic
 /AGaramondAlt-Italic
 /AGaramondAlt-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-BoldItalicOsF
 /AGaramond-BoldOsF
 /AGaramondExp-Bold
 /AGaramondExp-BoldItalic
 /AGaramondExp-Italic
 /AGaramondExp-Regular
 /AGaramondExp-Semibold
 /AGaramondExp-SemiboldItalic
 /AGaramond-Italic
 /AGaramond-ItalicOsF
 /AGaramond-Regular
 /AGaramond-RegularSC
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AGaramond-SemiboldItalicOsF
 /AGaramond-SemiboldSC
 /AGaramond-Titling
 /AJensonMM
 /AJensonMM-Alt
 /AJensonMM-Ep
 /AJensonMM-It
 /AJensonMM-ItAlt
 /AJensonMM-ItEp
 /AJensonMM-ItSC
 /AJensonMM-SC
 /AJensonMM-Sw
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Americana
 /Americana-Bold
 /Americana-ExtraBold
 /Americana-Italic
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /AvantGarde-Demi
 /BBOLD10
 /BBOLD5
 /BBOLD7
 /BermudaLP-Squiggle
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chaparral-Display
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Cutout
 /EMB10
 /EMBX10
 /EMBX12
 /EMBX5
 /EMBX6
 /EMBX7
 /EMBX8
 /EMBX9
 /EMBXSL10
 /EMBXTI10
 /EMCSC10
 /EMCSC8
 /EMCSC9
 /EMDUNH10
 /EMFF10
 /EMFI10
 /EMFIB8
 /EMITT10
 /EMMI10
 /EMMI12
 /EMMI5
 /EMMI6
 /EMMI7
 /EMMI8
 /EMMI9
 /EMMIB10
 /EMMIB5
 /EMMIB6
 /EMMIB7
 /EMMIB8
 /EMMIB9
 /EMR10
 /EMR12
 /EMR17
 /EMR5
 /EMR6
 /EMR7
 /EMR8
 /EMR9
 /EMSL10
 /EMSL12
 /EMSL8
 /EMSL9
 /EMSLTT10
 /EMSS10
 /EMSS12
 /EMSS17
 /EMSS8
 /EMSS9
 /EMSSBX10
 /EMSSDC10
 /EMSSI10
 /EMSSI12
 /EMSSI17
 /EMSSI8
 /EMSSI9
 /EMSSQ8
 /EMSSQI8
 /EMTCSC10
 /EMTI10
 /EMTI12
 /EMTI7
 /EMTI8
 /EMTI9
 /EMTT10
 /EMTT12
 /EMTT8
 /EMTT9
 /EMU10
 /EMVTT10
 /EstrangeloEdessa
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /Fences
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FreestyleScript
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Giddyup
 /GreymantleMVB
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /ICMEX10
 /ICMMI8
 /ICMSY8
 /ICMTT8
 /ILASY8
 /ILCMSS8
 /ILCMSSB8
 /ILCMSSI8
 /Impact
 /jsMath-cmex10
 /Kartika
 /Khaki-Two
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /Latha
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LINE10
 /LINEW10
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOD10
 /LOGOSL10
 /LOGOSL8
 /LOGOSL9
 /LucidaBlackletter
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaBright-Oblique
 /LucidaBrightSmallcaps
 /LucidaBrightSmallcaps-Demi
 /LucidaCalligraphy-Italic
 /LucidaCasual
 /LucidaCasual-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaNewMath-AltDemiItalic
 /LucidaNewMath-AltItalic
 /LucidaNewMath-Arrows
 /LucidaNewMath-Arrows-Demi
 /LucidaNewMath-Demibold
 /LucidaNewMath-DemiItalic
 /LucidaNewMath-Extension
 /LucidaNewMath-Italic
 /LucidaNewMath-Roman
 /LucidaNewMath-Symbol
 /LucidaNewMath-Symbol-Demi
 /LucidaSans
 /LucidaSans-Bold
 /LucidaSans-BoldItalic
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /LucidaTypewriter
 /LucidaTypewriterBold
 /LucidaTypewriterBoldOblique
 /LucidaTypewriterOblique
 /Mangal-Regular
 /MicrosoftSansSerif
 /Mojo
 /MonotypeCorsiva
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MTEX
 /MTEXB
 /MTEXH
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MT-Symbol-Italic
 /MTSYN
 /MVBoli
 /Myriad-Tilt
 /Nyx
 /OCRA-Alternate
 /Ouch
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Pompeia-Inline
 /Postino-Italic
 /Raavi
 /Revue
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RSFS10
 /RSFS5
 /RSFS7
 /Shruti
 /Shuriken-Boy
 /SpumoniLP
 /STMARY10
 /STMARY5
 /STMARY7
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /UniversityRoman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /WASY10
 /WASY5
 /WASY7
 /WASYB10
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

