
Reflex Barrier: A Scalable Network-Based
Synchronization Barrier
Ahmad Anbar, Olivier Serres and Tarek El-Ghazawi

NSF Center for High-Performance Reconfigurable Computing (CHREC),
Department of Electrical and Computer Engineering,

The George Washington University
{anbar, serres, tarek}@gwu.edu

Abstract—
High-performance computing is witnessing the proliferation

of multi-core processors in parallel architectures, and the trend
is expected to increase further with the emerging many-core
technology, leading to hundreds of processing cores within
each compute node in the near future. Along side with this
trend, it is also clear that total number of cores within the
whole system is increasing. To be able to harvest the fruits
of this massive parallelism, inter-process synchronization and
communication should be as lightweight as they can be, and
should be relying on as limited involvement as possible of the
participating processors/cores. The synchronization algorithms
that target shared memory processors are expected not to be
able to scale on many-cores as they rely on atomics, locks,
and/or cache coherence protocols, which all should be very
costly operations on many-cores. In the same time, some many-
core architectures provide user space networks on chip (NoCs)
that operate similar to regular networks. In this paper, we are
introducing the Reflex barrier, a new synchronization barrier
algorithm that relies on fundamental networking concepts. As the
barrier relies on the characteristics of the network, it requires
very little intervention from the participating processors/cores.
The algorithm can also be implemented as split phase, which
furnish an opportunity to reduce the synchronization cost. We
implemented the algorithm using Unified Parallel C (UPC), MPI
and pThreads. We tested our implementation on TILE64, a 64-
core processor. The performance of the Reflex barrier is also
analyzed and compared to other algorithms using performance
models.

Index Terms—Reflex barrier, Synchronization barrier, Many-
cores, Distributed memory barrier, Many-core clusters

I. INTRODUCTION

The trend of exploiting faster clock speeds and instruction-
level parallelism in microprocessors has subsided due to un-
sustainable thermal and power overheads. And since Moore’s
law is still holding, that is the number of transistor on a
integrated circuit doubles every two years [1], the current
trend is adding more processing cores on the same chip to
utilize the added transistors. While adding more cores to the
chip allows for achieving higher degrees of parallelism, it
also brings the universal overheads of parallel programs such
as communication and synchronization. Although these cores
usually share the main memory and may be one or more
levels of the cache hierarchy, as the number of cores gets
bigger, we would expect that relying on shared memory to do
synchronization and communication will not be scaling.

The main problem that will face the shared memory syn-
chronization barriers algorithms that most of them rely on
the cache coherence protocols to achieve high performance.
That is making threads spin on a shared variable in their
local caches. When other threads update that shared variable,
the cache coherence protocol will propagate the new value to
the spinning thread. Without this cache coherence, the shared
memory synchronization barrier algorithms will not be able
to scale. The biggest challenge for the many-core architecture
now is how to implement a scalable cache coherence. Appar-
ently, there is no ideal solution for this problem even using
the state of the art technologies. Processors manufacturers
dealt with this problem in one of two ways, giving up cache
coherence as in Intel’s Single-chip Cloud Computer SCC
[2] or they relied on some techniques like homing memory
pages to cores, such as in Tilera’s TILE64 architectures
[3]. Unfortunately, these techniques will not help scaling the
synchronization algorithms as will be explained in detail later.
Another major problem with the current synchronization and
collective communication operations algorithms is that they
require heavy involvement of the participating processors, i.e.
rely on recursive doubling or tree based algorithms to com-
municate data or propagate synchronization signals between
participating processors. This sets a strong limitation on their
performance and thus their scalability.

One architectural characteristic that is expected to be sup-
ported in many-core architectures is the presence of the user-
space messaging networks. These networks-on-chip (NoCs)
allow the user-space messaging between the cores without
the need to do an operating system call. These NoCs will
allow the communication between cores without relying on
shared memory and without the need to rely on a messaging
mechanism built on top of shared memory. These NoCs are
very attractive as they are usually using the concepts from
the traditional interconnects. It is already proven in [4] that
relying on messaging rather than relying on shared memory
in on-chip communication is the way to exploit the powers of
many core architectures.

In this paper we are introducing the Reflex barrier algo-
rithm. The Reflex barrier is a synchronization barrier that
does not rely on shared memory. Instead, it relies on some
common properties of the interconnection network. These
network properties, which are required to be able to implement

2011 IEEE 17th International Conference on Parallel and Distributed Systems

1521-9097/11 $26.00 © 2011 IEEE

DOI 10.1109/ICPADS.2011.106

204

the Reflex barrier, can be commonly found in many of the
available interconnects such as InfiniBand [5], and it is also
available on some of the NoCs. We believe that a user-space
network with these properties will be available in a lot of
many-core architectures, if not all of them.

We implemented this algorithm on the TILE64 processor,
and evaluated and compared its performance to other synchro-
nization barrier algorithms. We also extended our evaluation
and comparisons to a larger number of cores using perfor-
mance models. To do the performance models evaluations, we
used the LogGP model after adding an extra parameter to
account for the per hop latency.

The rest of this paper is organized as follows. Section II
discusses the related work on barrier implementations. Sec-
tion III introduces the Reflex barrier algorithm and discusses
the set of interconnection network characteristics required to
implement the Reflex barrier. The implementation details and
its results are discussed in section IV. Section V discusses the
results and the performance model evaluation of the algorithm.
Finally, Section VI concludes the paper and show the possible
future directions.

II. RELATED WORK

A lot of algorithms and techniques have been proposed for
parallel tasks synchronization. Most of these are targeted to
shared memory architectures. In [6], Tang and Yew presented
a centralized barrier. It relies on a central shared variable seen
by all the contributing thread to the barrier. The variable is
initialized by the count of the contributing processors. Each
thread that arrives at the barrier, acquire a lock, decrements
the shared variable, releases the lock and spins on another
shared variable to be modified. When the last thread arrives,
after it decrements the shared variable, it finds out that the
value is zero and then modifies the other variable that the rest
of the threads are spinning on, waiting for its modification.
The centralized barrier main problem is the presence of a
critical section in the barrier logic that will considerably limit
its scalability. Also, the algorithm relies on the shared state of
the cache coherence protocols to achieve good performance,
as without it, multiple threads spinning on the same variable
will dramatically affect the performance.

Another widely used barrier is the dissemination bar-
rier, which was introduced by Hensgen, Finkel and Manber
in [7]. Dissemination barrier takes dlog2 P e of signaling
rounds to complete. In round k, processor i signals processor(
i+ 2k

)
modP . As stated, the dissemination barrier algo-

rithm is widely used because it is considered to be one of the
most scalable algorithms as shown in [8]. Another advantage
of the dissemination barrier is that the signaling between the
processors can be implemented using any kind of messaging,
so it can be implemented without using shared memory.

A distributed memory synchronization mechanisms called
rendezvous and multirendezvous was proposed by Gupta and
Panda in [9]. The mechanisms was also trying to overload
the wormhole-based flow control interconnection networks
to provide synchronization primitives similar to the Reflex

barrier. It also reduces the number of needed synchronization
steps. As one multirendezvous can be used to make each thread
participating in it aware of the arrival of other participating
threads. The main idea of the rendezvous mechanism, is to
flood the network between the sender and receiver with a
number of flits that cannot be hold in the intermediate buffers
along the path between the sender and the receiver. The
problem with this technique rises when the distance between
the participating nodes is very large. It would take a long time
for the sender to fill all the intermediate buffers and it will also
take a long time for the receiver to consuming all the flits to
make the network ready for the next barrier. And although not
clearly stated, the multirendezvous technique relies on special
hardware support, that allows the intermediate nodes to control
the forwarding of the message to the ones after.

A main drawback in the above algorithms is the inability to
implement them as split-phase barriers. A split-phase barrier
is a synchronization barrier with separate notification and
waiting phases. This allows the participating threads to notify
the other threads that they reached a certain synchronization
point, then they can still progress by doing more useful
computations. Later, they can wait for other threads until they
reach the synchronization point. As described in [4] the split-
phase synchronizations and communication is key to achieve
high performance by allowing overlapping communication and
computation. This becomes more important when following
a programing paradigm that supports one-sided communica-
tions such as the Partitioned Global Address Space (PGAS)
programming model [10] or other shared memory model. It is
also useful to note that a full barrier can easily be implemented
by the split phase constructs, by calling the notify construct
followed by the wait construct on all threads.

Hoare and Dietz introduced the Aggregate Function Net-
works (AFNs) in [11]. The AFNs aim at offloading the
synchronization and collective communication operations from
the participating processors to the networking hardware.
Thereby, they require a specialized networking components,
i.e. special networking interfaces and switches, to be able
to implement these operations. Although the Reflex barrier
also relies on the networking properties, these properties
can be found in many intra- and inter-node interconnection
architectures.

III. REFLEX BARRIER

A. Algorithm Description

The name of the Reflex barrier is attributed to its analogy
to the spinal reflex arc [12]. This characteristic allows reflex
actions to occur relatively quickly by activating spinal motor
neurons without the delay of routing signals through the brain.
The main purpose of the reflex arc is to provide a means for
immediate withdrawal from dangerous stimuli, like touching a
very hot surface. In this case, the spinal cord process the signal
and take forward an action to the muscles to retract without
waiting for the brain to analyse the situation and take an action.
Similarly, the Reflex barrier is relying on the interconnect -

205

(a) (b) (c) (d) (e)

Fig. 1: Reflex barrier notify phase (a) Initial Setup (b) After root arrival and notify signal is out (c) After another processor
arrival (d) After a processor arrival and the notify signal forwarded (e) Notify signal reaches the root after all processors pass
the notify step

(a) (b) (c) (d) (e)

Fig. 2: Reflex barrier wait phase (a) The root reaches the wait phase and sends the wake up signal (b) Another processor
reaches the wait phase (c) The propagation of the wake up signal (d) All processors arrived at the wait phase (e) The root
reset the switches back to off state

Fig. 3: TILE64 architecture diagram [3]

the spinal cord - to forward the actions without relying much
on the involvement of the participating processors - the brain.

To introduce the Reflex barrier, we will start by describing
an abstraction of the barrier steps. Then we will point out
the necessary networking characteristics that are needed to
implement this barrier. Then the algorithm will be presented
in terms of these characteristics. The Reflex barrier can be
implemented as a split phase barrier with two phases: a
notification phase and a wait phase.

Figure 1 (a) shows the initial status of the participating pro-
cessors. The circles represents the participating processors and
the squares represent the switches. Every switch is associated
with one of the processors. Every processor has one inbound
port and one outbound port connecting it to the associated

switch. Also, every switch has several inbound ports and
several outbound ports. One inbound port and one outbound
port of a switch are connected to the associated processor.
The other inbound and outbound ports are used to connect the
switch to its surrounding switches. A switch can only forward
messages, i.e. it cannot consume or originate network traffic. A
switch can forward messages from its associated processor or
from any of its surrounding switches. A switch can forward the
same incoming message to multiple output ports. To be able
to implement the Reflex barrier, the switches are connected to
each other to form a ring. The ring is broken at one of the
switches and one of the processors is connected in series to
the ring. This processors is designated as the barrier root, in
the figures it is the top left processor. The root’s behavior
in the notify and wait phases is different than the rest of
the processors. Also the way it is connected to the ring is
different. The other processors are just connected to the ring
by a link from their switches. Except for the root switch, all
other switches initially are inactive, and not passing signals to
the rest of the ring or the attached processor. When a signal
reaches an inactive switch it is blocked at the switch till it
becomes active and forwards it.

• The Notify Phase: Figure 1 shows different steps along
the progress of the notify phase. Assuming a weak
consistency model, the first step in the notify phase on
all the processors should be issuing a memory fence
instruction. This is to make sure that all the memory

206

(a) (b) (c) (d) (e)

Fig. 4: Reflex barrier notify phase (a) Initial Setup (b) After Init step done by root (c) After root arrival and sending the notify
signal (d) After another processor arrival (e) After a processor arrival and the notify signal forwarded

(a) (b) (c) (d) (e)

Fig. 5: Reflex barrier wait phase (a) The root reaches the wait phase and sends the wake up signal (b) Another processor
reaches the wait phase (c) The propagation of the wake up signal (d) All processors arrived at the wait phase (e) The root
reset the switches back to off state

references before the notify phase are completed. As
mentioned before, the root behavior in the notify and
the wait phases is different than other processors. When
reaching the notify point, the root issue a memory fence
instruction, and then it sends a signal on the ring as shown
in figure 1 (b). The yellow color depicts that a processor
arrived at the notification phase, and the yellow triangle
depicts the notification signal. Since the other processors
did not arrive at the barrier yet, the notification signal is
blocked. By this the root has completed its notify logic.
For the other participating processors, the notify phase
begins by issuing the memory fence instruction as well.
Then each processor will activate its switch allowing it
to forward incoming signals as it appears in figure 1 (c)
to (e). This completes the notify phase on the rest of the
processors. After completing its notify phase, a processor
is able to continue computing until it needs to synchronize
with other processors, at which time it starts the wait
phase. It is clear that adding one extra processor will
only cost one extra network hop latency. It is expected,
on a many-core chip, that this latency will be in the terms
of nanoseconds. So, adding a thousand cores will only
increase the latency of a few microseconds.

• The Wait Phase: Figure 2 illustrates the wait phase of the
reflex barrier. The wait phase at the root again is different
than at the other processors. When the root reaches the
wait phase, it waits for the signal it sent in the notify

phase to come back to it at the other end of the ring. When
it receives it, it becomes aware that all the processors
on the ring has reached their notify phase, as the signal
would not be propagated to the other end unless all the
switches are activated by their attached processors. At
that time it sends another release signal on the ring as
in figure 2a. The other processors when they reach the
wait phase they just wait for the release signal sent by
the root as in figures 2 (b) to (d). The root then deactivate
the switches to prepare for the next barrier episode as in
figure 2e.

It is also notable that a full barrier is equivalent to calling the
notify logic directly followed by the wait logic on all threads.

B. Required Network Characteristics

The barrier logic presented so far can make use of reg-
ular network characteristics to be able to perform the tasks
described above. These characteristics can be found in many
interconnects, so there is no need to have special hardware
support. These features are commonly found in many on-
chip networks as well as inter-node networks. From the above
discussion, we can list three needed features to be able to
setup the required infrastructure for the Reflex barrier. The first
feature is to be able to control the routing on the network. The
second is to have a multicast support on the switches. The third
needed feature is to have a mechanism that allow the switches
to block or forward incoming traffic. These characteristics are
described in more details in [13].

207

Algorithm 1 Reflex Barrier

Init:
// Init has to be executed one and only one time by the root
if root then

SEND msg[buffer size]
end if

End Init

Notify:
Memory Fence
if root then

SEND msg[1]
else // other threads

RECV msg[buffer size]
end if

End Notify

Wait:
if root then

RECV msg[buffer size + 1]
SEND msg[buffer size + 1]
RECV msg[1]

else // other threads
RECV msg[1]

end if
End Wait

The first required feature, that is controlling the routing, is
needed to be able to setup the ring shaped topology that all the
processor are attached to it. This feature is actually present in
an on-chip network like the static network on the Tile based
architectures, which will be described in more details later.
It is also present in a inter-node network like InfiniBand. In
InfiniBand, the routing is dependant on the forwarding tables
at each switch. These routing table can be modified by the
subnet manager to achieve the desired setup. This feature is
used to setup the ring like topology described earlier.

The second feature is the ability to multicast. This feature
is needed as when a signal arrives at a switch, it needs to be
forwarded to the attached processor and to the next processor
on the ring. Again this feature is present on many-core on chip
network like the Tile static network, and an inter-node level
interconnect as InfiniBand. This feature allows that switches
to be setup to forward incoming message along the ring and
to their associated cores at the same time.

The last important feature needed is the ability to block
network traffic on a switch until the associated core arrives at
the notify phase. The key to achieve this feature is to have
a wormhole or virtual cut-through flow control mechanisms
with a credit based buffer management. The wormhole and
virtual cut-through are buffered, flit based flow control mech-
anisms, which are different than bufferless and packet based
mechanisms. The buffers at the switches handle messages
in units of flits. The credit based buffer management is a

concept related to flit based mechanisms. It is the backpressure
mechanism that informs the sender or an intermediate node
along the message route that the next switch buffers are full
and thus it cannot forward more flits. The basic idea that each
output port at a switch starts with a credit that is equal to
the buffer capacity. When a switch sends or forwards a flit
to this given port, it decrements its credit by one. When this
credit reaches zero, a switch blocks all incoming traffic for
that output port as it knows that there is no available buffer
space at the next switch. In case of multicast, i.e. the incoming
traffic message should be forwarded to more than one output
port, the forwarding stops on all ports if one of the output ports
credit reaches zero. When the buffer space becomes available
on the next switch, which happens when it forwards some
of the flits in its buffer, it sends credit back to the previous
switch to inform it that it may forward more flits. We used
this behavior to implement how switches are turned on and
off. So to turn off a switch, we fill the output buffer of the
associated core. Thus all the incoming network traffic will be
blocked because of the zero credit of the output buffer at the
associated core. Intuitively, to turn on a switch, a core just has
to read the flits in its buffer. This will allow later traffic to be
propagated along the ring.

IV. IMPLEMENTATION

As we were mainly targeting many core architectures with
this barrier implementation, we used a TILE64 - a 64-core
processor - as a testbed.

A. TILE64

A TILE64 board comes with 4 GB of memory. The TILE64
processor features 64 identical 32-bits processor cores (tiles)
interconnected with Tileras iMesh on-chip network [14]. Each
tile consists of a complete, full-featured 3-way VLIW proces-
sor running at 700MHz as well as a 8KB of L1 data cache,
8 KB of L1 instruction cache, a 64 KB private L2 cache and
a non-blocking switch that connect the tiles into the mesh.
Four on chip memory controllers connect the tiles to on-board
DDR2 memories. Figure 3 shows the architecture diagram of
the TILE64 processor.

The iMesh consists of five separate networks [14], two of
which are hardware controlled that are used to handle memory
and cache requests. The three remaining networks are under
the control of the user. After studying the features offered by
each network we found that the static network (STN) is the
one that meets our requirements. STN is meant to be used
for scalar messaging between tiles. But since it is based on
the general networking concepts described above, we were
able to use it to implement the Reflex barrier. STN routes
are configured by the user. A tile switch can be configured
to forward or multicast incoming traffic to its processing core
and/or any of its surrounding switches. The cost of one hop on
STN is one cycle, that is 1-2 nanoseconds. This means adding
an extra processor to the processors contributing to a Reflex
barrier, which corresponds to an additional hop on STN, will

208

just cost additional 1-2 nanoseconds. The routing is fixed as
long as it is not reconfigured by the user.

The user dynamic network (UDN) is also a user space
messaging network. The main differences between UDN and
STN is that UDN is not a scalar network and the routing in
UDN is not controlled by the user.

B. Algorithm

Algorithm 1 describes the steps of a Reflex barrier. Also
figures 4 and 5 illustrate the barrier at different stages. The
small rectangles represent the buffers at the switches or at the
cores. The first step that needs to be done is the Init step. In
this step the root sends a message with length that is equal to
the input buffer of the cores, to block later networking traffic,
i.e. turn off the switches. This is illustrated in figure 4 (a) and
(b). The Init step must be done by the root before any barrier
calls can proceed. If another thread arrives at the barrier before
the root completes the Init step, it will just block there until it
is completed. So this does not affect the functionality of the
algorithm.

The Notify phase is illustrated in figure 4 (c) to (d). As
shown in Algorithm 1, the first step is to issue a memory
fence to ensure that all the past memory references are
completed. Afterwards, the root should send a single flit
message through the network. All the other threads should only
empty their buffers. Doing this, they allow the message sent by
the root to propagate through the network. After completing
their notify steps, participating threads can proceed with their
computation. This allows for overlapping computation and
communication.

When the threads need to make sure that other threads
arrived at the notify step, they should start the wait logic.
The wait logic is illustrated in figure 5 (a) to (e). The wait
logic on the root is to make sure of the arrival of the signal it
sent on the notify step. To be able to do that it needs to read
in a message of length equals to the incoming buffer + 1. That
is, it should read the same message used to block the other
switches, and an extra flit sent in the notify phase. When it
receive that extra flit, the root knows that the rest of the threads
have already arrived at the notify step. Accordingly, it sends
another release message. It also prepares the network for the
next barrier episode by sending a message with size equals to
the size of the receive buffers at the other cores. To avoid input
buffer overflow at the root, it should also receive the release
message. The other threads only need to receive the release
message in the wait step and they can proceed past the barrier
after they do.

V. RESULTS AND DISCUSSION

As described in the previous section, the Reflex barrier was
implemented on the TILE64 platform. To be sure that the
programming model does not have any effect on the barrier
performance, we implemented the barrier using pthreads, UPC
and MPI. UPC is an explicit parallel extension of the C
language supporting the PGAS programming paradigm [15],
[16]. These three libraries/languages was chosen to represent

shared memory, PGAS, and message passing programming
models respectively. The three implementations gave identical
results. To compare the performance of the reflex barrier, we
implemented the Centralized barrier and the Dissemination
barrier. The high level description of these algorithms was
given in section II. We also compared the performance to
the two barriers implementations available from Tilera, the
Tile Sync Barrier and the Tile Spin Barrier. In the Tile Sync
Barrier, the threads sleeps if they arrive at the barrier and
other threads are still on their way. Later, the sleeping threads
wake up and check for other threads arrival. As expected, the
performance of this barrier is very poor. Alternatively , the Tile
Spin Barrier does not make the threads that arrive at the barrier
sleep. Instead they busy wait until all other threads arrive.
Although the performance of this barrier is much better than
the Tile Sync Barrier, it consumes a lot of memory bandwidth.
If the application that utilizes this barrier is performing a lot of
memory operations just before the barrier call, the performance
is expected to degrade even more.

The first experiment we conducted is having a loop that
calls the barrier on each thread. We measured the total time
to complete the loop and divide the time by the number of
iterations to get the time consumed by one barrier episode. We
conducted this experiment for the different barrier implemen-
tations. Figure 6 shows the obtained results. It is clear from the
results of the poor performance of the Tile Sync Barrier, the
centralized barrier, and the dissemination barrier. The results is
also shown for the Tile Spin Barrier, the Reflex barrier, and the
UDN/STN barrier. The UDN/STN barrier is simple barrier in
which all threads send a message on User Dynamic Network
(UDN) to the root when they arrive at the barrier. When the
root receive messages from all threads, it sends a release
broadcast signal through STN. We implemented this barrier
when we were trying to get a feeling of the scalability of the
network-based barriers. The results shows that the network
based barriers were performing much better than the other
barrier algorithms based on shared memory. To better show the
scalability of the network-based barriers, especially the Reflex
barrier, we are showing figure 6 (b) which is a 10x zoomed
version of figure 6 (a). From this, we can conclude that to
achieve better barrier scalability, we should not rely on shared
memory. The results shows the perfect scalability of the Reflex
barrier, and really good scalability of the UDN/STN barrier as
compared to other shared memory based algorithms.

To achieve more performance and consume less power,
we argue that many-core architecture should have dedicated
synchronization networks. These dedicated networks could be
only 1-bit wide, and they should have the smallest possible
buffer size.

According to [17], in practice the threads never arrive at
the barrier at the same time. In the above experiment, the
threads almost hit the barrier at the time. Figure 7 (a) illustrates
the situation in which it is mostly likely that the threads will
be released almost at the same time if they arrived at the
same time. We are also expecting that the difference between
the threads arrival and threads release is minimal, i.e. the

209

(a) (b)

Fig. 6: Barriers performance on the TILE64 (a) all algorithms (b) zoomed

(a)

(b)

Fig. 7: Threads arrival patterns (a) together (b) jittered

difference between the vertical dotted lines is small. To get
more practical feeling of the barrier performance, we designed
another experiment in which we forced a jitter in the arrival
of one of the threads as in figure 7 (b). We are expecting that
the will be bigger difference between the last thread arrival
and the last thread release from the barrier. The results for
comparing the performance of the Reflex barrier versus the
Tile Spin Barrier in the second experiment is given in figure
8. We can see that both algorithms were performing well till
16 cores. After that the Tile Spin Barrier scalability dropped

Fig. 8: Effect of jittered arrival on barriers performance

Fig. 9: Modeled and actual performance of reflex barrier on
TILE64

severely while the Reflex barrier continued to scale.
We were also interested to study the scalability of the barrier

on inter-node level using a high-speed interconnection network
like InfiniBand [5]. We used the LogGP [18] performance
model to estimate the behavior on InfiniBand. We first verified
the accuracy of the model on our on-chip implementation

210

Fig. 10: Modeled performance of reflex barrier on IB

of the barrier. The verification results are given in figure 9.
From the curves we can see that the model gives a good
approximation of the real performance. We used the values
given by [19] for the model parameters when estimating the
InfiniBand performance. The estimated performance of the
barrier on InfiniBand network is given in figure 10. We can
see that the barrier is scaling linearly on InfiniBand. The slope
of the line is very small, so we are expecting that although
the barrier time grows linearly the algorithm will be scaling
for large number of nodes.

VI. CONCLUSIONS AND FUTURE WORK

The transition to multi- and many-core processors unleashed
new ways of reaching performance gains. It also added a big
burden on the programmers to be able to exploit these gains.
Treating the many-core processors as regular SMPs will just
be wasting a lot of the chips capabilities. Thus on many-core
chips programmers need new scalable techniques to implement
the same mechanisms that exist on SMPs. One of these
mechanisms is barrier synchronization. In this paper, we intro-
duced a novel approach to implement synchronization barrier
for many-core chips. The approach is named Reflex barrier.
Reflex barrier relies on existing networking characteristics to
be able to achieve synchronization between parallel threads.
We implemented the Reflex barrier on TILE64 - a 64-core
processor. The results showed that relying on regular shared
memory synchronization mechanisms will not be scalable
on many-core systems. The Reflex barrier outperformed all
the other barriers algorithms, even the ones available in the
TILE64 native libraries.

For future directions we are evaluating the extension of the
Reflex concept to other collective communication operations,
such as the broadcast, reductions, scatter, We are also
interested in evaluation of the Reflex barrier on inter-node
network such as InfiniBand.

ACKNOWLEDGMENT

This work was supported in part by the I/UCRC Program
of the National Science Foundation under Grant No. IIP-
0706352.

REFERENCES

[1] G. E. Moore, “Readings in computer architecture,” M. D. Hill,
N. P. Jouppi, and G. S. Sohi, Eds. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2000, ch. Cramming more
components onto integrated circuits, pp. 56–59. [Online]. Available:
http://portal.acm.org/citation.cfm?id=333067.333074

[2] R. F. van der Wijngaart, T. G. Mattson, and W. Haas, “Light-weight
communications on intel’s single-chip cloud computer processor,”
SIGOPS Oper. Syst. Rev., vol. 45, pp. 73–83, February 2011. [Online].
Available: http://doi.acm.org/10.1145/1945023.1945033

[3] Tilera Corporation, “www.tilera.com.”
[4] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,

T. Roscoe, A. Schüpbach, and A. Singhania, “The multikernel: A new os
architecture for scalable multicore systems,” in SOSP ’09: Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles.
New York, NY, USA: ACM, 2009, pp. 29–44.

[5] InfiniBand Trade Association, “www.infinibandta.org.”
[6] P. Tang and P.-C. Yew, “Processor self-scheduling for multiple-nested

parallel loops.” in ICPP’86, 1986, pp. 528–535.
[7] D. Hensgen, R. Finkel, and U. Manber, “Two algorithms

for barrier synchronization,” Int. J. Parallel Program.,
vol. 17, pp. 1–17, February 1988. [Online]. Available:
http://portal.acm.org/citation.cfm?id=54616.54617

[8] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for scalable
synchronization on shared-memory multiprocessors,” ACM Trans.
Comput. Syst., vol. 9, pp. 21–65, February 1991. [Online]. Available:
http://doi.acm.org/10.1145/103727.103729

[9] S. Gupta and D. Panda, “Barrier synchronization in distributed-memory
multiprocessors using rendezvous primitives,” in Parallel Processing
Symposium, 1993., Proceedings of Seventh International, apr 1993, pp.
501 –505.

[10] Partitioned Global Address Space, “www.pgas.org.”
[11] R. Hoare, , R. R. Hoare, and H. G. Dietz, “A case for aggregate

networks,” in Proc. Eighth IEEE Symp. on Parallel and Distributed
Processing, 1996, pp. 306–313.

[12] Wikipedia, “Reflex arc — Wikipedia, the free encyclopedia,”
2011, [Online; accessed 10-June-2011]. [Online]. Available:
http://en.wikipedia.org/wiki/Reflex arc

[13] W. Dally and B. Towles, Principles and Practices of Interconnection
Networks. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2003.

[14] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C.-C. Miao, J. Brown, and A. Agarwal, “On-chip intercon-
nection architecture of the tile processor,” Micro, IEEE, vol. 27, no. 5,
pp. 15 –31, sept.-oct. 2007.

[15] T. El-Ghazawi, W. Carlson, T. Sterling, and K. Yelick, UPC: Distributed
Shared Memory Programming, May 2005.

[16] O. Serres, A. Anbar, S. G. Merchant, A. Kayi, and T. El-Ghazawi, “Ad-
dress translation optimization for Unified Parallel C multi-dimensional
arrays,” in 16th International Workshop on High-Level Parallel Pro-
gramming Models and Supportive Environments (HIPS) in IEEE IPDPS
Workshops (IPDPSW). IEEE, 2011.

[17] A. Faraj, P. Patarasuk, and X. Yuan, “A study of process arrival
patterns for mpi collective operations,” in Proceedings of the 21st
annual international conference on Supercomputing, ser. ICS ’07.
New York, NY, USA: ACM, 2007, pp. 168–179. [Online]. Available:
http://doi.acm.org/10.1145/1274971.1274996

[18] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman, “Loggp:
Incorporating long messages into the logp model - one step closer
towards a realistic model for parallel computation,” 1995.

[19] T. Hoefler, T. Mehlan, F. Mietke, and W. Rehm, “Logfp - a model for
small messages in infiniband,” in Parallel and Distributed Processing
Symposium, 2006. IPDPS 2006. 20th International, april 2006, p. 6 pp.

211

