
TSHMEM: Shared-Memory Parallel Computing
on Tilera Many-Core Processors

Bryant C. Lam Alan D. George Herman Lam
NSF Center for High-Performance Reconfigurable Computing (CHREC)

Department of Electrical and Computer Engineering
University of Florida

Gainesville, FL 32611-6200
{blam, george, hlam}@chrec.org

Abstract—With many-core processor architectures emerging,
concerns arise regarding the productivity of numerous parallel
programming tools, models, and languages as developers from
a broad spectrum of science domains struggle to maximize
performance and maintain correctness of their applications. For-
tunately, a partitioned global address space (PGAS) programming
model has demonstrated realizable performance and productivity
potential for large parallel computing systems with distributed-
memory architectures. One such PGAS approach is SHMEM,
a lightweight, shared-memory programming library. Renewed
interest for SHMEM has developed around OpenSHMEM, a
recent community-led effort to produce a standardized specifi-
cation for the SHMEM library amidst incompatible commercial
implementations. This paper presents and evaluates the design
of TSHMEM (short for TileSHMEM), a new OpenSHMEM
library for the Tilera TILE-Gx8036 and TILEPro64 many-core
processors. TSHMEM is built atop Tilera-provided libraries
with key emphasis upon realizable performance with those
libraries, demonstrated through microbenchmarking. Further-
more, SHMEM application portability is illustrated with two case
studies. TSHMEM successfully delivers high performance with
ease of programmability and portability for SHMEM applications
on TILE-Gx and TILEPro architectures.

Keywords—parallel programming; performance analysis; high-
performance computing; parallel architectures

I. INTRODUCTION

Parallel programming is experiencing explosive growth of
demand due to processor architectures shifting toward many
processing cores in an effort to maintain performance progres-
sion in the face of technological and physical limitations. With
the emergence of many-core processors into high-performance
computing (HPC), the development of parallel programming
models, tools, and libraries is more essential than ever before.

HPC has traditionally focused on models such as message
passing with MPI or shared memory with OpenMP, but interest
is rising for a partitioned global address space (PGAS) abstrac-
tion with its potential to provide high-performing libraries and
languages around a straightforward memory and communication
model. Notable members of the PGAS family include Unified
Parallel C (UPC), X10, Chapel, Co-Array Fortran (CAF),
Titanium, and SHMEM.

In this paper, we present and evaluate the design of
TSHMEM (TileSHMEM), a SHMEM library based on the
OpenSHMEM version 1.0 specification [1]. TSHMEM delivers
a high-performance many-core programming library that im-

proves developer productivity and enables SHMEM application
portability for the Tilera TILE-Gx and TILEPro architectures.
With the purpose of leveraging many-core capabilities and
optimizations, TSHMEM is built atop Tilera-provided libraries
with microbenchmarking employed in order to compare the
realizable performance and overhead between those libraries
and TSHMEM functionality [2].

The remainder of the paper is organized as follows.
Section II provides background on the SHMEM library and
standardization efforts via OpenSHMEM, our previous research
with GSHMEM (i.e., SHMEM for clusters), and a brief
introduction to Tilera’s many-core architectures. Section III
presents several microbenchmarking results on Tilera TILE-
Gx8036 and TILEPro64 processors. Section IV delves into the
design of TSHMEM, with performance results and analysis
for a subset of the OpenSHMEM specification. Section V
presents two application studies with TSHMEM demonstrating
portability and performance. Finally, Section VI provides
conclusions and directions for future work.

II. BACKGROUND

The single-program, multiple-data (SPMD) programming
style is highly amenable for tasks on large parallel systems,
enabling diverse programming models such as active message
passing, distributed shared memory, and partitioned global
address space. This section provides a brief background of
SHMEM, GSHMEM, and Tilera, which form the foundation
of our experience and design for TSHMEM.

A. SHMEM and OpenSHMEM
The SHMEM communication library adheres to a strict

PGAS model whereby each cooperating parallel process (also
known as a processing element, or PE) consists of a shared
symmetric partition within the global address space. Each
symmetric partition consists of symmetric objects (variables
or arrays) of the same size, type, and relative address on all
PEs. Originally developed to provide shared-memory semantics
on the distributed-memory Cray T3D supercomputer, SHMEM
closely models SPMD via its symmetric, partitioned, global
address space.

There are two types of symmetric objects that can reside in
the symmetric partitions: static and dynamic. Static variables
reside in the heap segment of the program executable and
are allocated during link time. These static variables, when
parallelized as multiple processes, appear at the same virtual
address to all processes running the same executable, thus



ensuring its symmetry across all partitions. Dynamic symmetric
variables, in contrast, are allocated at runtime on all PEs via
SHMEM’s dynamic memory allocation function shmalloc().
These dynamic variables, however, may or may not be allocated
at the same virtual address on all PEs, but are typically at the
same offset relative to the start of each symmetric partition.

SHMEM provides a set of routines for explicit communica-
tion between PEs, including one-sided data transfers (puts
and gets), blocking barrier synchronization, and collective
operations, as illustrated by the basic subset of available routines
listed in Table I. In addition to being a high-performance,
lightweight library, SHMEM provides support for atomic
memory operations not available in popular library alternatives
until recently (e.g., MPI 3.0).

Due to the lightweight nature of SHMEM, commercial
variants have emerged from vendors such as Cray, SGI, and
Quadrics. Application portability between variants, however,
proved difficult due to different functional semantics, in-
compatible APIs, or system-specific implementations. This
situation had regrettably fragmented developer adoption in
the HPC community. Fortunately, SHMEM has recently seen
renewed interest in the form of OpenSHMEM, a community-
led effort to create a standard specification for SHMEM
functions and semantics. Version 1.0 of the OpenSHMEM
specification released on January 31, 2012 brings revived hope
for widespread adoption. Vendors such as Mellanox are already
providing library implementations based on OpenSHMEM [3].

B. GSHMEM
Our prior work with SHMEM involved design and evalua-

tion of an OpenSHMEM library called GSHMEM (GatorSH-
MEM) [4] atop GASNet [5], a low-level networking layer
and communications system with the goal of supporting
SPMD parallel programming models, such as PGAS-related
models and languages. GSHMEM targeted a draft version
of the OpenSHMEM specification in order to evaluate its
existing functionality and propose several new additions for
future revisions. Built for cluster-based systems, experimen-
tal results via microbenchmarking with GSHMEM showed
that performance is comparable to a proprietary Quadrics
implementation of SHMEM and an MPI library (MVAPICH)
over InfiniBand. Additionally, two application case studies
with GSHMEM demonstrated the library’s portability across
two distinct systems with vastly disparate interconnection
technologies. GSHMEM proved that, by leveraging GASNet,
SHMEM implementations can be made modern and portable
over different architectures and system hierarchies without
sacrificing high performance or developer productivity.

C. Tilera Many-Core Processors
Tilera Corporation, based in San Jose, California, develops

commercial many-core processors with emphases on high
performance and low power in the cloud computing, general
server, and embedded devices markets. Each Tilera many-core
processor is designed as a scalable 2D mesh of tiles, with each
tile consisting of a processing core and cache system attached
to several on-chip networks via a non-blocking cut-through
switch. Referred to as the Tilera iMesh (intelligent Mesh), their
scalable 2D mesh consists of dynamic networks that provide
data routing between memory controllers, caches, and external
I/O and enables developers to explicitly transfer data between
tiles via a low-level user-accessible dynamic network.

Table I. BASIC SUBSET OF OPENSHMEM FUNCTIONS.

Category Example Functions

Setup and Initialization start_pes()
Environment Query _my_pe(), _num_pes()
Memory Allocation shmalloc(), shfree()

shmem_int_p()
shmem_int_g()
shmem_putmem()
shmem_getmem()
shmem_int_iput()
shmem_int_iget()

shmem_barrier()
shmem_barrier_all()
shmem_fence()
shmem_quiet()
shmem_wait()
shmem_wait_until()

Broadcast shmem_broadcast32()
shmem_collect32()
shmem_fcollect32()
shmem_int_sum_to_all()
shmem_long_prod_to_all()

Atomic Swap shmem_swap()

Point-to-Point Sync

Collection

Atomic Operations

Elemental Put/Get

Environment

Data Transfer

Synchronization

Group Communication

Communications Sync

Barrier

Reduction

Block Put/Get

Strided Put/Get

Our research focuses on the new TILE-Gx8036 (Figure 1)
with its predecessor, the TILEPro64 (Figure 2), as baseline for
comparison. Their architectural characteristics are detailed in
Table II. The TILEPro is Tilera’s previous generation of many-
core processors with 32-bit processing cores interconnected
via four dynamically dimension-order-routed networks and one
developer-defined statically routed network. These processors
consist of the 36-core TILEPro36 and 64-core TILEPro64.
The TILE-Gx is Tilera’s new generation of 64-bit many-
core processors. Differentiated by a substantially redesigned
architecture, the TILE-Gx exhibits upgraded processing cores,
improved iMesh interconnects, and novel on-chip accelerators.
Each 64-bit processing core is now attached to five dynamic
networks. The TILE-Gx family currently includes the 16-
core TILE-Gx16 (TILE-Gx8016) and 36-core TILE-Gx36
(TILE-Gx3036 and TILE-Gx8036). In addition, TILE-Gx
provides hardware accelerators not found on previous Tilera
processors: mPIPE (multicore Programmable Intelligent Packet
Engine) for wire-speed packet classification, distribution, and
load balancing; and MiCA (Multicore iMesh Coprocessing
Accelerator) for cryptographic and compression acceleration.

III. DEVICE PERFORMANCE STUDIES

Tilera provides the Tilera Multicore Components (TMC)
library for general application development, suitable for a
variety of task models and featuring components that developers
can leverage for their routines. In addition, the gxio library
provides programmability for features specific to TILE-Gx
devices, such as mPIPE and MiCA. For ease of development on
their many-core devices, Tilera provides a customized Eclipse
IDE installation with numerous extensions, such as state trackers
for individual tiles.



Benchmarking these libraries is necessary to determine
the upper bound on performance realizable for any library
design (e.g., TSHMEM) or application. Routines relevant to
the functionality required in TSHMEM are microbenchmarked
to compare performance and overhead. Platforms targeted by
our research are the TILEmpower-Gx with a single TILE-
Gx8036 operating at 1 GHz, and the TILEncorePro-64 with a
single TILEPro64 operating at 700 MHz. A host machine is
required for PCI-card platforms such as the TILEncorePro-64,
while it is an option for standalone server platforms such as
the TILEmpower-Gx.

A. Memory Hierarchy
Before discussing the microbenchmarks, a brief synopsis

of Tilera’s memory hierarchy is necessary. Each physical tile
on the TILE-Gx and TILEPro consists of a processor with
L1i, L1d, and L2 caches. Tilera employs several techniques to
reduce latency for external memory operations, one of which is
the Dynamic Distributed Cache (DDC). Tilera’s DDC presents
a large L3 unified cache that is the aggregation of L2 caches
from all tiles. Each physical memory address is dynamically
assigned to a home tile to manage, allowing memory requests
to be fulfilled from other tiles in order to keep on-chip as much
memory as possible.

The method by which memory addresses are assigned to
home tiles is memory homing. Tilera’s memory hierarchy pro-
vides for three classes of homing: local homing, remote homing,
and hash-for-home. Local homing assigns a page of memory
to the same tile accessing it. For memory regions exhibiting
high locality, this approach provides for a potentially faster
hit latency. Unfortunately, local homing loses the advantage of
DDC as these pages cannot be distributed to other tiles’ L2
caches. As a result, local homing is most suitable in cases such
as small private data that can entirely reside in L2 cache, such
as program stack data. Remote homing is the contra to local,
whereby memory pages are homed on a tile other than the one
currently accessing the data. This strategy is most useful in
producer-consumer relationships when the producer can set a
page for remote homing and write directly into the home tile’s
cache, avoiding unnecessary access to its own cache. The home
tile as consumer can then directly consume the result from its
own cache. Finally, hash-for-home is similar to remote homing;
however, instead of homing a page to a single tile, the page is
hashed and distributed across multiple tiles. This method allows
for distributed memory accesses across the entire L3 DDC,
reducing bottlenecks at any individual tile’s cache. Hash-for-
home is inappropriate for private single-reader data that is more
suitable for local or remote homing, but excels for memory
shared between multiple threads or processes. By default, hash-
for-home is used for a majority of data and instruction memory
as it provides excellent performance for shared memory and
good performance for private memory.

B. TMC Common Memory
The TMC library provides routines for allocating shared

memory between processes. Referred to as common memory,
it differentiates itself from traditional cross-process shared-
memory mappings in that all participating processes will map
the shared-memory region at the same virtual address, enabling
processes to share pointers into common memory. Additionally,
any process can create new mappings which become visible
to others, removing the restriction that all shared memory

Table II. ARCH. COMPARISON FOR TILE-GX8036 AND TILEPro64.

TILE-Gx8036 TILEPro 64
36 tiles of 64-bit VLIW processors 64 tiles of 32-bit VLIW processors

32k L1i, 32k L1d, 256k L2 cache per tile 16k L1i, 8k L1d, 64k L2 cache per tile
Up to 750 billion operations per second Up to 443 billion operations per second
60 Tbps of on-chip mesh interconnect 37 Tbps of on-chip mesh interconnect

Over 500 Gbps memory bandwidth 200 Gbps memory bandwidth
1.0 to 1.5 GHz operating frequency 700 and 866 MHz operating frequency

10 to 55W 19 to 23W @ 700 MHz
2 DDR3 memory controllers 4 DDR2 memory controllers

mPIPE for wire-speed packet processing
MiCA for crypto and compression

Figure 1. TILE-Gx8036 architecture diagram [6].

Figure 2. TILEPro64 architecture diagram [7].

must be created from a parent process. TSHMEM leverages
common memory to provide the PGAS model and shared-
memory semantics of SHMEM. The bandwidth of memory-
copy operations to and from this shared memory is decisively
important in determining TSHMEM’s overall performance due
to its significant use in one-sided data transfers.

Figure 3 shows microbenchmark results for memcpy()
operations between statically allocated private heap memory
and shared-memory segments via TMC common memory.
Effective bandwidth on the TILE-Gx36 is much higher than on
TILEPro64 for transfers smaller than 2 MB. This performance
difference can be attributed to several reasons. The TILEPro’s
iMesh consists of four dynamic networks, one of which
is dedicated to memory operations and another for cache
coherency communication among tiles. The TILE-Gx’s iMesh,
however, has been redesigned to include five dynamic networks,



0

500

1000

1500

2000

2500

3000

3500

4 
B

8 
B

16
 B

32
 B

64
 B

12
8 

B

25
6 

B

51
2 

B

1 
kB

2 
kB

4 
kB

8 
kB

16
 k

B

32
 k

B

64
 k

B

12
8 

kB

25
6 

kB

51
2 

kB

1 
M

B

2 
M

B

4 
M

B

8 
M

B

16
 M

B

32
 M

B

64
 M

B

Ef
fe

ct
iv

e 
Ba

nd
w

id
th

 (M
B/

s)
 

Transfer Size 

TILE-Gx36: heap to shared TILE-Gx36: shared to heap TILE-Gx36: shared to shared
TILEPro64: heap to shared TILEPro64: shared to heap TILEPro64: shared to shared

Figure 3. Effective bandwidth for shared-memory copy operations on TILE-
Gx36 and TILEPro64.

two of which are now dedicated for memory request and
response operations and one for cache coherency. As a result,
TILE-Gx memory performance is substantially improved.

Effective bandwidth on TILE-Gx36 experiences three sig-
nificant transitions in performance. The first two transitions
are attributed to and occur at the L1d (32 kB) and L2 (256 kB)
cache sizes, indicating representative performance for the
cache system. The L1d cache performance tops out around
3100 MB/s, and the L2 cache performance reaches a peak
between 1900 MB/s and 2700 MB/s. The third performance
transition on TILE-Gx36 is attributed to Tilera’s L3 DDC.
Effective bandwidth decreases from 1000 MB/s as transfer sizes
beyond 1 MB begin exceeding the L2 caches of nearby tiles
from DDC, converging at 320 MB/s in memory-to-memory
transfers. The TILEPro64 follows the same trends experienced
with TILE-Gx36, but at a less-pronounced performance benefit.
Performance is stable at or near 500 MB/s through the L1d and
L2 cache sizes and decreases into memory-to-memory transfers
(370 MB/s). Memory-to-memory transfers on the TILEPro64,
however, are faster than those on the TILE-Gx36.

C. TMC UDN Helper Functions
Tilera provides access to the UDN (User Dynamic Network),

a low-latency direction-order-routed dynamic network on their
iMesh. Developers attach a 1-word header to each payload
with information about the destination tile and transfer the data
packet via the UDN—at a rate of 1 word per hop, per clock
cycle—into one of four demultiplexing queues at the destination.
Each receiving queue on the UDN can accommodate up to
a payload size of 127 words (8-byte word on the TILE-Gx,
4-byte word on the TILEPro), making the UDN suitable for
small-sized explicit communication.

The TMC library provides UDN helper routines that facili-
tate these transfers via two-sided send-and-receive calls. We
microbenchmark the UDN’s latency performance of minimum-
sized payloads on the TILE-Gx36 and TILEPro64 between
pairs of tiles with varying distances: neighbors for transfers
between adjacent tiles, side-to-side for transfers horizontally or
vertically across the test area, and corners for diagonal transfers
over the entire test area. The effective test area on both devices
is 6×6 tiles, providing full coverage of the TILE-Gx36. Timing
is performed on the sender tile as a halved average between a
1-word send and a 1-word acknowledgment from the receiver.
Average one-way latencies are depicted in Figure 4.

0

5

10

15

20

25

30

35

Neighbors Side-to-Side Corners

La
te

nc
y 

(n
s)

 

Tile-to-Tile in 6x6 Area 

TILE-Gx36

TILEPro64

Figure 4. Average one-way latencies on UDN between adjacent tiles
(neighbors), tiles across the area (side-to-side), and tiles on opposite corners
of the effective area (corners). TILE-Gx36 has higher latency due to setup-
and-teardown on a 64-bit switching fabric vs. TILEPro64’s 32-bit fabric.

Table III. ONE-WAY LATENCIES ON UDN.

Type
(6x6 area) TILE-Gx36 TILEPro 64

left 14 13 21 19
right 14 15 22 19
up 14 8 22 18

down 14 20 22 18
left 28 27 21 19

right 28 29 22 19
up 28 22 22 18

down 28 34 22 18
right 6 11 26 25
left 11 6 25 25

down 1 31 26 24
up 31 1 26 24

right 23 18 25 25
left 18 23 26 25

down 33 3 26 24
up 3 33 26 24

down-right 0 35 32 33
up-left 35 0 31 33

down-left 5 30 31 33
up-right 30 5 32 33

Side-to-Side

Corners

Time (ns)
Direction Sender Receiver

Neighbors

Individual results in Table III show that each case has
consistent latencies with low variance of 1 ns between results,
regardless of direction. This data indicates that the average can
be interpreted as representative performance. Note that virtual
CPU numbers in Table III are used for Sender and Receiver
tiles because the physical CPU numbers for these tiles are
not the same between the TILE-Gx36 and TILEPro64 due to
different chip dimensions. The virtual CPU numbers are equal
to the physical CPU numbers on the TILE-Gx36, as the chip
dimensions are equal to the test area, but the 6×6 test area is a
subset of the 8×8 chip on the TILEPro64. As a result, virtual
CPU numbers must be converted to corresponding physical
CPU numbers on TILEPro64 (e.g., virtual tile 6 is physical
tile 8) if actual tile positions are desired.

Each varying-distance case can be broken down into two
components: setup-and-teardown time and network-traversal
time. The clock frequency and packet-switching rate are known,
allowing us to roughly determine the setup-and-teardown time.
Our TILE-Gx36 operates at 1 GHz, requiring 1 ns to route 1
word/hop. In comparison, the TILEPro64 at 700 MHz requires
1.43 ns. The number of hops in a 6×6 mesh network is 1, 5, and
10 for neighbor-to-neighbor, side-to-side, and corner-to-corner,
respectively; therefore the estimated setup-and-teardown time
is roughly 21 ns for the TILE-Gx and 18 ns for the TILEPro.
Because of the longer setup-and-teardown time, the TILE-
Gx has a slower average latency for the neighbor-to-neighbor
and side-to-side cases. These latency tests have focused on



0.1

1

10

100

1000

0 5 10 15 20 25 30 35 40

La
te

nc
y 

(µ
s)

 

Number of Tiles 

TMC spin, TILE-Gx36 TMC spin, TILEPro64

TMC sync, TILE-Gx36 TMC sync, TILEPro64

Figure 5. Latencies of TMC spin and sync barriers.

minimum-sized payloads, but actual data transferred is doubled
on TILE-Gx due to a 64-bit switching fabric compared to 32-bit
on TILEPro. Effective data throughput for neighbor, side-to-
side, and corner-to-corner cases is 2900, 2500, and 2000 Mbps
on TILE-Gx36 and 1700, 1300, and 980 Mbps on TILEPro64.

D. TMC Spin and Sync Barriers
The TMC library provides two types of barriers for

synchronization: spin and sync. True to its name, the spin barrier
will block processing and poll continuously until the correct
number of tasks has reached the barrier. This polling results in
lower overhead but incurs significant performance degradation
if the currently blocking task is context-switched out for a new
task. As such, spin barriers should only be used when there
is only one task per tile. In contrast, the sync barrier interacts
with the Linux scheduler and notifies it when the barrier begins
to block. The scheduler can swap out the task while it waits
and replace it for another task to continue processing. The
sync barrier incurs a larger performance penalty than spin, but
allows for additional use cases when the restrictions of a spin
barrier are inappropriate.

Latency results for spin and sync barriers are shown in
Figure 5. As expected, spin barriers vastly outperform sync
barriers due to their polling nature, with latencies of 1.5 µs
and 47.2 µs at 36 tiles for the TILE-Gx36 and TILEPro64,
respectively, compared to 321 µs and 786 µs. Futhermore, the
spin barrier for the TILE-Gx significantly outperforms the
TILEPro’s. Since SHMEM focuses on low-overhead, low-
latency performance, the substantial effort from Tilera in
reducing the barrier latencies when transitioning to the TILE-
Gx makes the TMC spin barrier for TILE-Gx an appealing
candidate for use in TSHMEM.

IV. DESIGN OVERVIEW OF TSHMEM
The software architecture of TSHMEM leverages the Tilera

TMC libraries to provide an OpenSHMEM-compliant high-
performance library for Tilera many-core processors. TSHMEM
currently targets the OpenSHMEM V1.0 specification and
implements the functions required by all SHMEM applications.
The subsections below are ordered categorically according to
Table I, each including design description and performance
results. Open issues and proposed extensions to OpenSHMEM
are discussed in the final subsection.

0

500

1000

1500

2000

2500

3000

3500

4 
B

8 
B

16
 B

32
 B

64
 B

12
8 

B

25
6 

B

51
2 

B

1 
kB

2 
kB

4 
kB

8 
kB

16
 k

B

32
 k

B

64
 k

B

12
8 

kB

25
6 

kB

51
2 

kB

1 
M

B

2 
M

B

4 
M

B

Ef
fe

ct
iv

e 
Ba

nd
w

id
th

 (M
B/

s)
 

Transfer Size 

TILE-Gx36 dynamic put
TILE-Gx36 dynamic get
TILE-Gx36 static put
TILE-Gx36 static get
TILEPro64 dynamic put
TILEPro64 dynamic get

Figure 6. Effective bandwidth of TSHMEM put/get transfers for dynamic-
dynamic on TILE-Gx36 and TILEPro64 and static-static on TILE-Gx36.

A. Environment Setup and Initialization
SHMEM implementations typically consist of the library to

which applications are linked against and an executable launcher
which sets up the initial environment, forks the requested
number of processes, and executes the desired application.
TSHMEM’s executable launcher initializes the environment by
setting up Tilera’s TMC common memory in order to create
a globally shared space visible to all processes and setting
up the UDN for explicit communication between the tiles
participating in SHMEM. After forking, each process uniquely
binds to a tile, creating a one-to-one mapping. After exec(),
the application calls start pes() to finish initialization. At this
time, the globally shared memory is partitioned symmetrically
among participating tiles (providing the PGAS memory model)
and each tile reports its partition’s starting address to every
other tile via the UDN.

Dynamic symmetric memory is managed via shmalloc()
and shfree(). TSHMEM’s design of shmalloc() consists of a
doubly-linked list tracking the memory segments being used in
the current tile’s partition. Memory is kept implicitly symmetric
by the constraints imposed when using shmalloc(), requiring
applications call the routine on all PEs with the same size
argument at the same location in the program execution path.

B. Point-to-Point Data Transfers
OpenSHMEM specifies several categories of point-to-point

one-sided data transfers consisting of elemental, bulk, and
strided put/get operations. Elemental put/get functions operate
on single-element symmetric objects (e.g., short, int, float)
whereas bulk functions operate on contiguous data. Strided
operations allow the transfer of data with strides between con-
secutive elements in the source and/or target arrays. Semantics
for put operations are non-blocking, returning from the function
once the memory request is made and the data transfer is in-
flight. Get operations, however, are blocking and will not return
until the requested memory is visible to the local tile.

1) Dynamically Allocated Symmetric Objects: Due to the
symmetry of each partition, a tile can determine the virtual
address of any other tile’s dynamic symmetric object by
calculating the offset of its own object from its partition’s
start address and then adding the offset to the target tile’s
partition start address. The data transfer is then facilitated with
a memcpy() operation using the calculated virtual address.

Figure 6 shows the effective bandwidth for dynamic-
dynamic put/get transfers in TSHMEM. Note that put perfor-



0

500

1000

1500

2000

2500

3000

3500

4 
B

8 
B

16
 B

32
 B

64
 B

12
8 

B

25
6 

B

51
2 

B

1 
kB

2 
kB

4 
kB

8 
kB

16
 k

B

32
 k

B

64
 k

B

12
8 

kB

25
6 

kB

51
2 

kB

1 
M

B

2 
M

B

4 
M

B

Ef
fe

ct
iv

e 
Ba

nd
w

id
th

 (M
B/

s)
 

Transfer Size 

TILE-Gx36 dynamic put
TILE-Gx36 dynamic get
TILE-Gx36 dynamic-static put
TILE-Gx36 dynamic-static get
TILE-Gx36 static-dynamic put
TILE-Gx36 static-dynamic get
TILE-Gx36 static put
TILE-Gx36 static get

Figure 7. Effective bandwidth of TSHMEM put/get transfers on TILE-Gx36,
emphasizing performance with static symmetric variables.

mance closely aligns with get performance for both the TILE-
Gx36 and TILEPro64. The dynamic-dynamic put/get design
in TSHMEM demonstrates low overhead as the realizable
performance for both devices closely matches the shared-to-
shared performance from the common memory microbenchmark
in Figure 3. TSHMEM uses the hash-for-home strategy for
common memory. Static-static transfers for TILE-Gx36 are
also presented in this figure as a comparison to TILEPro64
performance and will be discussed in the next subsection.

2) Statically Allocated Symmetric Objects: Static symmetric
objects are treated very differently from their dynamic counter-
part. These objects are allocated statically into the program’s
heap space at link time and are symmetric due to the reality that
the virtual addresses of the program heap are identical when
parallel processes are instantiated with the same executable.
Unfortunately, the heap space resides in private memory of a
process and is not directly accessible to other processes.

TSHMEM facilitates data transfer for static symmetric
objects via UDN interrupts. The put/get functions check the
data target and source addresses to see if either address does
not reside in the globally partitioned shared space. If an address
does not reside in the shared space, it is assumed to be a static
symmetric variable. The local tile will notify the remote tile
over UDN, causing an interrupt and forcing the remote tile to
service the operation when the local tile cannot. If one of the
addresses is dynamic, either the local or the remote tile will
be able to directly access that dynamic memory to service the
request. For example, if the local tile cannot get from a remote
tile’s static symmetric variable, the remote tile can instead
put into a dynamic symmetric variable on the local tile. In
the case when both target and source addresses point to static
symmetric variables, neither local or remote tile will be able
to service the operation. A temporary shared-memory buffer is
created to assist in the transfer, incurring an additional memory
copy operation as overhead. Static symmetric variable transfers
in TSHMEM are not currently supported on the TILEPro
architecture due to lack of support for UDN interrupts.

Figure 7 shows effective bandwidth performance of put/get
operations on TILE-Gx36 with different combinations of
dynamic and static symmetric variables as either the target
or the source array. The precise notation in the legend is
target–source (e.g., dynamic-static indicates an operation with a
dynamic target and static source). For put operations, any source
variable may be used (symmetric or otherwise) if the target
variable is dynamic. Likewise, get operations may use any target

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35 40

La
te

nc
y 

(µ
s)

 

Number of Tiles 

TSHMEM, TILE-Gx36 (best) TSHMEM, TILE-Gx36 (worst)

TSHMEM, TILEPro64 TMC spin, TILE-Gx36

Figure 8. Latencies of TSHMEM barrier.

variable provided the source variable is dynamic. As a result,
dynamic-static puts and static-dynamic gets exhibit the same
performance as their dynamic-dynamic counterparts, which
demonstrates low overhead in comparison with the performance
of the common memory microbenchmark in Figure 3.

Static-dynamic puts and dynamic-static gets cannot be
performed by the local tile. Fortunately, the local tile can
interrupt the remote tile and force it to service the request with
minor performance degradation. Major performance penalty is
incurred only in the static-static case when temporary shared-
space allocation is required to aid in the transfer.

C. Synchronization
TSHMEM provides several categories of synchronization:

barrier sync; communication sync with fence/quiet; and point-
to-point sync (waiting until a variable’s value changes).

1) Barrier Synchronization: Barrier synchronization in
SHMEM is provided by two routines: shmem barrier all(),
which blocks forward processing until all tiles reach the barrier;
and shmem barrier(), which invokes a barrier on a subset of
the tiles defined by an active-set triplet of which tile to start at,
the stride between consecutive tiles, and the number of tiles
participating in the barrier. The microbenchmark results for
TMC spin and sync barriers in Figure 5 illustrate that using
sync barriers is not feasible due to their high latency and the
spin barrier on TILEPro is significantly slower than the one
on TILE-Gx.

Consequently, TSHMEM’s barrier design uses the UDN
to synchronize between tiles. The start tile in the active set
generates an active-set identification for the barrier in order to
prevent overlapping barrier calls from returning out-of-order
or stalling. The active-set identification is encoded with a wait
signal and is sent to the next tile and resent linearly until
the last tile sends it back to the start, acknowledging that all
participating tiles have reached the same execution point in the
program. The process is repeated with a release signal, allowing
the blocking processes to linearly forward the signal before
resuming program execution. Another design was evaluated
whereby the start tile broadcasts the release signal; however,
latencies were two times slower.

The performance of TSHMEM barriers is shown in Figure 8.
Since barrier latency is dependent on whether a tile leaves the
routine first or last relative to the other tiles, best-case and worst-
case barrier results for TILE-Gx36 are shown. For comparison,
the microbenchmark results for the TMC spin barrier on TILE-



Gx36 from Figure 5 are also illustrated. Due to the higher clock
frequency of TILE-Gx, its barrier outperforms the TILEPro’s
barrier. The TILEPro64’s TSHMEM barrier with a latency of
3 µs at 36 tiles vastly outperforms its corresponding TMC spin
barrier (47.2 µs). The TMC spin barrier on TILE-Gx36, however,
outperforms the TSHMEM barrier, opening the possibility of
adopting its use for the TILE-Gx version of TSHMEM.

2) Fence/Quiet: Since put operations are non-blocking, the
communication synchronization routines shmem fence() and
shmem quiet() ensure outstanding puts are completed before
returning. The shmem fence() routine guarantees put ordering to
individual PEs, whereas shmem quiet() is semantically stronger
and will block execution until all outstanding puts to all PEs
are completed. TSHMEM implements shmem quiet() using
tmc mem fence(), a memory fence operation that blocks until
all memory stores are visible. Additionally, shmem fence()
is simply set as an alias of shmem quiet(), providing it the
stronger semantics.

D. Collective Communication
SHMEM collective routines provide group-based communi-

cation for a subset of tiles. Collective designs and performance
results for TSHMEM are discussed below.

1) Broadcast: Broadcast is a one-to-all operation where
the active set of PEs obtains data from a root PE. TSHMEM
currently has designs and performance results for push-based
and pull-based implementations.

The push-based broadcast is performed by having the
root PE perform a put operation sequentially to all other
PEs. Figure 9 shows the aggregate effective bandwidth, the
summation of each participating tile’s bandwidth, for push-
based broadcasts as transfer size and number of participating
tiles increase. Second-column subfigures show performance
at various numbers of tiles (up to 36). This design exhibits
scalability issues as the performance does not increase as the
number of participating tiles are increased.

In contrast, the pull-based broadcast is performed by having
all other PEs in the active set perform a get operation on the
data from the root PE. This approach distributes work to all
other PEs instead of the root PE performing all of the work
as is the situation with push-based. Figure 10 shows results
from this design, demonstrating low overhead and effectiveness
at taking advantage of the abundant iMesh bandwidth. Total
broadcast bandwidth on the TILE-Gx36 reaches a maximum
of 46 GB/s at 29 tiles and performs up to 37 GB/s at 36 tiles.
Bandwidth on the TILEPro64 peaks at 5.1 GB/s for 36 tiles.

2) Fast Collection: Collection is an all-to-all operation
that concatenates an array from each PE and distributes the
resultant array to all PEs. OpenSHMEM defines two types of
collection routines: collect and fast collect (fcollect). General
collect allows each PE to supply a different-sized array for
concatenation. PEs need to communicate with each other to
know how far along the concatenation has progressed as well as
where and when to append their array to the result. In contrast,
fast collect has the restriction that each PE must supply the
same-sized array, allowing PEs to implicitly know where to
append their portion to the resultant array.

Figure 11 shows TSHMEM results for a naive fast collect
design leveraging pull-based broadcast. All PEs perform a put
operation, sending data to a root PE. Once the root PE receives
everyone’s array, a pull-based broadcast is executed where all

other PEs get the newly concatenated result. This fast collect
design can be broken into two stages: (1) n PEs transfer M
bytes to the root PE, and (2) root PE broadcasts (n × M)
bytes to n PEs. Treating M as constant, stage 1’s total data
transferred scales linearly with the number of participating
tiles, similar to a broadcast operation. Stage 2, however, scales
quadratically in total data as the number of tiles increase
because each PE receives a copy of the entire concatenated
result containing arrays from all other PEs. This effect is
prominently illustrated between Figures 9 and 11 as the push-
based broadcast experiences peaks in performance at the same
data transfer sizes regardless of the number of tiles, whereas
the fast collect performance peaks are shifting toward smaller
data sizes as the number of tiles increases.

3) Reduction: Reduction is an all-to-all operation that
performs an associative binary operation on the array elements
from each active-set PE. OpenSHMEM reduction routines are
defined by the element type (e.g., short, int, float) and the
reduction operation (e.g., xor, sum, min, max). TSHMEM
currently employs a naive reduction design in which a root
PE continuously gets data from a remote PE and performs the
reduction operation with it and the current reduction outcome
values, until all active-set PEs have participated. A pull-based
broadcast is then executed to inform all other PEs to get the
reduction outcome values.

Results for integer summation reduction are shown in
Figure 12. Similar to the push-based broadcast, aggregate
bandwidth remains constant regardless of the number of tiles
participating in the operation. This performance is due to
serialization of data retrieval and reduction processing on one
tile, producing a peak aggregate bandwidth of 150 MB/s at
36 tiles on TILE-Gx36. These performance profiles provide
baseline behavior for further algorithmic exploration.

E. Open Issues and OpenSHMEM Extensions
There are several outstanding issues that we plan to resolve

in future versions of TSHMEM. Currently, a few operations
are missing support for static symmetric transfers. In addition,
Figure 8 indicates that TSHMEM barrier latencies may be
improved by leveraging the TMC spin barrier for TILE-Gx.
Finally, we plan to explore and compare performance for
different collective algorithms, such as binomial broadcast and
recursive doubling, as we optimize the existing library.

We also propose the inclusion of a shmem finalize() routine
into the OpenSHMEM standard in order to properly perform
teardown of system resources. The OpenSHMEM standard
does not currently provide a way for applications to inform the
system to properly clean up and terminate. Instead, SHMEM
applications typically rely on resource reclamation by the
operating system after program termination. However, in the
case of Tilera’s UDN, platform instability or lockup may occur
if it is not properly disengaged after active use.

V. APPLICATION CASE STUDIES

One of the goals of an OpenSHMEM standard specification
is to enable application portability across compliant libraries.
TSHMEM adheres to this principle and demonstrates many-core
performance, portability, and scalability with two application
case studies. These applications emphasize equal-scale perfor-
mance differences between the processor architectures of the
TILE-Gx and the previous generation’s TILEPro.



2
7

12
17

22
27

32

0
500

1000
1500

2000

2500

3000

3500

4 
B

8 
B

16
 B

32
 B

64
 B

12
8 

B
25

6 
B

51
2 

B
1 

kB
2 

kB
4 

kB
8 

kB
16

 k
B

32
 k

B
64

 k
B

12
8 

kB
25

6 
kB

51
2 

kB
1 

M
B

2 
M

B
4 

M
B

N
um

be
r o

f T
ile

s 

Ag
gr

eg
at

e 
Ef

fe
ct

iv
e 

Ba
nd

w
id

th
 (M

B/
s)

 

Transfer Size 

3000-3500
2500-3000
2000-2500
1500-2000
1000-1500
500-1000
0-500

0

500

1000

1500

2000

2500

3000

3500

4 
B

8 
B

16
 B

32
 B

64
 B

12
8 

B

25
6 

B

51
2 

B

1 
kB

2 
kB

4 
kB

8 
kB

16
 k

B

32
 k

B

64
 k

B

12
8 

kB

25
6 

kB

51
2 

kB

1 
M

B

2 
M

B

4 
M

B

Ag
gr

eg
at

e 
Ef

fe
ct

iv
e 

Ba
nd

w
id

th
 (M

B/
s)

 

Transfer Size 

10

20

30

36

(a)

2
7

12
17

22
27

32

0

100

200

300

400

500

4 
B

8 
B

16
 B

32
 B

64
 B

12
8 

B
25

6 
B

51
2 

B
1 

kB
2 

kB
4 

kB
8 

kB
16

 k
B

32
 k

B
64

 k
B

12
8 

kB
25

6 
kB

51
2 

kB
1 

M
B

2 
M

B
4 

M
B

N
um

be
r o

f T
ile

s 

Ag
gr

eg
at

e 
Ef

fe
ct

iv
e 

Ba
nd

w
id

th
 (M

B/
s)

 

Transfer Size 

400-500
300-400
200-300
100-200
0-100

0

100

200

300

400

500

600

4 
B

8 
B

16
 B

32
 B

64
 B

12
8 

B

25
6 

B

51
2 

B

1 
kB

2 
kB

4 
kB

8 
kB

16
 k

B

32
 k

B

64
 k

B

12
8 

kB

25
6 

kB

51
2 

kB

1 
M

B

2 
M

B

4 
M

B

Ag
gr

eg
at

e 
Ef

fe
ct

iv
e 

Ba
nd

w
id

th
 (M

B/
s)

 

Transfer Size 

10

20

30

36

(b)

Figure 9. Push-based broadcast performance on (a) TILE-Gx36, (b) TILEPro64.

2
7

12
17

22
27

32

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

4 
B

8 
B

16
 B

32
 B

64
 B

12
8 

B
25

6 
B

51
2 

B
1 

kB
2 

kB
4 

kB
8 

kB
16

 k
B

32
 k

B
64

 k
B

12
8 

kB
25

6 
kB

51
2 

kB
1 

M
B

2 
M

B
4 

M
B

N
um

be
r o

f T
ile

s 

Ag
gr

eg
at

e 
Ef

fe
ct

iv
e 

Ba
nd

w
id

th
 (M

B/
s)

 

Transfer Size 

40000-45000
35000-40000
30000-35000
25000-30000
20000-25000
15000-20000
10000-15000
5000-10000
0-5000

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

4 
B

8 
B

16
 B

32
 B

64
 B

12
8 

B

25
6 

B

51
2 

B

1 
kB

2 
kB

4 
kB

8 
kB

16
 k

B

32
 k

B

64
 k

B

12
8 

kB

25
6 

kB

51
2 

kB

1 
M

B

2 
M

B

4 
M

B

Ag
gr

eg
at

e 
Ef

fe
ct

iv
e 

Ba
nd

w
id

th
 (M

B/
s)

 

Transfer Size 

10

20

30

36

(a)

2
7

12
17

22
27

32

0
600

1200
1800
2400
3000
3600
4200
4800
5400

4 
B

8 
B

16
 B

32
 B

64
 B

12
8 

B
25

6 
B

51
2 

B
1 

kB
2 

kB
4 

kB
8 

kB
16

 k
B

32
 k

B
64

 k
B

12
8 

kB
25

6 
kB

51
2 

kB
1 

M
B

2 
M

B
4 

M
B

N
um

be
r o

f T
ile

s 

Ag
gr

eg
at

e 
Ef

fe
ct

iv
e 

Ba
nd

w
id

th
 (M

B/
s)

 

Transfer Size 

4800-5400
4200-4800
3600-4200
3000-3600
2400-3000
1800-2400
1200-1800
600-1200
0-600

0

1000

2000

3000

4000

5000

6000

4 
B

8 
B

16
 B

32
 B

64
 B

12
8 

B

25
6 

B

51
2 

B

1 
kB

2 
kB

4 
kB

8 
kB

16
 k

B

32
 k

B

64
 k

B

12
8 

kB

25
6 

kB

51
2 

kB

1 
M

B

2 
M

B

4 
M

B

Ag
gr

eg
at

e 
Ef

fe
ct

iv
e 

Ba
nd

w
id

th
 (M

B/
s)

 

Transfer Size 

10

20

30

36

(b)

Figure 10. Pull-based broadcast performance on (a) TILE-Gx36, (b) TILEPro64.



26
10

14
18

22
26

30
34

0
100
200
300
400
500
600
700
800
900

1000

4 
B

8 
B

16
 B

32
 B

64
 B

12
8 

B
25

6 
B

51
2 

B
1 

kB
2 

kB
4 

kB
8 

kB
16

 k
B

32
 k

B
64

 k
B

12
8 

kB
25

6 
kB

51
2 

kB
1 

M
B

N
um

be
r o

f T
ile

s 

Ag
gr

eg
at

e 
Ef

fe
ct

iv
e 

Ba
nd

w
id

th
 (M

B/
s)

 

Transfer Size 

900-1000
800-900
700-800
600-700
500-600
400-500
300-400
200-300
100-200
0-100

0

100

200

300

400

500

600

700

800

4 
B

8 
B

16
 B

32
 B

64
 B

12
8 

B

25
6 

B

51
2 

B

1 
kB

2 
kB

4 
kB

8 
kB

16
 k

B

32
 k

B

64
 k

B

12
8 

kB

25
6 

kB

51
2 

kB

1 
M

B

Ag
gr

eg
at

e 
Ef

fe
ct

iv
e 

Ba
nd

w
id

th
 (M

B/
s)

 

Transfer Size 

10

20

30

36

(a)

26
10

14
18

22
26

30
34

0

50

100

150

200

250

300

4 
B

8 
B

16
 B

32
 B

64
 B

12
8 

B
25

6 
B

51
2 

B
1 

kB
2 

kB
4 

kB
8 

kB
16

 k
B

32
 k

B
64

 k
B

12
8 

kB
25

6 
kB

51
2 

kB
1 

M
B

N
um

be
r o

f T
ile

s 

Ag
gr

eg
at

e 
Ef

fe
ct

iv
e 

Ba
nd

w
id

th
 (M

B/
s)

 

Transfer Size 

250-300
200-250
150-200
100-150
50-100
0-50

0

50

100

150

200

250

4 
B

8 
B

16
 B

32
 B

64
 B

12
8 

B

25
6 

B

51
2 

B

1 
kB

2 
kB

4 
kB

8 
kB

16
 k

B

32
 k

B

64
 k

B

12
8 

kB

25
6 

kB

51
2 

kB

1 
M

B

Ag
gr

eg
at

e 
Ef

fe
ct

iv
e 

Ba
nd

w
id

th
 (M

B/
s)

 

Transfer Size 

10

20

30

36

(b)

Figure 11. Fast collection performance on (a) TILE-Gx36, (b) TILEPro64.

26
10

14
18

22
26

30
34

0
50

100
150
200
250
300
350
400
450

4 
B

8 
B

16
 B

32
 B

64
 B

12
8 

B
25

6 
B

51
2 

B
1 

kB
2 

kB
4 

kB
8 

kB
16

 k
B

32
 k

B
64

 k
B

12
8 

kB
25

6 
kB

51
2 

kB
1 

M
B

N
um

be
r o

f T
ile

s 

Ag
gr

eg
at

e 
Ef

fe
ct

iv
e 

Ba
nd

w
id

th
 (M

B/
s)

 

Transfer Size 

400-450
350-400
300-350
250-300
200-250
150-200
100-150
50-100
0-50

0

50

100

150

200

250

300

4 
B

8 
B

16
 B

32
 B

64
 B

12
8 

B

25
6 

B

51
2 

B

1 
kB

2 
kB

4 
kB

8 
kB

16
 k

B

32
 k

B

64
 k

B

12
8 

kB

25
6 

kB

51
2 

kB

1 
M

B

Ag
gr

eg
at

e 
Ef

fe
ct

iv
e 

Ba
nd

w
id

th
 (M

B/
s)

 

Transfer Size 

10

20

30

36

(a)

26
10

14
18

22
26

30
34

0
20
40
60
80

100
120
140
160
180

4 
B

8 
B

16
 B

32
 B

64
 B

12
8 

B
25

6 
B

51
2 

B
1 

kB
2 

kB
4 

kB
8 

kB
16

 k
B

32
 k

B
64

 k
B

12
8 

kB
25

6 
kB

51
2 

kB
1 

M
B

N
um

be
r o

f T
ile

s 

Ag
gr

eg
at

e 
Ef

fe
ct

iv
e 

Ba
nd

w
id

th
 (M

B/
s)

 

Transfer Size 

160-180
140-160
120-140
100-120
80-100
60-80
40-60
20-40
0-20

0

20

40

60

80

100

120

140

160

4 
B

8 
B

16
 B

32
 B

64
 B

12
8 

B

25
6 

B

51
2 

B

1 
kB

2 
kB

4 
kB

8 
kB

16
 k

B

32
 k

B

64
 k

B

12
8 

kB

25
6 

kB

51
2 

kB

1 
M

B

Ag
gr

eg
at

e 
Ef

fe
ct

iv
e 

Ba
nd

w
id

th
 (M

B/
s)

 

Transfer Size 

10

20

30

36

(b)

Figure 12. Integer summation reduction performance on (a) TILE-Gx36, (b) TILEPro64.



0

2

4

6

8

10

12

14

0.1

1

10

1 2 4 8 16 32

Sp
ee

du
p 

Ex
ec

ut
io

n 
Ti

m
e 

(s
) 

Number of Tiles 

TILE-Gx36 TILEPro64 TILE-Gx36 Speedup TILEPro64 Speedup

Figure 13. 2D-FFT on 1024×1024 complex floats.

0

5

10

15

20

25

30

1

10

100

1 2 4 8 16 32

Sp
ee

du
p 

Ex
ec

ut
io

n 
Ti

m
e 

(s
) 

Number of Tiles 

TILE-Gx36 TILEPro64 TILE-Gx36 Speedup TILEPro64 Speedup

Figure 14. CBIR on 22,000 8-bit images of 128×128.

A. 2D Fast Fourier Transform (FFT)
Performing a 2D-FFT on an image involves executing 1D-

FFT operations over the image’s rows, followed by the columns.
This parallel 2D-FFT application distributes the image’s rows to
multiple PEs, with each PE executing a 1D-FFT over its subset
of rows. A distributed transpose operation then redistributes the
data across all PEs in an all-to-all communication operation,
allowing each PE to now perform a 1D-FFT over the image’s
columns. One final matrix transpose produces the output image.

Figure 13 shows execution times and speedup for this
parallel 2D-FFT. Due to computational serialization in the
application’s final transpose stage, speedup on TILE-Gx begins
to level off around 5. Parallelization of this final transpose is
left for future work. Execution times are 0.23 and 0.62 seconds
at 32 tiles for TILE-Gx36 and TILEPro64, respectively. TILE-
Gx36 execution times are much faster (roughly an order of
magnitude) than those on TILEPro64 due to improved floating-
point performance on the TILE-Gx.

B. Content-based Image Retrieval (CBIR)
Content-based image retrieval employs feature vectors to

characterize images, facilitating efficient searches on large
image databases using the semantics of an image. Figure 14
shows the execution times and speedup for a color-feature-
extraction CBIR application based on autocorrelogram [8].
Speedup for both devices increases linearly with the number of
tiles until 16 tiles. At 32 tiles, speedup is 25 for TILE-Gx36 and
27 for TILEPro64. Tilera tailored both devices for integer-based
workloads and, as expected, the TILE-Gx36 has faster execution
times in all cases. These results can be directly compared to

our previous CBIR case study on two traditional cluster-based
systems with Quadrics and InfiniBand interconnects [4].

VI. CONCLUSIONS AND FUTURE WORK

We have presented and evaluated our software architecture
and design for TSHMEM, a high-performance OpenSHMEM
library built atop Tilera-provided libraries for their Tilera
TILE-Gx and TILEPro many-core architectures. The current
TSHMEM design provides for all of OpenSHMEM functional-
ity, excluding static-variable support for a few operations.

Performance of TSHMEM is demonstrated with microbench-
marks of Tilera-library and TSHMEM functions, offering direct
validation of realizable performance and any inherited overhead.
Results indicate that TSHMEM designs for dynamic symmetric-
variable transfers display minimal overhead with underlying
Tilera libraries and static symmetric-variable transfers can ex-
hibit low overhead through operation redirection. Additionally,
the design for barrier synchronization in TSHMEM is shown
to be fast relative to several available Tilera barrier primitives
for both the TILE-Gx and TILEPro. Performance, portability,
and scalability of SHMEM applications for these many-core
devices are also validated with two case studies.

Future work of TSHMEM will focus on library optimiza-
tions and extensions, especially pertaining to collectives and
memory-homing strategies. Benchmarking will be expanded
to include TSHMEM comparisons with other libraries such
as OpenMP and MPI. Finally, we plan to leverage novel
architectural features of the TILE-Gx such as the mPIPE packet
engine as we explore designs for expanding the shared-memory
abstraction in TSHMEM across multiple many-core devices.

ACKNOWLEDGMENTS

This work was supported in part by the I/UCRC Program
of the National Science Foundation under Grant Nos. EEC-
0642422 and IIP-1161022. The authors would like to thank
Dr. Vikas Aggarwal, Fred Spieler, and Narayana Perla for
their contributions to this work. Additional thanks go to Tilera
Corporation for help with product technical descriptions.

REFERENCES
[1] OpenSHMEM, “OpenSHMEM API, v1.0 final,” 2012. [Online]. Available:

http://www.openshmem.org/
[2] B. C. Lam, A. D. George, and H. Lam, “An introduction to TSHMEM for

shared-memory parallel computing on Tilera many-core processors,” in
Proceedings of the 6th Conference on Partitioned Global Address Space
Programing Models, ser. PGAS ’12. ACM, 2012.

[3] Mellanox Technologies, “Mellanox ScalableSHMEM,” Sunnyvale, CA,
USA, 2012. [Online]. Available: http://www.mellanox.com/related-docs/
prod software/PB ScalableSHMEM.pdf

[4] C. Yoon, V. Aggarwal, V. Hajare, A. D. George, and M. Billingsley, III,
“GSHMEM, a portable library for lightweight, shared-memory, parallel
programming,” in Proceedings of the 5th Conference on Partitioned
Global Address Space Programing Models, ser. PGAS ’11. ACM, 2011.

[5] D. Bonachea, “GASNet specification, v1.1,” University of California at
Berkeley, Berkeley, CA, USA, Tech. Rep., 2002.

[6] Tilera Corporation, “TILE-Gx8036 processor specification brief,” San
Jose, CA, USA, 2012. [Online]. Available: http://www.tilera.com/sites/
default/files/productbriefs/TILE-Gx8036 PB033-02.pdf

[7] ——, “TILEPro64 processor product brief,” San Jose, CA, USA, 2011.
[Online]. Available: http://www.tilera.com/sites/default/files/productbriefs/
TILEPro64 Processor PB019 v4.pdf

[8] J. Huang, S. Kumar, M. Mitra, W.-J. Zhu, and R. Zabih, “Image indexing
using color correlograms,” in Computer Vision and Pattern Recognition,
1997. Proceedings., 1997 IEEE Computer Society Conference on, Jun
1997, pp. 762–768.


