
In-System Testing of Xilinx 7-Series FPGAs:
Part 1-Logic

Harmish Modi and Peter Athanas
Dept. of Electrical and Computer Engineering

Virginia Tech
Blacksburg, VA 24060

hmodi89@vt.edu Peter.Athanas@vt.edu

Abstract—FPGA fault recovery techniques, such as bitstream
scrubbing, are only limited to detecting and correcting soft errors
that corrupt the configuration memory. Scrubbing and related
techniques cannot detect permanent faults within the FPGA
fabric, such as short-circuits and open-circuits in FPGA
transistors that arise from electromigration effects. Several Built-
In Self-Test (BIST) techniques have been proposed in the past to
detect and isolate such faults. These techniques suffer from
routing congestion problems in modern FPGAs that have a large
number of logic blocks. This paper presents an improved BIST
architecture for all Xilinx 7-Series FPGAs that is scalable to large
arrays. The two primary sources of overhead associated with
FPGA BIST, the test time and the memory required for storing
the BIST configurations, are also reduced when compared to
previous FPGA-BIST approaches. The BIST techniques
presented here also eliminate the need for using any of the user
I/O pins, such as a clock, a reset, and test observation pins;
therefore, it is suitable for immediate deployment in any system
with Xilinx 7-series FPGAs.

Keywords—FPGA; Built In Self Testing; Iterative Logic Array;
Configurable Logic Block

I. INTRODUCTION
 The abundant availability of logic resources and the
reconfigurability make FPGAs the perfect candidate for space,
aviation, and military applications such as software-defined
radios and synthetic aperture RADAR. The harsh
environments present in space and military applications
catalyze the faster degradation of the FPGAs; therefore, these
FPGAs are more prone to logic failures [1]. The faults in
FPGAs can be broadly classified into two categories. The first
is soft-errors such as single bit-flips in the configuration
memory, which can be corrected by refreshing it. Bit-stream
scrubbers [1] are well known to combat the soft-errors. The
second category of faults is permanent faults such as the faults
arising from electromigration effects and time-dependent
dielectric breakdown. These faults are observed as short
circuits and open circuits in FPGA transistors. The bitstream
scrubbers and related techniques cannot detect such faults.
These faults, by nature, are not correctable, and the only
alternative is to bypass such fault locations. Fortunately,
FPGAs can be reconfigured to avoid such faulty locations
given that the fault can be detected and isolated in some way.
This motivation has led to the development of various test
methods to detect and isolate the permanent faults within the
FPGAs. A test that can detect such faults without involving
the dedicated external test equipment is known as Built-In

Self-Test (BIST).
 FPGAs consist of a large number of Configurable Logic

Blocks (CLBs) arranged in a regular 2-D array. Each CLB can
be reconfigured to implement different logic functions. Each
CLB also has an adjacent switching matrix, which connects it
to the rest of the FPGA using wires. A comprehensive solution
has been created to test both the CLBs and the routing
resources. This paper particularly discusses the testing of the
CLBs. Testing of the routing resources is addressed in another
publication [14]. The regular arrangement of the CLBs within
the FPGA and its reconfigurability are exploited to create the
BIST for the CLBs [2]. The conventional strategy behind the
CLB testing is to configure some of the CLBs as Test Pattern
Generators (TPGs), and others as Output Response Analyzers
(ORAs). The rest of the CLBs are referred to as Blocks Under
Test (BUTs). The TPGs provide input vectors to the BUTs,
and their response is validated by the ORA. In a single test
session, all of the possible modes of the BUTs are tested using
different configurations. In another test session, the role of the
BUTs is swapped with the TPGs and ORAs through
reconfiguration, and in this way, all of the CLBs within the
FPGA are tested in two test sessions. Once the off-line testing
is complete, the FPGA can be reconfigured again into normal
operation, and the BIST logic disappears – this solution is free
from the area overhead of conventional always-present BISTs.
As the BIST is self-contained, it can be applied at any level
starting from manufacturing test to in-system test. The sources
of overhead associated with this approach are the additional
memory that stores the BIST configurations and a small
system downtime during the offline testing.

II. BACKGROUND AND MOTIVATION
 The early BIST work [3][4] was focused on Xilinx-4000,
Spartan and Virtex-4 FPGA architectures. These solutions
were not adequate to test the newer FPGA architectures
(Virtex-5 onwards) because the CLBs in newer architectures
contain more data-paths and more interface pins as compared
to the previous generation FPGAs. Stroud presented the BIST
for Xilinx Virtex-5 devices [5], however this work still relied
on the older test architectures. In these BIST architectures, a
single TPG provided the input vectors to multiple BUTs using
long wires as shown in Fig. 1(a). High fan-out on the TPGs,
limited availability of the long wires and the synchronization
difficulties related to them made the routing difficult. Hence,

these techniques failed for larger devices, which have a large
number of CLBs, due to the routing congestion [10].

The BISTs, using Iterative Logic Array (ILA), were
presented to combat the problem of routing congestion. In the
ILA architecture, as shown in Fig. 1(b), instead of a single
TPG providing the input vectors to multiple BUTs, the output
of one BUT is propagated as the input to its adjacent BUT.
This way, each BUT acts as a TPG for its successor BUT. If a
fault exists in the BUT, then the BUT will provide an incorrect
input to its successive BUT, and, hence, the error will
propagate until it reaches the final ILA output. Early ILA-
based work [6][7][8][9] provided test coverage only on the
limited CLB functionalities. Stroud and Abramovici [10]
provided full test coverage for ORCA CLBs. In this approach,
each BUT required one extra CLB as a helper cell to form the
ILA, and, therefore, the test required two test sessions (one
session to test the BUT, and a second session to swap the roles
of the BUT and the helper CLB). The CLBs in the
contemporary Xilinx FPGAs are significantly different than
the ones in the ORCA FPGAs, and, therefore, the test for the
ORCA FPGAs cannot be extended to the contemporary Xilinx
FPGAs.

Contemporary BIST techniques require a limited number
of user I/O pins, such as a clock, a reset, and the observation
pins, in order to administer the test. As a result of this, the
BIST has to be designed prior to the system design phase of
the project, and may be subjected to constraints that cannot be
satisfied. The BIST discussed in this paper eliminates the need
for any of the user I/O pins, and thereby makes it suitable for
immediate deployment in any system with Xilinx 7-series
FPGA.

This paper provides the following contributions in the field
of FPGA-BIST. 1) The test detects and isolates single stuck-

at-fault in the CLBs of Xilinx 7-series FPGAs 2) The test
ensures the full scalability across different device sizes by
eliminating the routing congestion problem for the larger
devices. 3) The test completes in a single test session, thereby
reducing the test time. 4) The need for the user I/O pins is
eliminated; hence, the test can be deployed in any system
without making any system-level changes.

III. OVERVIEW OF THE TEST
Fig. 2 shows the system-level diagram of the test setup.

The test clock is derived internally from the configuration
block of the FPGA. The result of the test is written into the
DONE bit of the FPGA status register, which can be read by
the configuration interface. The test involves the following
sequence of steps – 1) The host downloads a BIST
configuration to the FPGA using the configuration interface,
such as SelectMap or JTAG 2) The test runs for a small
duration and writes a PASS or FAIL result into the status
register of the FPGA 3) The host reads back the result of the
test using the same configuration interface. 4) If the test result
is FAIL, only then the host performs the fault isolation. All of
the required BIST configurations are precomputed, and are
stored in external memory along with the user configuration.
The generation of the BIST configurations is automated using
a script, which takes the FPGA part name and the coordinates
of the rectangular test area as the input parameters, and
generates the set of BIST configurations to test all of the CLBs
within the specified rectangular test area. The BIST
configurations are discussed in detail in Section IV. If the fault
is detected by the BIST configurations, only then all of the
flip-flops in the device are read back using the configuration
interface to isolate the fault location. Fault isolation is
discussed in detail in Section V.

Figure 2. System-level diagram of the test

(a) (b)

Figure 3. (a)Structure of CLB (b) Logic Circuit A within the SLICE

*The nomenclature shown in this figure is used throughout the paper to refer the different MUX, MUX inputs, FF and nets.

 (a) (b)
Figure 1. (a) BIST using long wires (b) BIST using Iterative Logic Array

IV. BIST CONFIGURATIONS
Fig. 3 shows the internal architecture of the CLB [11]. The

nomenclature shown in this figure is used throughout the
paper to refer the different MUXs, MUX inputs, FFs, and nets.
Each CLB is composed of two SLICE blocks, which in turn
are composed of four identical logic circuits, referred to as
circuits A, B, C, and D. All of the LUTs and the data-paths
within the SLICE are tested using the Iterative Logic Array
(ILA) architecture as described in sections IV.A and IV.B. A
subset of the SLICEs (usually 1/3rd of the total SLICEs) can
configure their LUTs as RAM and shift-registers. Testing of
these modes is discussed in sections IV.C and IV.D.

A. LUT Testing
In order to cascade the LUTs to form an ILA (Fig. 1(b)),

the output bus width of the LUT should match the input bus
width of its successor. However, Fig. 3 shows that each LUT
has six input address pins - A[5:0] and only two output pins -
O5 and O6. In order to balance the mismatch in bus widths, six
LUTs are grouped to form a single BUT. The output O6 of
each LUT is used to form the output bus (of width six). This
output bus is connected as the shared input address bus to all of
the six LUTs in the successive BUT as shown in Fig. 4(b). The
output O6 is also registered into the flip-flop to enable the fault
isolation, which is discussed in detail in Section V.

 The final output of an ILA is the cumulative function of all
of the functions that are implemented in each of the cascaded
BUTs. To simplify the cumulative function, the LUTs of the
BUT are configured in such a way that the BUT implements
the identity function, i.e. the output of the BUT is identical to
the input applied to the BUT. For example, by applying the
input address as 6’b000000, the 0th memory location in all of
the LUTs is selected. In order to get the output of the BUT as
6’b000000, the 0th memory location of each LUT is
programmed as a logic-0. If all of the BUTs were fault-free,
then an ideal output of the ILA would be 6’b000000. However,
if any LUT has a stuck-at-1 (S-A-1) fault in the 0th memory
location, then the output of the BUT containing the faulty LUT
would differ from the ideal output (6’b000000). As all of the

subsequent BUTs are also implemented as the identity
functions, the faulty output will propagate until it reaches the
final ILA output. The Test Pattern Generator (TPG) provides
all of the possible 26 address vectors to the ILA to test each
memory location of the LUT. The Output Response Analyzer
(ORA) compares the final output of the ILA with the input
applied by the TPG, and any mismatch will be reported as the
presence of a fault in the ILA. However, the identity function
would test each memory location of the LUT for either a stuck-
at-0 or stuck-at-1 fault, but not for both of the faults. For
example, the identity function tested the 0th memory location
for a stuck-at-1 fault only. However, to test a stuck-at-0 fault in
the 0th memory location of the LUT, another configuration is
required. In this configuration, all of the BUTs are configured
to implement the complement function. For example, if the
input 6’b000000 is applied to the BUT, then the ideal output of
the BUT should be 6’b111111. This implies that the 0th
memory location of each LUT should be programmed as a
logic-1. If any of the LUTs has a stuck-at-0 fault in the 0th
memory location, then the output of the BUT containing that
LUT, and subsequently the output of the ILA would deviate
from the ideal output. In this way, both of these functions
together test the stuck-at-0 and the stuck-at-1 faults in each
memory location of the LUT.

Faults in the address decoder logic of the LUT, which are
only visible in the gate-level model, can be tested by swapping
the six LUTs of the BUT among themselves [15], i.e. in the
second phase, LUT0 will become LUT1, LUT1 will become
LUT2, and so on. Swapping of the LUTs will yield to a total of
12 configurations - 6 for the identity function and 6 for the
complement function. These 12 configurations are sufficient to
test all of the gate-level faults in the LUT [15].

The TPG is implemented as a 6-bit counter that generates
all of the required 26 address vectors. The ILA, as a whole unit,
implements the identity or complement function, and therefore,
the ideal output should be the identical or complementary to
the input applied by the TPG. The function of the ORA is to
compare the output of the ILA with the input applied by the
TPG. The TPG and the ORA are implemented inside a single
DSP resource, and do not use any of the CLBs. This makes it
possible to test all of the LUTs in a single test session.

B. Data-path Testing
The multiplexers (MUXs), flip-flops, and XOR gates are

tested by creating a data-path through these components, and
then by exciting the data-path to a logic-1 and a logic-0. Fig.
5(a) shows one possible data-path within the SLICE. The same
data-path can also be represented using only the MUX settings
as shown in Configuration 6 in Table I. By applying the input

 (a) (b)

Figure 4. (a) Individual LUT in the BUT (b) Cascading of the BUTs

 (a) (b)

Figure 5. (a) Configuration-6 in Table I (b) Configuration-3 in Table I

as a logic-0, and then a logic-1 to the AX line, all of the logic
nodes on the highlighted path can be tested for a stuck-at-1 and
a stuck-at-0 fault respectively. All of the four circuits A, B, C,
and D within a single SLICE are configured identically and are
excited with the identical inputs to test them in parallel. Table I
summarizes all of the required configurations, which
cumulatively test all of the MUXs, flip-flops, and XOR gates
within a SLICE.

 If the data-path does not involve LUT, then the SLICE
inputs propagate to the SLICE outputs through only the MUXs
and flip-flops as shown in Fig. 5(a). As the MUX and the flip-
flop act just as the pass-through, the SLICE output should be
the same as the SLICE input in the absence of any fault.
However, if the data-path involves a LUT, then the LUTs
within the SLICE are configured in such as way that the SLICE
implements the identity function. For example, consider
Configuration 3 illustrated in Fig. 5(b). The LUTs in this
configuration are configured such that the O6 is always set to a
logic-0 to select the highlighted path in the figure. The O5
outputs of all of the LUTs in a single SLICE are implemented
in such a way that the output of the SLICE is same as the input
applied to the SLICE in the absence of any fault, i.e. the output
buses {DO, CO, BO, AO} and {DQ, CQ, BQ, AQ} of the
SLICE will have the same values as the input A/B/C/D[3:0]
applied to the SLICE. In order to test all of the SLICEs in the
device simultaneously, they are cascaded to form an ILA.
Column 2 of Table I specifies the connections between the
successive SLICEs in the ILA. As each SLICE is implemented
as the identity function, the final ILA output should be identical
to the input applied by the TPG. The ORA can be implemented
as a comparator just as the one described for the LUT testing.
 The faults on the selection line of the MUX are only visible
in the gate-level model. Fig. 6 illustrates the testing of these
faults. While testing a particular input through the MUX, all of
the other inputs of the MUX are maintained at a logic-1 to
cover a stuck-at-1 fault on the selection line [10]. Consider the

highlighted fault on the selection line as shown in Fig. 6(a).
This fault is invisible to the MUX output as it is not present on
any of the data-paths through the MUX. However, while
testing the data-path through the input I0 for a logic-0, if the
inactive input (I1) is held at a logic-1, then the output Y of the
MUX is observed as a logic-1. In the absence of this fault, the
output Y would be a logic-0, and, hence, the fault on the
selection line becomes visible at the output of the MUX. A
stuck-at-0 fault (Fig. 6(b)) on the selection-line will block the
corresponding input (I1 in the figure) to propagate to the MUX
output, and hence a stuck-at-0 fault on the selection-line of
MUX can be observed at the MUX output (Y in the figure).

C. SelectRAM testing
A subset of the SLICEs has the ability to configure their

LUTs as RAM. These SLICEs are known as SLICEMs. The
ratio of the total number of the SLICEs to the number of the
SLICEMs is usually 3. Taking advantage of this fact, the
SLICEs, which have already been tested using the ILA
architecture and don’t have the capability to be configured as
the RAM, are used to build multiple distributed instances of
TPG as shown in Fig. 7(a). Each TPG generates the required
vectors to perform the MATS (Modified Algorithmic Test
Sequence) [13] test on the RAMs. To constrain the routing
locally, each TPG provides the input only to its nearby RAMs.
A total of 3 configurations are required to test all of the three
possible modes (32x2 dual port, 32x2 single port, 64x1 single

TABLE I. DETAILS OF DIFFERENT CONFIGURATION FOR TESTING THE DATAPATHS
MUX Settings Connectivity Between Successive SLICEs

C
L
K

O
U
T

F
F

M
1

M
2

M
5

C
I
N

P
R
E

1 0 0 0 X X X X X* S0(AO, AF) à S1(A/B[0], C/D[0])**
S0(BO, BF) à S1(A/B[1], C/D[1])
S0(CO, CF) à S1(A/B[2], C/D[2])
S0(DO, DF) à S1(A/B[3], C/D[3])

2 1 1 1 1 0 X X X Same as 1
3 0 4 4 1 0 X X X Same as 1
4 1 4 4 X 1 X 0 2* Same as 1
5 0 4 4 X 1 X 0 1 Same as 1
6 1 5 2 X X 1 X X S0(AO, BO, CO, DO)à S1(AX, BX, CX, DX)
7 0 2 3 0 0 X 0 0 Same as 6
8 1 2 3 0 0 X 0 0 S0(AF, BF, CF, DF)àS1(AX, BX, CX, DX)
9 0 5 X X X 0 X X Same as 6
10 0 5 2 X X 1 X X Same as 8
11 X X X 1 1 X 1 X S0(COUT) à S1(CIN)
12 0 3 5 X X X X X Same as 1 and AX/BX/CX/DX are tied to 0
13 1 3 5 X X X X X Same as 1 and AX/BX/CX/DX are tied to 1

*X means MUX is configured to be OFF, any other number means the particular MUX input line in the MUX is selected.
** S0(AO, AF) à S1(A/B[0], C/D[0]) can be interpreted as: The output net AO of SLICE S0 is connected to the 0th address bit of the A and B LUTs in the
successive SLICE S1, whereas the output net AF of SLICE S0 is connected to the 0th address bit of the C and D LUTs in the successive SLICE S1.

 (a) (b)

Figure 6. (a) Testing a S-A-1 fault on the selection line of the multiplexer
(b) Testing a S-A-0 fault on the selection line of the multiplexer

port) of the RAM. The output of two nearby RAMs is
compared in the adjacent SLICE, referred as local ORA, and
any mismatch is registered as a logic-1 in the flip-flop of the
local ORA. If the logical OR of all of the local ORA outputs is
found to be a logic-1, then it indicates the presence of a fault in
at least one RAM.

D. Shift-Register Testing
Each LUT in a SLICEM can be configured as a 32-bit shift

register or a 16-bit shift register. Two separate configurations
are created to verify both of these modes separately. To verify
the shift-registers, the device is divided into two regions. All of
the shift-registers within a single region are cascaded to form a
longer circular shift-register as shown in Fig. 7(b). Both of the
circular shift-registers are then loaded with the alternate 1s and
0s (101010…) bit-pattern. All of the shift registers are provided
with the same clock, and the bit-0 of both of the shift-registers
is compared with each other. If the test runs for enough time,
then any stuck-at fault in the shift-register would eventually be
observed at the bit-0. This way, in any clock cycle, if the ORA
finds a mismatch in the bit-0 of the two shift-registers, it is
indicated as the presence of a fault in the shift-register.

V. FAULT ISOLATION
Fault isolation is carried out to determine the location of a

fault within the FPGA. Such information is useful because if
the faulty CLB can be isolated, then the CLB can be avoided in
the future designs using location constrained synthesis. The
fault isolation method discussed in this paper relies on the
partial readback capability of Xilinx FPGAs [12]. With this
capability, a host can read back the state of all of the memory
components in the device. Upon detection of a fault, a signal
indicating the presence of the fault (output of the ORA) can be
used to stop the TPG by de-asserting its Clock Enable (CE)
signal. Once the TPG is shutdown, the FPGA preserves the
faulty state. At this time, the states of all of the flip-flops in the
device are read back, and this information is further analyzed to
narrow down the faulty CLB.

While testing the RAM logic, each local ORA registers a
PASS/FAIL result of its nearby RAM, and, therefore, the
location of the faulty RAM is determined by finding the local-
ORA with its flip-flop value as a logic-1. Any fault in the shift-
register logic will cause all of the subsequent bits after the fault
location to have the same value (all 0s or all 1s), whereas in an
ideal case, the bits in the shift-register would always have the
alternate 1s and 0s bit-pattern. By determining the location
from where the deviation in the bit-pattern occurs, the fault
location can be narrowed down.

In the ILA architecture, a fault always propagates through
the flip-flop. Because the order in which the BUTs are
connected in an ILA is known, the first BUT with non-ideal

flip-flop values can be found, and this information is used to
narrow down the fault location. For example, assume that
Configuration 3 (Fig. 5(b)) is in operation, and the input to the
OUTMUX in Circuit A has a stuck-at-1 fault in some SLICE
S0. Because of this fault, the output pin AO of the S0 will be at
a logic-1 even when the input vector 8’h00 is applied to the
ILA. The AO pin of the S0 drives the 0th address bit of the A-
LUT and the B-LUT in the successive SLICE S1 (as indicated
in Column 2 of Table I). In this case, the A-FF and the B-FF in
the S1 will register the value as a logic-1, whereas the values of
the A-FF and the B-FF should be logic-0 in the absence of any
fault. By reading the values of all of the flip-flops in the device,
it would be found that the flip-flops in all of the BUTs after the
SLICE S0 have incorrect values. The first BUT with incorrect
values of the flip-flops (the A-FF and the B-FF in the S1) is
identified, which implies the presence of a fault in the SLICE
S0 logic.

The other possibility is that a stuck-at-1 fault on the A-FF
or the B-FF in the SLICE S1 itself could have caused these
flip-flops to have incorrect values. However, with the
assumption of the single stuck-at-fault model, only one flip-
flop in the S1 would read an incorrect value in this case. If
multiple flip-flops in a single BUT have incorrect values, then
it can be explained only by a fault propagated from its
predecessor BUT. If a single flip-flop in the BUT has an
incorrect value, then it implies the presence of a fault in the
same BUT. The pattern created by the flip-flop values yields
the required information to isolate the fault location in the ILA
architecture.

VI. SUMMARY AND RESULTS

A. Test Coverage
A total of 30 BIST configurations (12 for LUT testing, 13

for data-path testing, 3 for RAM testing, 2 for shift-register
testing) are generated to test all of the functionalities of the
CLBs in XC7Z020 FPGA. The faults in the FPGA were
emulated by configuration memory bit fault injection. The
intermediate files during the generation of the configuration
bitstream can intentionally be corrupted to emulate a physical
fault in the FPGA. For example, the content of a particular
LUT location can be forced to a logic-0 to model a stuck-at-0
fault in the LUT. Similarly, the faults can be emulated in all of
the logic and the memory resources in the CLB by
manipulating the configuration bits associated with the
particular resource. The 30 BIST configurations cumulatively
detect all such faults. These 30 BIST configurations are
grouped according to the CLB functionality that they cover, i.e.
LUT configurations, data-path configurations, RAM
configurations, and shift-register configurations. The graph in
Fig. 8 shows the fault coverage in a single CLB by the different
configuration groups. The left Y-axis in the graph shows the
absolute number of faults covered by each configuration group,
and the right Y-axis shows the fault coverage in percentage.

B. Testing Overhead
The primary sources of overhead associated with FPGA-

BIST are the test time and the external memory storage
required to store all of the BIST configurations. Fig. 9 shows
that the test time is dominated by the time required to

 (a) (b)

Figure 7. (a) Testing of RAM logic (b) Testing of shift-register logic

download the BIST configuration to the FPGA, which in turn
is proportional to the speed of the configuration interface and
the total size of the BIST configurations. The partial
reconfiguration capability of Xilinx FPGAs is used to reduce
the total size of the BIST configurations. The majority of the
bits in the configuration bitstream contain the routing
information. Hence, if the routing is kept constant across
multiple bitstreams, then the common routing information can
be stored in only one bitstream. For example, the first five
configurations in Table I have common connectivity between
the successive BUTs implying that the routing will remain
constant in all of these configurations. Out of the five
configurations, only the first configuration is stored as a full
bitstream, and the remaining configurations are stored as partial
bitstreams. A full bitstream of Xilinx XC7Z020 device has the
size of 3.4MB. If all of the five configurations were stored as
the full bitstreams, then the total memory requirement would
be 17 MB. However, by enabling the partial bitstream
generation, the total memory requirement for the five
configurations is reduced to only 5.85MB. Out of the 30 BIST
configurations, only 12 configurations have unique routing,
and, hence, only those configurations are needed to be stored as
full bitstreams. By doing this, the average bitstream size is
reduced by approximately 34%.

If all of the BUTs in the device can’t be routed in a single
configuration, then the FPGA has to be divided into partitions,
and the partitions have to be tested one by one. As a result of
this, both the number of the BIST configurations and the test
time multiplies by the number of the partitions. In the BIST
discussed in this paper, the connections between the BUTs are
constrained to a small length; therefore, all of the BUTs in the
device could be routed simultaneously in different devices of
Xilinx 7-series FPGAs. As the FPGA could be tested without
creating the partitions, the effective number of BIST
configurations is minimized, and, therefore, both of the
overheads associated with the FPGA-BIST are minimized.

VII. CONCLUSION
 This paper presented a complete BIST to detect and isolate
any stuck-at-fault present in the CLBs of Xilinx 7-series
FPGAs. The test uses only the configuration interface and
does not use any of the user I/O pins, and, therefore, it can be
deployed on any system without making any PCB changes.
The BIST architecture presented in this paper solves the
routing congestion problem for the larger devices, and enables
the testing of all of the CLBs in a single test session. As a
result of this, the test time and the external memory required
to store all of the BIST configurations is reduced significantly.
The work presented here is focused on the testing of the
CLBs, and applies to all of the devices within Xilinx 7-Series
FPGAs. In addition to the CLBs, testing of the programmable

interconnects is also essential, and is described in a companion
paper [14]. In all, these tests are freely available to affiliates of
the Center for High-Performance Computing (CHREC).

VIII. ACKNOWLEDGEMENT
The authors would like to thank Matt French and Neil Steiner
at USC-ISI for their guidance and support for this project.
This work was supported in part by NSF I/UCRC IIP-
1266245 via the NSF Center for High-Performance
Reconfigurable Computing (CHREC).

REFERENCES
[1] M. Berg, C. Poivey, D. Petrick, D. Espinosa, A. Lesea, K. LaBel, M.
Friendlich, H. Kim, and A. Phan, “Effectiveness of Internal vs. External SEU
Scrubbing Mitigation Strategies in a Xilinx FPGA: Design, Test, and
Analysis” Proc. IEEE RADECS07, June 2008.
[2] C. Stroud, S. Konala, P. Chen, and M. Abramovici, “Built-In Self-Test of
Logic Blocks in FPGAs (Finally, A Free Lunch: BIST Without Overhead!),”
Proc. IEEE VLSI Test Symp., pp. 387-392, April 1996
[3] C. Stroud, K. Leach, and T. Slaughter, “BIST for Xilinx 4000 and Spartan
series FPGAs: a case study,” Proc. IEEE Int. Test Conf., pp.1258-1267, 2003.
[4] S. Dhingra, D. Milton, and C. Stroud, “BIST for logic and memory
resources in Virtex-4 FPGAs,” Proc. IEEE North Atlantic Test Workshop, pp.
19-27, 2006.
[5] B. Dutton and C. Stroud, “Built-In Self-Test of Configurable Logic Blocks
in Virtex-5 FPGAs,” Proc, IEEE System Theory, 2009. SSST 2009.
[6] T.Sridhar and J. P. Hayes, “A Functional Approach to Testing Bit-Sliced
Microprocessors,” IEEE Trans. on Computers, Vol. C-30, No. 8, pp. 563-571,
August 1981.
[7] T.Sridhar and J. P. Hayes, “Design of Easily Testable Bit-Sliced Systems,”
IEEE Trans. on Computers,Vol. C-30, No. 11, pp. 842-854, November, 1981.
[8] C. Jordan and W. P. Marnane, “Incoming Inspection of FPGAs,” Proc.
European Test Conf.,April, 1993.
[9] V. K. Huang and F. Lombardi, “An Approach to Testing
Programmable/Configurable Field Programmable Gate Arrays,” Proc. IEEE
VLSI Test Symp., pp. 450- 455, April 1996.
[10] C. S. Stroud, E. Lee, S. Konala, and M. Baranovichi, “Using ILA Testing
for BIST in FPGAs,” Proc. of the 1996 IEEE Interanational Test Conference
[11] 7 Series FPGAs Configurable Logic Block UG474 (v1.7), Xilinx Inc.,
San Jose, CA, November 2014, Available: www.xilinx.com
[12] 7 Series FPGAs Configuration UG470 (v1.9), Xilinx Inc., San Jose, CA,
November 2014, Available: www.xilinx.com
[13] R. Nair, S.M. Thatte, J.A. Abraham, “Efficient Algorithms for Testing
Semiconductor Random-Access Memories,” Proc. IEEE Transactions on
Computers, Volume:C-27 , Issue: 6, pp. 572 – 576
[14] S. Ma, P. Athanas, "In-System Testing of Xilinx 7-Series FPGAs: Part 2-
Interconnectivity," in progress
[15] H.Modi, “In-system testing of CLBs in Xilinx 7-series FPGAs,”
M.S.thesis, Dept. Comp. Eng., Virginia Tech, Blacksburg, VA 24061, in
progress

Figure 9. Breakup of the test time for XC7Z020 device

Figure 8. Fault coverage in CLB

