
Automated Software Compiler Techniques to Provide

Fault Tolerance for Real-Time Operating Systems

Benjamin James

Dept. of Electrical and Computer Engineering

Brigham Young University

Provo, UT, USA

b james@byu.edu

Jeffrey Goeders

Dept. of Electrical and Computer Engineering

Brigham Young University

Provo, UT, USA

jgoeders@byu.edu

Abstract—In this work we explore applying automated software
fault-tolerance techniques to protect a Real-Time Operating Sys-
tem (RTOS) and present experimental results showing that these
programs can achieve anywhere from 1.3x–257x improvement in
MWTF.

I. INTRODUCTION

One approach to protect software in radiation-prone envi-

ronments is to modify the software code itself to be tolerant of

single event upsets (SEUs) [1]–[4]. Previous works have shown

techniques including modifying the assembly code by hand [5],

[6], using automated tools to instrument the code, or reliance

on specific architectural features [1], [7]. In recent years, we

published a tool titled COAST (Compiler-Assisted Software

Fault Tolerance) [8], [9], which takes a different approach, and

applies protection to the intermediate representation (IR) of the

code during LLVM compilation. COAST has been evaluated

in radiation tests that show mean work to failure (MWTF)

improvements of 1.2x to 36x [9].

One major limitation of our past work with COAST was that

we only targeted simple bare-metal applications, such as matrix

multiplication or AES encryption. The objective of this work

is to explore whether automated COAST protection could be

applied to an entire operating system, or if the complexities

of an operating system would make this infeasible. We apply

automated fault-mitigation to the popular Real-Time Operating

System (RTOS) FreeRTOS. Adding COAST protection to this

RTOS required enhancements to the open-source COAST tool

and giving the tool specific configuration options to handle the

complexities of FreeRTOS.

Specifically, some of the challenges we encountered related

to maintaining automated protection while switching between

multiple threads of execution, accessing kernel-specific objects,

and the fact that part of the kernel is written in assembly code.

Our work demonstrates that automated protection tools can be

used on complex systems, with some assistance from the user.

The key contributions of this work are:

• A demonstration of compiler-automated fault mitigation

for a full real-time kernel (FreeRTOS).

• Fault injection results demonstrating 1.3x–257x improve-

ment to MWTF (Mean Work To Failure)

Benjamin James and Jeffrey Goeders are also members of the NSF Center
for Space, High-Performance, and Resilient Computing (SHREC)

• A set of open-source tools and configurations used in the

work, available at https://github.com/byuccl/coast.

II. RELATED WORK

Past work has investigated protecting RTOSes; however,

most of these works manually protect the scheduler code, rather

than applying compiler-automated protection to the entire ker-

nel. Different techniques include checkpointing [10], building

in lots of slack to the rate-monotonic scheduling [11], dynamic

scheduling [12] and others [13]–[16]. In addition, SafeRTOS is

an RTOS marketed for safety critical applications.

The methods above focus on protecting the control-flow

of the RTOS, whereas COAST attempts to protect the entire

data flow of the program, and provides synchronization and

correction on each control-flow branch. These methods work

on a coarse-grained scale, compared to COAST’s voting code

sprinkled throughout both application and kernel code. These

methods are different than, though possibly complementary

to, the methods discussed in this work. Some more closely

related work has been done by Borchert et al., who use

Aspect Oriented programming to get automated protection of

two different RTOS platforms [17], [18]. This depends on the

Aspect-Oriented C++ compiler, so RTOSes written in C, such

as FreeRTOS, could not be supported.

III. PROTECTING A REAL-TIME OPERATING SYSTEM

We use COAST to protect the entire software stack, both

application and kernel code. Our intent was to use COAST out-

of-the-box to protect all of the user variables and kernel objects

with triple redundancy (TMR); however, while attempting to

implement this protection approach we ran into several issues.

This section describes these challenges and solutions.

First, some of the code for the kernel is written in assem-

bly code. This is not possible to protect with COAST, as

architecture-specific assembly code is not part of the LLVM

IR. Second, issues of object duplication arose from the various

ways that FreeRTOS allocates objects, and originally we were

losing copies of kernel objects. We also had to deal with

ensuring that the correct number of copies of dynamically

allocated objects are created, as well as making sure function

inlining did not interfere with the Scope of Replication.

Even with all of these difficulties, we were still able to

implement the protection schemes solely during compilation

1452978-3-9819263-5-4/DATE21/ c©2021 EDAA

Authorized licensed use limited to: Brigham Young University. Downloaded on July 27,2022 at 19:24:40 UTC from IEEE Xplore. Restrictions apply.

using the COAST tool. COAST required a large number of

command line flags and in-code directives to properly maintain

the integrity of the Scope of Replication, but we did not hand-

modify any assembly code for this experiment.

A. Architecture Specific Code

As the COAST tool operates on LLVM IR, it is dependent on

having the source code available. Anything already at a lower

level than the IR (such as assembly code) cannot be modified

by an LLVM-based tool. Thus, any global variables accessed by

the assembly must be excluded from the Scope of Replication

(SoR). The SoR defines which parts of a program (ie., which

functions and variables) should be replicated. Protected vari-

ables, which are those within the SoR, should only be accessed

within the SoR, to ensure that replicas are kept up to date

and synchronized. Unprotected variables can be accessed by

functions within the SoR or not. In many cases it is possible to

detect these uses by examining the list of functions and globals

that are protected and comparing that with actual uses of each

of the globals. We added a verification step to the COAST tool

to automatically detect when this rule is violated.

In the FreeRTOS kernel, the context switcher is written in

assembly. To handle this, we manually created a list of global

variables which needed to be excluded from protection in order

for the integrity of the SoR to be maintained, and instructed

COAST to skip replicating these variables.

B. Losing Replicated Objects

Certain kernel functions create objects to be used by the

user-space tasks. If the handles to these objects are returned

directly to the caller via the function return value, copies can

be lost. We have encountered a variant of this problem before;

any function that dynamically allocates memory and returns

a pointer to that value can lose the replicated copies on the

function return.

One way to deal with this problem is by calling the function

more than once, with each invocation returning one of the

triplicated object copies. While this works in most cases, certain

functions have side effects, and calling them multiple times can

cause internal data corruption. These functions must be invoked

only once, and the function signatures must be modified to

“return” multiple values. We added configuration options to

COAST to allow users to specify which functions need to

have return values triplicated. COAST can modify the function

signature to add two extra arguments which are used to return

the extra values through pointers. The call sites are also updated

automatically to retrieve these triplicated objects.

C. Handling Dynamic Memory Allocation

Functions which dynamically allocate memory are some

of the most important function calls to be aware of when

replicating and protecting the data of a program. In some

instances it is appropriate to call these functions multiple times,

and other instances they must only be called once.

As an example from FreeRTOS, allocating stack space for

a task should only be done once. This is because the stack is

something which is primarily used by assembly code; LLVM IR

has no concept of a system stack. In contract, when allocating

the Task Control Block (TCB), a struct which contains data for

each user task, we want the data to be replicated, and thus

multiple memory blocks should be allocated. Unfortunately

there is no obvious way to do this automatically, and again

we needed to manually build a list of locations in the code

where dynamic allocation should not be replicated.

D. Inlining

Compilers often inline the bodies of functions into their

callers as an optimization. In most cases this is desirable, as it

can lead to decreased run-time. However, if one of the functions

is supposed to be inside the SoR, and the other is not, inlining

can corrupt the protection scheme. When a function is inlined,

the symbol for the original function no longer exists, and so

COAST cannot treat it correctly because it is no longer distinct

from its caller(s). There were a few functions in the FreeRTOS

kernel where we had to instruct the compiler not to inline.

E. Partial Protection Schemes

In our past work we have noted that there is naturally a

significant penalty in both run-time and memory usage for

comprehensive TMR protection (∼3-4x increase). Thus, in

addition to our protection scheme which covers all of the

kernel and application code, we also wanted to explore the

effects of protecting only the application code in order to better

understand the possible trade-off between fault tolerance and

performance cost. The main consideration for this protection

scheme is that handles to the kernel objects cannot be replicated

in the application code. This includes function arguments that

serve as return values.

We also considered protecting only parts of the kernel, and

performed profiling to determine which parts of the kernel were

invoked most frequently. However, ultimately we found that

kernel functions and kernel objects were simply too intercon-

nected to implement such a partial protection scheme.

IV. EXPERIMENT

A. Fault Injection Methodology

To determine the fault tolerance we custom created an auto-

mated fault injection setup. Our fault injection framework uses

the QEMU (Quick EMUlator) tool to emulate the processor

under study, the ARM Cortex-A9. QEMU has a GDB interface

that we use to modify values in the guest program. We use a

Python supervisor script which runs the application, each time

changing a value in memory or system registers, and parses the

output of the application to see if any errors occurred.

Our fault injection targeted three areas: 1) all processor

caches, 2) only the data cache, and 3) the processor registers.

We target the caches specifically because the A9 platform

we have been testing (Xilinx PYNQ board) has unprotected

SRAM caches. As DRAM (main memory) is about an order

of magnitude less susceptible to failures than SRAM [19], we

chose to specifically focus on cache faults. For each execution

of a benchmark, a single fault is injected at a random cycle

number since execution began, and in a random bit of the cache

or register file.

Design, Automation and Test in Europe Conference (DATE 2021) 1453

Authorized licensed use limited to: Brigham Young University. Downloaded on July 27,2022 at 19:24:40 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Fault Injection results

Benchmark Section Runs Faults Errors Timeout Invalid Error rate MWTF Size (KB) Cycle count (avg)

rtos kUser
(Unmitigated)

cache 5000 0 122 97 0 2.44% -
824 4.22× 10

7dcache 5000 0 162 242 0 3.24% -
registers 5000 0 150 261 0 3.00% -

.TMR
(kernel +

application)

cache 10000 292 44 359 0 0.44% (5.55x ↓) 1.495x,↑

668 (0.81x) 1.56× 10
8 (3.71x ↑)dcache 10000 753 69 675 7 0.69% (4.70x ↓) 1.266x,↑

registers 10000 323 47 450 0 0.47% (6.38x ↓) 1.721x ↑

.app.TMR

(app only)

cache 10000 40 45 237 0 0.45% (5.42x ↓) 3.310x ↑

592 (0.72x) 6.90× 10
7 (1.64x ↑)dcache 5000 49 45 234 2 0.90% (3.60x ↓) 2.198x ↑

registers 5000 9 38 288 1 0.76% (3.95x ↓) 2.410x ↑

rtos mm
(Unmitigated)

cache 5000 0 60 181 0 1.20% -
808 1.33× 10

8dcache 5000 0 528 1145 4 10.56% -
registers 5000 0 39 185 0 0.78% -

.TMR
(kernel +

application)

cache 60000 5962 10 477 2 0.02% (72.00x ↓) 20.767x ↑

616 (0.76x) 4.61× 10
8 (3.47x ↑)dcache 60000 44549 11 333 1 0.02% (576.00x ↓) 166.135x ↑

registers 10000 39 102 428 0 1.02% (1.31x ↑) 4.534x ↓

.app.TMR

(app only)

cache 135000 13147 20 838 3 0.01% (81.00x ↓) 23.670x ↑

563 (0.70x) 4.55× 10
8 (3.42x ↑)dcache 150000 115724 18 778 2 0.01% (880.00x ↓) 257.157x ↑

registers 5000 10 75 198 0 1.50% (1.92x ↑) 6.581x ↓

In our testing, we used two different benchmarks. The first

is a modified version of the demo application distributed with

FreeRTOS, which we call rtos_kUser. This application

tests the use of many different kernel functions. The second,

rtos_mm, runs a matrix multiplication alternating between two

tasks. By using these two applications, we aimed to show the

difference between an application dominated by kernel calls,

versus one dominated by user code.

For each of these applications, we implement the protection

scheme that covers as much of the code as possible, denoted

with the “.TMR” suffix, which indicates that the benchmark

(application and and kernel code) will be protected by the

TMR protection. We also implement a protection scheme with a

smaller overhead, which only protects the application part of the

code. This version of the benchmark is denoted “.app.TMR”.

B. Results

The injection results are shown in Table I, and a summary

of MWTF improvements in Figure 1. In the results, an “Error”

is when the the calculated result is incorrect. A “Fault” means

that a fault was corrected by the COAST-inserted code. An

“invalid” result means the benchmark output did not match the

expected format, and “timeout” is when the benchmark did

not complete in the expected time. We are most interested in

reducing the error rate, as this represents silent data corruption

(SDC), and would normally be undetectable. The next set

of columns provide the error rate and mean work to failure

(MWTF). The error rate is the number of errors divided by

the total number of times the benchmark was run. While error

rate is a good indication of our effectiveness at reducing the

number of errors, it is important to recognize that increases in

program run-time would naturally cause more faults to occur

in an SEU prone environment. Thus, the MWTF column scales

down the improvement in error rate by the increase in run-time,

to provide a more fair metric of total improvement.

The final set of columns give the executable size and number

of simulator cycles to complete execution. The reader may

notice that the “size” column in each table indicates that the

protected version of the benchmarks is actually smaller than the

original size. This is because all unused symbols were stripped

out during compilation, a feature of COAST.

rtos_kUser: Both protection schemes provided a de-

crease in error rate and related increase in MWTF for all three

target sections. Note that even though total code protection

resulted in an overall lower error rate, because of the steep

penalty in run-time overhead it has, protecting only the applica-

tion code gave a better increase in MWTF. This indicates there

are some instances where protecting only the application code

could provide enough fault tolerance to meet the desired goals,

especially when reducing protection overhead is important.

rtos_mm: For this benchmark, while COAST definitely

helps protect against errors in the caches, errors in registers

resulted in a worse error rate than without protection. Errors

caused by injections into registers are usually control flow

errors. Since this benchmark is a triply-nested loop, any error

in control flow is likely to mess up the hash that is run at the

end to validate the result.

It is important to keep in mind that the number of bits in the

register file is significantly smaller than the total bits in all the

caches. This means that, in an environment where upsets are

evenly distributed between all bits in the system, the results for

injecting into the cache will most closely resemble the actual

fault coverage.

C. Impact on Run-time and Memory Usage

To measure run-time, we performed detailed profiling of each

application. As expected, run-time increased by ∼3–4x, due to

triplicated instructions and inserted voters. As evident from the

total bars in Figure 2, rtos_kUser spends most of time in

kernel code, while the rtos_mm benchmark is the reverse.

1454 Design, Automation and Test in Europe Conference (DATE 2021)

Authorized licensed use limited to: Brigham Young University. Downloaded on July 27,2022 at 19:24:40 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: MWTF Summary

Fig. 2: Benchmark Run-time Overhead

To evaluate impact on memory usage, we measured both

static and dynamic memory allocation. Static memory usage

was determined by examining the ELF symbol table. Dynamic

memory usage was calculated by manually searching for all

memory allocation calls and using our knowledge of the appli-

cations to calculate how much memory these calls will account

for. Total memory usage of each benchmark configuration,

relative to the unmitigated version, is shown in Figure 3.

Compared to the change in run-time, the difference in

memory usage is not as large. Some of this can be attributed to

constant space used by the printing libraries and other similar

functions. Another contributing factor is that there are certain

parts of the kernel, most notably the task stack spaces, that

cannot be replicated in any case.

Fig. 3: Benchmark Memory Usage Overhead

REFERENCES

[1] E. Chielle, F. Rosa, G. S. Rodrigues, L. A. Tambara, J. Tonfat, E.
Macchione, F. Aguirre, N. Added, N. Medina, V. Aguiar, M. A. G.
Silveira, L. Ost, R. Reis, S. Cuenca-Asensi, and F. L. Kastensmidt,
“Reliability on ARM processors against soft errors through SIHFT
techniques,” IEEE Transactions on Nuclear Science, vol. 63, no. 4,
pp. 2208–2216, Aug. 2016.

[2] E. Chielle, F. Rosa, G. S. Rodrigues, L. A. Tambara, F. L. Kastensmidt,
R. Reis, and S. Cuenca-Asensi, “Reliability on ARM processors against
soft errors by a purely software approach,” in European Conference on

Radiation and Its Effects on Components and Systems (RADECS), Sep.
2015, pp. 1–5.

[3] E. Chielle, G. S. Rodrigues, F. L. Kastensmidt, S. Cuenca-Asensi,
L. A. Tambara, P. Rech, and H. Quinn, “S-SETA: Selective software-
only error-detection technique using assertions,” IEEE Transactions on

Nuclear Science, vol. 62, no. 6, pp. 3088–3095, Dec. 2015.
[4] E. Chielle, F. L. Kastensmidt, and S. Cuenca-Asensi, “Overhead reduc-

tion in data-flow software-based fault tolerance techniques,” in FPGAs

and Parallel Architectures for Aerospace Applications: Soft Errors

and Fault-Tolerant Design, F. Kastensmidt and P. Rech, Eds., Cham:
Springer International Publishing, 2016, pp. 279–291.

[5] N. Oh, P. Shirvani, and E. McCluskey, “Error detection by duplicated
instructions in super-scalar processors,” IEEE Transactions on Reliabil-

ity, vol. 51, no. 1, pp. 63–75, Mar. 2002.
[6] H. Quinn, Z. Baker, T. Fairbanks, J. L. Tripp, and G. Duran, “Soft-

ware resilience and the effectiveness of software mitigation in micro-
controllers,” IEEE Transactions on Nuclear Science, vol. 62, no. 6,
pp. 2532–2538, Dec. 2015.

[7] N. Nakka, K. Pattabiraman, and R. Iyer, “Processor-level selective repli-
cation,” in Proceedings of the International Conference on Dependable

Systems and Networks, IEEE, Jun. 2007, pp. 544–553.
[8] M. Bohman, B. James, M. J. Wirthlin, H. Quinn, and J. Goed-

ers, “Microcontroller compiler-assisted software fault tolerance,” IEEE

Transactions on Nuclear Science, vol. 66, no. 1, pp. 223–232, Jan. 2019.
[9] B. James, H. Quinn, M. Wirthlin, and J. Goeders, “Applying compiler-

automated software fault tolerance to multiple processor platforms,”
IEEE Transactions on Nuclear Science, vol. 67, no. 1, pp. 321–327,
Jan. 2020.

[10] L. Xu, Y. Bai, K. Cheng, L. Ge, D. Nie, L. Zhang, and W. Liu,
“Towards fault-tolerant real-time scheduling in the seL4 microkernel,”
in International Conference on High Performance Computing and

Communications, Dec. 2016, pp. 711–718.
[11] S. Ghosh, R. Melhem, D. Mossé, and J. S. Sarma, “Fault-tolerant rate-

monotonic scheduling,” Real-Time Systems, vol. 15, no. 2, pp. 149–181,
Sep. 1, 1998.

[12] P. Mejia-Alvarez and D. Mosse, “A responsiveness approach for
scheduling fault recovery in real-time systems,” in Real-Time Tech-

nology and Applications Symposium, ISSN: 1080-1812, Jun. 1999,
pp. 4–13.

[13] K. Kim, “ROAFTS: A middleware architecture for real-time object-
oriented adaptive fault tolerance support,” in International High-

Assurance Systems Engineering Symposium, Nov. 1998, pp. 50–57.
[14] H. Kim, S. Lee, and B.-S. Jeong, “An improved feasible shortest

path real-time fault-tolerant scheduling algorithm,” in International

Conference on Real-Time Computing Systems and Applications, ISSN:
1530-1427, Dec. 2000, pp. 363–367.

[15] H. Chen, W. Wang, W. Luo, and J. Xiang, “A novel real-time fault-
tolerant scheduling algorithm based on distributed control systems,”
in International Conference on Computer Science and Service System

(CSSS), Jun. 2011, pp. 80–83.
[16] C. Buckl, M. Regensburger, A. Knoll, and G. Schrott, “Models for au-

tomatic generation of safety-critical real-time systems,” in International

Conference on Availability, Reliability and Security (ARES), Apr. 2007,
pp. 580–587.

[17] C. Borchert, H. Schirmeier, and O. Spinczyk, “Generic soft-error detec-
tion and correction for concurrent data structures,” IEEE Transactions

on Dependable and Secure Computing, vol. 14, no. 1, pp. 22–36, Jan.
2017.

[18] C. Borchert, “Aspect-Oriented Technology for Dependable Operating
Systems,” Dissertation, der Technischen Universität Dortmund, Dort-
mund, 2017, 244 pp.

[19] T. Semiconductors. (Jan. 5, 2004). “Soft errors in electronic memory –
a white paper,” [Online]. Available: http://www.tezzaron.com/media/
soft errors 1 1 secure.pdf (visited on 12/02/2020).

Design, Automation and Test in Europe Conference (DATE 2021) 1455

Authorized licensed use limited to: Brigham Young University. Downloaded on July 27,2022 at 19:24:40 UTC from IEEE Xplore. Restrictions apply.

