
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 67, NO. 1, JANUARY 2020 321

Applying Compiler-Automated Software Fault
Tolerance to Multiple Processor Platforms

Benjamin James, Heather Quinn , Michael Wirthlin , and Jeffrey Goeders

Abstract— Several recent works have explored the feasibility
of using commercial off-the-shelf (COTS) processing systems in
radiation-prone environments, such as spacecraft. Typically, this
approach requires some form of protection to ensure that the
software can tolerate radiation upsets without compromising
the system. Our recent work, COmpiler Assisted Software fault
Tolerance (COAST), provides automated compiler modification
of software programs to insert dual- or triple-modular redun-
dancy. In this article, we extend COAST to support several new
processing platforms, including RISC-V and Xilinx, San Jose,
CA, USA, SoC-based products. The automated software pro-
tection mechanisms are tested for a variety of configurations,
altering the benchmark and cache configuration. Across the
different configurations, the cross sections were improved by 4×
to 106×. In addition, a hardware-mitigation technique is tested
using dual-lock-step cores on the Texas Instruments, Dallas, TX,
USA, Hercules platform, which is compared with the software-
only mitigation approach.

Index Terms— Silent data corruption (SDC), single-event upset
(SEU), soft errors, software fault tolerance.

I. INTRODUCTION

RECENTLY, there has been a push to enable the use
of commercial off-the-shelf (COTS) processing systems

in radiation-prone environments, instead of using specialized,
radiation-hardened systems. Using COTS systems provides the
benefits of significantly reduced cost, and often access to more
recent, higher performance technologies. However, using such
systems typically require some way to mitigate the risk of
silent data corruption (SDC).

One approach is to modify the software to make it more
tolerant of upsets; this is typically done by duplicating or trip-
licating computation in order to detect errors or correct faults.
Although this code duplication comes at a price (slower
execution and increased memory usage), the approach can
be successful at reducing error rate, and netting an increased
mean work to failure (MWTF) [1]–[4].

Manuscript received July 6, 2019; revised October 2, 2019 and
December 10, 2019; accepted December 11, 2019. Date of publication
December 16, 2019; date of current version January 29, 2020. This work
was supported by the I/UCRC Program of the National Science Foundation
under Grant 1738550 and by the Los Alamos Neutron Science Center which
provided beam time under Proposal NS-2018-7895-A.

B. James, M. Wirthlin, and J. Goeders are with the Department of
Electrical and Computer Engineering, Brigham Young University, Provo, UT
84602 USA, and also with the National Science Foundation, Center for Space,
High-performance, and Resilient Computing (e-mail: b_james@byu.edu;
wirthlin@byu.edu; jgoeders@byu.edu).

H. Quinn is with the Los Alamos National Laboratory, ISR-3 Space Data
Systems, Los Alamos, NM 87545 USA (e-mail: hquinn@lanl.gov).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNS.2019.2959975

In the past, these replication techniques have been added
manually, through the painstaking process of hand modifying
the assembly code [1], [2]. Of course, this is not ideal; this
labor-intensive process may be prone to errors, may miss the
protection of key data elements, or maybe simply too much
work for larger programs. While some previous works have
investigated automatically applying mitigation techniques [1],
[5]–[9], none of these works have provided a publicly avail-
able open-source tool that others can use to replicate their
work or to use in their own projects.

Last year, we released COmpiler Assisted Software
fault Tolerance (COAST), a compiler-based tool that
automatically adds fault mitigation to user software
through duplication or triplication of instructions and
data. This tool is open-source and publicly available at
https://github.com/byuccl/coast. We performed experimental
testing of COAST on a single microcontroller (a Texas
Instruments MSP430) and demonstrated a 4× to 7× increase
in MWTF [10].

In this article, we demonstrate a key benefit of our COAST
tool, which is that it can be applied to a wide variety of
computing platforms. Since the COAST tool is implemented
as a machine-independent compiler passes in the LLVM
compiler framework, it can be extended to new architectures
and platforms with minimal modifications. This has allowed us
to perform experimental testing of software-mitigated designs
on several different platforms and configurations.

The primary contributions of this article are as follows.

1) Extending the COAST tool to support the Freedom
SDK RISC-V toolchain, and the Xilinx SDK toolchain,
allowing us to generate software-protected binaries for
RISC-V and Xilinx ARM-based SoCs.

2) Experimental testing of running COAST-protected soft-
ware on multiple software platforms at the Los Alamos
Neutron Science Center (LANSCE), Los Alamos, NM,
USA. The tested platforms include a 32-bit Freedom
RISC-V SoC, 32-bit Xilinx Zynq ARM A9, and 64-bit
Xilinx MPSoC ARM A53. Different benchmark and
cache configurations were tested and compared. Across
the different configurations, the cross sections were
reduced by 4× to 106×.

This article is organized as follows. Section II provides
background information, describing previous software protec-
tion techniques, and a brief overview of the COAST tool.
Section III describes how the COAST tool was extended to
support new processing platforms. Section IV describes the
experimental setup, including details of our test platforms, and

0018-9499 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Brigham Young University. Downloaded on April 12,2021 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4690-9503
https://orcid.org/0000-0003-0328-6713
https://orcid.org/0000-0002-9822-6926

322 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 67, NO. 1, JANUARY 2020

Section V describes the results of the experiments. Section VI
provides conclusions.

II. BACKGROUND

A. Software Protection Through Replication

Tolerating faults in software has been a goal of many
different research works over the past couple of decades.
Most commonly, these approaches exploit temporal and spatial
locality to improve fault tolerance. Variables are stored at
separate locations and updated at different times, reducing the
probability that an upset will permanently corrupt data and
result in an SDC.

Error detection by duplicated instructions [5] was an early
work designed to protect the data flow of a program by
performing fine-grained duplication of the program execu-
tion, duplicating each data-processing instruction. The two
instruction flows are synchronized periodically, such as before
branches or store operations. Although the program executes
with duplicated data, synchronization before branching ensures
that there remains only a single-control flow path. This tech-
nique also referred to as duplicate with compare (DWC),
allows the software to detect errors, at a cost of code size
and execution time.

While duplication can detect errors, triplication of data is
required to correct errors and continue execution. This was first
introduced as SWIFT-R [9] and is analogous to triple-modular
redundancy (TMR) in hardware. This, of course, introduces
even larger overheads in terms of program size, memory usage,
and execution time.

Previous work has also explored how this program repli-
cation and synchronization should take place, specifically
what instructions should be replicated, and when to perform
synchronization. Chielle et al. [3], [11]–[13] present a set of
duplication and synchronization rules that have been reused in
many subsequent works, including our tool COAST.

B. Software Protection Tools

Although there is substantial previous work that has utilized
these software protection techniques [1]–[8], [11]–[21], this
article is not easily accessible or not suitable for the devices
we are interested in targeting.

Some past work has used hand-modified assembly code
rather than an automated process [1], [2], other works tar-
get only specific architectures [4], [5], [9], [21], assembly
languages [3], [6], [11], [13], processor features [17], [20],
or are dependent on multicore systems [18], [19], mak-
ing them of limited use for future research or commercial
projects. Other works have focused on protecting control-
flow rather than data-flow [14]–[16]. Most of the works
have focused on a server-like environment, targeting high-
performance, superscalar processors, rather than embedded
systems [4], [5], [7]–[9], [14]–[21]. Of the above-described
tools, none of the works provided open-source, publicly avail-
able tools. Furthermore, only four of the articles [1]–[3], [12]
present results tested in an actual high-radiation environment,
the rest only have only simulated upsets with fault injection.

In contrast, our COAST tool [10], which we describe in
Section II-C, is designed to be open-source, publicly acces-
sible, and targetable to a wide range of architectures, from

Fig. 1. Code before and after TMR mitigation, from [10]. (a) Original code.
(b) TMR code.

Fig. 2. MxM kernel code showing in-code directive for triplication.

simple microcontrollers to more advanced multicore systems.
While our tool does not introduce novel protection techniques,
it does provide the opportunity for users to test many different
platforms, which we demonstrate in the experiments in this
article.

C. COAST

Our code protection tool, COAST [10], automatically adds
data flow protection to user-provided programs. In the default
configuration of the tool, we apply the protection scheme
VAR3, as detailed in [6], which consists of replicating all
compute operations and memory loads/stores while leaving
a single set of control flow operations. The COAST tool
offers both DWC and TMR protection modes; in the TMR
configuration, all compute instructions are triplicated, and
synchronization points contain a voter which will determine
the correct data based on the three copies. The replication of
instructions and the insertion of synchronization points is fully
automated as part of the compilation process.

An example of the user’s program before and after tripli-
cation is provided in Fig. 1. Unmitigated code is shown on
the left and our mitigated code on the right. The bold text
indicates changes made by our pass.

1) User Configuration: Central to our automated mitigation
tool is the fact that the user has high control over the pro-
tection passes through the use of both command-line options
and source code directives. For example, Fig. 2 shows the
core function of our matrix multiplication (MxM) benchmark.

Authorized licensed use limited to: Brigham Young University. Downloaded on April 12,2021 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

JAMES et al.: APPLYING COMPILER-AUTOMATED SOFTWARE FAULT TOLERANCE TO MULTIPLE PROCESSOR PLATFORMS 323

TABLE I

NEUTRON BEAM TEST RESULTS

Note the __xMR attribute applied to the function, which indi-
cates that TMR protection should be applied to this function.

One important option that COAST provides is the ability
to count the number of faults that are corrected by the voting
code. This requires a more complex voting code than shown
in Fig. 1, and requires updating a global variable each time the
voter detected and corrects a discrepancy. While this option
negatively affects runtime, and would not be enabled in a
deployed system, it is useful for experimental testing, and
allows us to collect results on the number of faults corrected,
as shown later in Table I.

2) Verifying Correctness: Since COAST works by modify-
ing a user’s program, it is critically important that it does not
affect the functionality of the program. To ensure this, daily
automated testing is performed, which runs COAST on a suite
of self-verifying C code benchmarks. This benchmark suite
consists of matrix multiply, quicksort, cyclic redundancy check
(CRC), advanced encryption standard (AES), fast Fourier
transform (FFT) (four variants), LLVM-stress, MiBench (six
programs), CHStone (12 programs), and CoreMark (two con-
figurations). We also have unit tests designed to exercise very
particular use cases of the protection algorithms. Together
these give us over 30 benchmarks to test against, providing
a good spread of algorithm types and code sizes.

III. EXTENDING COAST TO NEW PLATFORMS

In order to test COAST’s performance on different plat-
forms, it was necessary to extend COAST to support additional

toolchains. In this article, we extended the tool to support the
Freedom SDK for RISC-V, and the Xilinx SDK for Xilinx’s
ARM SoC parts. The approach taken for both toolchains
was very similar, and thus, we believe that users could
easily extend COAST to support additional architectures and
boards. While the details of these modifications are beyond
the scope of this article, a brief description of the process
is included.

Fig. 3 shows the build flow for both the freedom RISC-V
and Xilinx ARM platforms. Both of these toolchains utilize the
GCC compiler out-of-the-box. However, COAST relies upon
the LLVM compiler framework [22], an alternative to GCC.
Rather than migrating the build of all platform files to LLVM,
which would require significant user effort, our approach is to
only compile the user’s core program using the LLVM-based
COAST compiler. As shown in the diagram, the platform
support files, which include the board support package (BSP),
continue to be compiled using the existing toolchain compiler.
The binaries from both flows are then linked, again using the
existing toolchain linker. For the Freedom RISC-V and Xilinx
ARM flows, this means that the platform files can continue
to be compiled using the GCC toolchain, and the final binary
will still be produced by GCC.

This approach minimizes the user effort required to
utilize the COAST tool on new platforms. The main
responsibility placed on the user is to determine the
flags that must be passed to COAST (both the Clang
front-end, and the LLVM optimizer) to compile the core

Authorized licensed use limited to: Brigham Young University. Downloaded on April 12,2021 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

324 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 67, NO. 1, JANUARY 2020

Fig. 3. COAST compiler flow for supporting new toolchains.

user program. For example, for the RISC-V platform
these consist of passing “-m32 –target=riscv32”
to Clang and “-march=rv32imac -mabi=ilp32
-mcmodel=medany” to LLVM. Thus, any CPU architecture
supported by LLVM should be targetable by COAST, with
minimal user effort.

As part of this process, we developed extensible Makefiles
for both of these toolchains in order to implement the build
process shown in Fig. 3. Users of COAST can support new
platforms and boards by making minimal modifications to
these Makefiles to connect into their existing toolchains.

IV. EXPERIMENTAL SETUP

We tested our COAST software protection tool at LANSCE.
The tests were designed to both demonstrate the applicability
of our tool to several different platforms, as well as gain
radiation sensitivity results for a few popular and emerging
platforms.

A. Devices Under Test

The following platforms were tested in our experiment:
1) SiFive HiFive Board (RISC-V): This board contains a

SiFive Freedom E310, a 32-bit 320 MHz 130 nm RISCV
processor, with a 16 kB L1 instruction cache and a 16 kB
SRAM scratchpad (non-ECC). In our benchmarks, all
data were contained within this scratchpad.

2) PYNQ-Z1 Board (A9): This platform contains a Xilinx
ZYNQ XC7Z020 FPGA, which contains an embedded
2-core 32-bit 667 MHz 28 nm ARM A9 processor. There
is a 32 kB instruction and 32 kB data cache per core
(non-ECC). The FPGA fabric was not utilized nor tested.

3) AVNET Ultra96 Board (A53): This platform contains
a Xilinx Zynq UltraScale + MPSoC ZU3EG FPGA,
produced using the TSMC 16FinFET + technology,
and contains an embedded 4-core 64-bit 1.5 GHz ARM
A53 processor. There is a 32 kB instruction and 32 kB
data cache per core (ECC), with a 1 MB L2 cache. The
FPGA fabric was not utilized or tested.

All platforms were configured as a bare-metal system, with
only essential BSP software. Two RISC-V boards and two
PYNQ-Z1 boards were used in the beam test; however, only
one Ultra96 board was used, as the JTAG design of the board
prevents two boards from being configured from a single
computer.

The experiment was conducted in the 30R flight path
at LANSCE, as shown in Fig. 4. The boards were spread

Fig. 4. Cross-section view of board placement in the neutron beam. The 2-in
diameter beam cross section is shown as a red circle, boards are shown as
the large rectangles, with DUTs shown as the colored shaded small rectangles
within the beam. The black-filled rectangles show the placement of chips that
we tried to place outside the beam area (power regulator for RISC-V board
and DRAM chips for the Xilinx boards).

Fig. 5. Picture of LANSCE neutron test. The RISC-V boards are at the
far right, the PYNQ-Z1 boards to their left, the Ultra96 next to the left, and
then a Texas Instruments Hercules 5F board, followed by boards from other
experiments.

from a distance of 81 cm (Hercules 5F board) to 99 cm
(2nd RISC-V board) 83 cm from the detector. This results
in a 10.7–12.9% attenuation in flux versus the measurements
taken at the detector, which was taken into account in our
results.

The A9 and A53 platforms contain external dynamic ran-
dom access memory (DRAM) chips. We did our best to ensure
these were located outside the 2-in diameter neutron beam,
as shown in Fig. 5; however, the close proximity to the DUT
meant that placement was barely outside the beam radius.
However, since the DRAM is not as susceptible to neutron-
based upsets, we expect that it had a minor impact on our
results.

Authorized licensed use limited to: Brigham Young University. Downloaded on April 12,2021 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

JAMES et al.: APPLYING COMPILER-AUTOMATED SOFTWARE FAULT TOLERANCE TO MULTIPLE PROCESSOR PLATFORMS 325

B. Benchmarks

Most configurations were tested using an MxM benchmark,
with the core computation, as shown in Fig. 2. The COAST
tool was configured to enable TMR on the matrix computation,
which resulted in triplication of all operations and all variables,
including both input and result matrices. The input matrices
contained hard-coded random values. Upon completion of the
multiplication, the verification code would compute an XOR

of the entire result matrix, and be compared against a hard-
coded, predetermined golden value. The size of the matrices
was chosen such that they filled the memory in the TMR
configuration (scratchpad for the RISC-V platform and the
L1 cache for the ARM platforms), and identical matrix sizes
were then used for the unmitigated configurations. The size
of the square matrix was 19 for the RISC-V and 30 for the
A9 and A53.

The SHA256 benchmark (used only on the RISC-V plat-
form due to experiment time constraints) is designed to
compute the hash of a large input string. Once again, this
was sized as large as possible to fit in the scratchpad memory
for the TMR configuration, and the same length, 4000B, was
used for the unmitigated version.

Both benchmarks were configured to repeatedly execute
the operation as long as the result remained correct, with
a periodic heartbeat output over universal asynchronous
receiver/transmitter (UART) to an observing computer. If an
error was detected, it was output over UART immediately,
and the controlling system would automatically power cycle
and reprogram the appropriate board. This approach was
chosen to prevent any persistent faults. Although the A9 and
A53 parts contain dual- and quad-core processors, respectively,
the provided results are for the benchmark executing solely on
one core.

Our COAST tool provides the option to track any data
faults corrected by the TMR voting code. Although this
requires extra runtime overhead and would not be utilized in
a production system, it allows us to observe how often our
TMR system is correcting problems. This option was enabled,
and the fault correction data are presented in the results in the
following.

C. Configurations

In our experiment, we attempted to demonstrate our COAST
tool operating under a number of different conditions. While
it would have been beneficial to collect data for an even
larger number of configurations, it takes significant beam
time to collect enough data to make the results statistically
significant.

The RISC-V platform was tested with two benchmarks,
MxM and SHA256.

The PYNQ A9 and A53 platforms were tested with only
the MxM benchmark, but with the caches enabled and then
disabled. Since the MxM benchmark was sized to fit in the
L1 cache, the resulting differences should mainly reflect the
cross-section difference between the processor core(s) and
the L1 cache.

V. EXPERIMENTAL RESULTS

The full results of the neutron beam test are provided
in Table I. The second column lists the total fluence received
by the board/configuration, and the next four columns provide
the number of occurrences of different events. As explained
previously, each benchmark would run continuously, out-
putting a periodic heartbeat via UART, until some irregular
status occurred. The Faults column lists the number of faults
that were detected and corrected by the TMR voters. The
Errors (SDC) column lists the number of times the calculated
result did not match the golden result. Hangs occurred when
the system stopped responding after some time (roughly 10×
the expected heartbeat interval), and required resetting. Invalid
Status occurred anytime the output message on the UART did
not conform to the expected regular expression format. When
any of these statuses occurred, the board would be power
cycled and reprogrammed.

The next two columns, Code Size and Runtime report the
executable size and executable runtime, respectively. These
values capture the cost the user has to pay in order to
protect their software program. It should be noted that in the
experimental testing, we used the COAST option of counting
occurrences of when TMR fixed faults in the data. This
adds some additional runtime overhead that would not be
necessary for a production environment but does not affect
the fault mitigation performance of our tool. By disabling this
option, the runtime can be improved by up to 10%, depending
on the benchmark and configuration, but still remains about
3× to 4× slower than the original unmitigated code.

The final two columns report the benefit provided by
the software protection. The Cross Section is calculated as
Errors(SDC)/Fluence. The final column, MWTF reports
the mean work to failure [21]. Since the software protection
causes longer program runtimes, the protected programs have
a greater chance of encountering a fault during execution. The
MWTF metric captures the relationship between reliability and
performance in (1)

MWTF = amount of work completed

number of errors encountered
= (raw error rate · AVF · execution time)−1. (1)

Fig. 6 provides a plot of the cross-section data with 95%
confidence error bars. In this plot, the Error data indicates
when an incorrect result is computed (SDC error).

One may notice that the sum of the Faults, and Errors
columns for the TMR’d code is much greater than the Errors
of the unmitigated code. This is expected, as the COAST
TMR process triplicates almost all operations and program
data. This makes the program roughly 3× more susceptible
to single-event upsets. In addition, one should note that the
TMR configuration typically was tested for longer durations
in the beam and accumulated a greater fluence. This was
done to increase the statistical significance of errors, which
occur relatively infrequently in the TMR’d version. This
relative increase of faults in the TMR’d configuration versus
errors in the unmitigated configuration is evidence in Fig. 6,

Authorized licensed use limited to: Brigham Young University. Downloaded on April 12,2021 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

326 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 67, NO. 1, JANUARY 2020

Fig. 6. Cross sections with 95% confidence interval.

where the cross section of faults in the TMR’d configurations
(red squares) is noticeable larger than the cross section of
errors in the unmitigated designs. Accounting for the 95%
confidence intervals shown in Fig. 6, the increase is calculated
to be 1.6× to 3.0×, 2.5× to 4.2×, 0.9× to 8.9×, and 0.3× to
10.7×, for the first four configurations in Fig. 6, respectively.

Based on the collected data, there are a number of signifi-
cant trends. First, similar to our previous radiation testing [10],
we have observed that COAST provides a significant improve-
ment to cross section, with a reduction of 4.3× to 105.3×,
depending on the platform and configuration. However, this
benefit comes at a significant cost: runtime is increased by
2.9× to 4.0×. This increase is expected, as triplication of all
instructions, plus voting instructions results in a runtime that
is usually >3× (the 2.9× runtime increase is attributed to
the compiler vectorizing some of the triplicated instructions,
resulting in an increase of less than 3×).

The MWTF metric accounts for this increased runtime, and
across the configurations, the MWTF increase ranges from
1.2× to 35.9×.

Since this range is quite dramatic, we provide some analysis
of what causes the difference in benefit between the different
platforms and configurations.

A. Variation Between Benchmarks

On the RISC-V platform, we tested two different bench-
marks and saw significantly different results between the two.
Further study after the radiation test revealed a significant
difference in the way that COAST treats the two algorithms.
By default, COAST uses the same synchronization rules as [3]
and [11]–[13] and will synchronize data values on control-flow
branches and memory stores.

Depending on the benchmark, there may be a significant
variation in the number of synchronization points. For exam-
ple, the MxM benchmark contains only three synchroniza-
tion points, as the core compute algorithm is contained in
a small portion of code. In contrast, the SHA benchmark,

which does not benefit as much from COAST protection,
contains 98 synchronization points. These synchronization
points, by nature, contain single-points of failure, as triplicated
values are aggregated and voted in. With more synchronization
in the code, it is not surprising that the TMR protection does
not provide as much benefit.

Some of our ongoing work is looking at the current rules
COAST uses for insertion of synchronization points, and
investigating whether they can be reduced to help alleviate
the presence of single points of failure.

Another difference is the nature of the computation and data
access patterns between the benchmarks. The SHA benchmark
is a hashing algorithm, which sweeps through the input data
in a streaming fashion. In contrast, in MxM, each element in
the input matrices is accessed multiple times throughout the
multiplication process. This may make MxM more sensitive
to upsets in the input data memory, compared with say, upsets
in the processor pipeline. The results, as discussed in the next
sections, suggest that COAST is more effective at correcting
upsets in the memory than other locations.

Our future testing will explore a greater variety of bench-
marks, whether properties of the benchmark can be studied to
predict the effectiveness of the fault mitigation, and possibly
what code styles or structures should be employed to construct
new programs with the best protection properties.

B. Variation Between Platforms

There are also noticeable differences in the matrix multiply
benchmark results running on the RISC-V versus PYNQ
platforms. It is the same benchmark, though the matrix sizes
differ. There are significant platform differences that might
come into play when influencing fault coverage. The primary
contributor is likely the fact that on the RISC-V platform,
the main memory is located on-chip and is susceptible to
radiation upset, whereas the PYNQ and Ultra96 platforms have
an external DRAM located outside of the beam radius.

Authorized licensed use limited to: Brigham Young University. Downloaded on April 12,2021 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

JAMES et al.: APPLYING COMPILER-AUTOMATED SOFTWARE FAULT TOLERANCE TO MULTIPLE PROCESSOR PLATFORMS 327

In addition, other factors likely contribute to this difference;
for example, the RISC-V processor has more general-purpose
registers than the A9 and may have a significantly simpler
processor pipeline.

Finally, we were not able to upset the A53 processor beyond
a few single events, despite a week of testing. This validates
the previous testing that we have performed that suggests this
platform is very resistant to single-event effects. This is likely
because the L1 data cache has ECC protection, as does the
L2 cache. The TLB even has SED protection via parity bits.

C. Variation Between Cache Configuration

On the PYNQ platform, we tested configurations with the
caches enabled and disabled. Since the main memory for the
PYNQ is located in the off-chip DRAM, we expect that when
the caches are disabled, most upsets will be located within
the processor pipeline itself (register file, functional units, and
so on).

The results show that when caches are disabled, COAST
still provides significant cross-section reduction, which
demonstrates that COAST can help protect against upsets in
the processor core. However, the benefit (4.3× versus 31.7×)
is not nearly as large as when upsets are frequently occurring
in the memory. When accounting for runtime, the MWTF is
only 1.2×.

The results suggest that COAST is not as effective at
correcting faults that occur in the processor pipeline. This is
likely for two reasons: first, the synchronization voter code,
which contains most of the single points of failure, often
access recent values that would be located in the register file.
Second, when processor core elements are affected, the result
can go far beyond simple data corruption: the program counter,
stack pointer, TLB, or other special-purpose elements can be
affected that cannot be corrected by the simple data-replication
provided by COAST.

VI. CONCLUSION

This article has demonstrated how our COAST tool, which
provides automated fault-tolerant protection to user programs,
can be effectively deployed on a wide range of processing plat-
forms. The produced software executables are more tolerant of
single-event upsets, making COTS platforms more attractive
for processing in high radiation environments. The results from
the neutron beam test show that COAST provides a significant
increase to MWTF across a wide range of platforms and
configurations.

REFERENCES

[1] H. Quinn, Z. Baker, T. Fairbanks, J. L. Tripp, and G. Duran, “Soft-
ware resilience and the effectiveness of software mitigation in micro-
controllers,” IEEE Trans. Nucl. Sci., vol. 62, no. 6, pp. 2532–2538,
Dec. 2015.

[2] H. Quinn, Z. Baker, T. Fairbanks, J. L. Tripp, and G. Duran, “Robust
duplication with comparison methods in microcontrollers,” IEEE Trans.
Nucl. Sci., vol. 64, no. 1, pp. 338–345, Jan. 2017.

[3] E. Chielle et al., “Reliability on ARM processors against soft errors
through SIHFT techniques,” IEEE Trans. Nucl. Sci., vol. 63, no. 4,
pp. 2208–2216, Aug. 2016.

[4] D. S. Khudia, G. Wright, S. Mahlke, D. S. Khudia, G. Wright, and
S. Mahlke, “Efficient soft error protection for commodity embedded
microprocessors using profile information,” ACM SIGPLAN Notices,
vol. 47, no. 5, pp. 99–108, 2012.

[5] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Error detection by
duplicated instructions in super-scalar processors,” IEEE Trans. Rel.,
vol. 51, no. 1, pp. 63–75, Mar. 2002.

[6] E. Chielle, R. S. Barth, A. C. Lapolli, and F. L. Kastensmidt, “Con-
figurable tool to protect processors against SEE by software-based
detection techniques,” in Proc. 13th Latin Amer. Test Workshop (LATW),
Apr. 2012, pp. 1–6, doi: 10.1109/LATW.2012.6261259.

[7] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August,
“SWIFT: Software implemented fault tolerance,” in Proc. Int. Symp.
Code Gener. Optim. (CGO), Mar. 2005, pp. 243–254.

[8] M. Didehban and A. Shrivastava, “nZDC: A compiler technique for near
zero silent data corruption,” in Proc. 53nd ACM/EDAC/IEEE Design
Automat. Conf. (DAC). New York, NY, USA: ACM, Jun. 2016, pp. 1–6,
doi: 10.1145/2897937.2898054.

[9] J. Chang, G. A. Reis, and D. I. August, “Automatic instruction-level
software-only recovery,” in Proc. Int. Conf. Dependable Syst. Netw.
(DSN), Jun. 2006, pp. 83–92.

[10] M. Bohman, B. James, M. J. Wirthlin, H. Quinn, and J. Goeders, “Micro-
controller compiler-assisted software fault tolerance,” IEEE Trans. Nucl.
Sci., vol. 66, no. 1, pp. 223–232, Jan. 2019.

[11] E. Chielle, F. L. Kastensmidt, and S. Cuenca-Asensi, “Overhead
reduction in data-flow software-based fault tolerance techniques,” in
FPGAs and Parallel Architectures for Aerospace Applications: Soft
Errors and Fault-Tolerant Design. Cham, Switzerland: Springer, 2015,
pp. 279–291.

[12] E. Chielle et al., “S-SETA: Selective software-only error-detection
technique using assertions,” IEEE Trans. Nucl. Sci., vol. 62, no. 6,
pp. 3088–3095, Dec. 2015.

[13] E. Chielle et al., “Reliability on ARM processors against soft errors by
a purely software approach,” in Proc. 15th Eur. Conf. Radiat. Effects
Compon. Syst. (RADECS), Sep. 2015, pp. 443–447.

[14] R. Vemu, S. Gurumurthy, and J. A. Abraham, “ACCE: Automatic cor-
rection of control-flow errors,” in Proc. IEEE Int. Test Conf., Oct. 2007,
pp. 1–10, doi: 10.1109/TEST.2007.4437639.

[15] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Control-flow checking by
software signatures,” IEEE Trans. Rel., vol. 51, no. 1, pp. 111–122,
Mar. 2002.

[16] A. Shrivastava, A. Rhisheekesan, R. Jeyapaul, and C.-J. Wu, “Quanti-
tative analysis of control flow checking mechanisms for soft errors,” in
Proc. 51st ACM/EDAC/IEEE Design Autom. Conf. (DAC), Jun. 2014,
pp. 1–6, doi: 10.1145/2593069.2593195.

[17] C. Fetzer, U. Schiffel, and M. Süßkraut, “An-encoding compiler: Build-
ing safety-critical systems with commodity hardware,” in Proc. 28th
Int. Conf. Comput. Saf., Rel., Secur. (SAFECOMP), Hamburg, Germany,
B. Buth, G. Rabe, and T. Seyfarth, Eds. Berlin, Germany: Springer,
Sep. 2009, pp. 283–296.

[18] C. Wang, H.-S. Kim, Y. Wu, and V. Ying, “Compiler-managed
software-based redundant multi-threading for transient fault detec-
tion,” in Proc. Int. Symp. Code Gen. Optim. (CGO), Mar. 2007,
pp. 244–256.

[19] S. K. Reinhardt and S. S. Mukherjee, “Transient fault detection via
simultaneous multithreading,” ACM SIGARCH Comput. Archit. News,
vol. 28, no. 2, pp. 25–36, 2000.

[20] N. Nakka, K. Pattabiraman, and R. Iyer, “Processor-level selective
replication,” in Proc. 37th Annu. IEEE/IFIP Int. Conf. Dependable Syst.
Netw. (DSN), Jun. 2007, pp. 544–553.

[21] G. A. Reis, J. Chang, N. Vachharajani, S. S. Mukherjee, R. Rangan,
and D. I. August, “Design and evaluation of hybrid fault-detection
systems,” in Proc. 32nd Int. Symp. Comput. Archit., Jun. 2005,
pp. 148–159.

[22] C. Lattner and V. Adve, “LLVM: A compilation framework
for lifelong program analysis & transformation,” in Proc. Int.
Symp. Code Gen. Optim., Feedback-Directed Runtime Optim., 2004,
pp. 75–86.

Authorized licensed use limited to: Brigham Young University. Downloaded on April 12,2021 at 15:05:26 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/LATW.2012.6261259
http://dx.doi.org/10.1145/2897937.2898054
http://dx.doi.org/10.1109/TEST.2007.4437639
http://dx.doi.org/10.1145/2593069.2593195

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

