
An OpenCL Framework for Distributed Apps on a
Multidimensional Network of FPGAs

Abhijeet Lawande∗, Alan D. George†, Herman Lam‡
NSF Center for High-Performance Reconfigurable Computing (CHREC)

Department of Electrical and Computer Engineering

University of Florida, Gainesville, FL 32611
∗lawande@chrec.org, †george@chrec.org, ‡lam@chrec.org

Abstract—In an effort to offset the rapidly increasing data
volume processed by large data centers today, their architects
have increasingly been exploring unconventional architectures
like FPGAs. Large-scale RC systems like Novo-G# show promise
for both big-data processing and HPC, but are limited by a
lengthy and difficult design process. In this paper we present a
mixed MPI/OpenCL framework that enables rapid and simple
multi-FPGA app development on Novo-G# with support for
multidimensional inter-FPGA communication. The framework
encapsulates inter-FPGA links into Altera OpenCL channels,
abstracting away many of the complexities of inter-FPGA com-
munication, and achieves an aggregate data rate of 288 Gbps per
FPGA over six input and six output links. We use case studies
and analysis to showcase a methodology for efficient design of
multi-FPGA OpenCL apps on Novo-G# with our framework, and
demonstrate its use to create various multi-FPGA applications.

I. INTRODUCTION

With the continuing and escalating demands from big data

and extreme-scale computation as we head towards Exascale,

there is an increasing interest in the research community

to study and deploy scalable FPGA-based reconfigurable

computing (RC) systems. Additionally, major companies like

Microsoft [1], Baidu [2], and Intel [3] have already started

integrating FPGAs in their systems and cloud solutions. A no-

table example of such a system from Microsoft is Catapult [1],

which consists of 1632 mid-sized FPGAs interconnected in

independent 6x8 tori, and has proven to be effective in

accelerating non-traditional applications such as page ranking.

Novo-G [4], [5], a scalable RC system of 52 servers

containing 400+ FPGAs was developed at the University of

Florida and was successful in accelerating impactful scientific

applications in the areas of bioinformatics, computational

finance, image and signal processing, and others [6]. Novo-

G# is an enhancement of Novo-G which was developed for

acceleration of communication-intensive apps. The system

features 64 ProceV boards from Gidel, each equipped with

a Stratix V D8 FPGA, and the boards are connected with

high-speed links in a 3D torus network (4×4×4).

Although successful in accelerating the targeted applica-

tions, developing large-scale RC apps for systems such as

Catapult and Novo-G# is still a daunting task. Factors such

as the long turnaround time of FPGA designs, high barrier to

entry for RTL development, and lack of design tools for multi-

FPGA apps greatly reduce the usability and wide acceptability

of such systems in the HPC community.

Altera OpenCL (AOCL), a recently released tool from

Altera, aims to mitigate part of FPGA design cycle problem.

It supports a subset of the OpenCL 2.0 specification and

adds vendor extensions useful for FPGA development. The

AOCL channel extension, for example, currently allows point-

to-point communication between OpenCL kernels on the same

FPGA. Moreover, AOCL provides not just the OpenCL-to-

RTL compiler, but an end-to-end framework including a host

runtime library, software emulation support, profiling tools,

and reduced hardware compilation times.

In this paper, we present a multi-FPGA OpenCL framework

for Novo-G# that simplifies and speeds up the development

of multi-FPGA, communication-intensive apps using AOCL.

With this framework we add new capability to the Novo-G#

system in the form of support for OpenCL-based distributed-

app development and execution. Further, we extend the def-

inition of AOCL channels to allow AOCL kernels running

on different FPGAs to communicate with each other directly.

Finally, we showcase three multi-FPGA case studies on Novo-

G# to demonstrate and evaluate our framework. “Ping-pong”

is a benchmark run on two FPGAs that enables us to analyze

efficient channel usage and achieves an effective data rate of 24

Gbps on every inter-FPGA channel. “Channelizer” showcases

the simplicity with which a single-FPGA AOCL app with

multiple kernels can be decomposed to run across two FPGAs

without loss of performance. “2DFFT” demonstrates how

AOCL apps can be scaled effectively onto multiple AOCL

devices across the system with a speedup of 6.9 on eight

FPGAs versus a single-FPGA baseline.

In short, we have created a multi-FPGA OpenCL framework

for Novo-G# that aims to simplify multi-FPGA app devel-

opment by reducing the barrier-to-entry through High-Level

Synthesis (HLS), shortening the turnaround time for multi-

FPGA designs, and providing an end-to-end tool flow. The

use of such a framework goes a long way towards improving

the case for the use of large-scale RC systems in data centers

and HPC.

The remainder of this paper is organized as follows. Sec-

tion II describes the Novo-G# machine and AOCL in detail.

Section III presents the multi-FPGA OpenCL framework, and

explains how inter-FPGA communication is integrated into
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AOCL and how the framework is extended to multiple devices

and servers. Section IV describes the three case studies, details

of their implementation on multiple FPGAs, experiments run

on Novo-G#, and any observations of note. Finally, Section V

presents our conclusions and future plans for our framework.

II. BACKGROUND

In this section, we briefly describe the Novo-G# system that

our work targets, and the work that has previously been done

to support multi-FPGA development on it. We also introduce

AOCL, its capabilities, and how it compares to other HLS

efforts in the past.

A. Novo-G#

Novo-G# [6] is an expansion to the Novo-G [5] re-

configurable supercomputer that focuses on accelerating

communication-intensive multi-FPGA apps. Traditionally,

such communication makes use of centralized networks such

as InfiniBand and requires multiple transfers between the

FPGA and the host. Novo-G#, however, provides a high-

bandwidth, low-latency 3D-torus network that allows the FP-

GAs to communicate directly with each other. The FPGA

accelerators used are ProceV boards from Gidel [7], with

a single high-density Stratix V D8 device containing 262k

adaptive logic modules each, and that can drive inter-FPGA

links at 40 Gbps per link.

Each Novo-G# server contains four ProceV boards in a

single chassis and is connected to the host CPUs over a

PCI Express 3.0 x8 bus. The servers themselves communicate

with each other, and with a separate headnode, over Gigabit

Ethernet and QDR InfiniBand. Currently, Novo-G# [6] stands

at 64 ProceV nodes connected in a 4×4×4 torus in 16 servers,

with an upgrade of 64 additional nodes soon to be completed.

Over the last two years, we have built a flexible protocol

stack and router for Novo-G# , which allows app code running

on an FPGA to send packets to any node within the 3D

torus network [6]. The protocol stack supports several different

physical and data-link layer protocols, one of which is the

Interlaken PHY IP from Altera [8]. The Interlaken protocol

is of special interest to this work since it provides many

of the key physical and data-link layer services in silicon,

such and 64b/67b line coding, automatic clock recovery and

CRC32 error detection. However, the restriction of using HDL

and custom network interfaces has limited Novo-G#’s use by

researchers without hardware expertise.

B. Altera OpenCL

Altera OpenCL was officially released with version 13.1 of

the Quartus II development tool in November 2013. AOCL

provides a compiler compliant with partial support for version

2.0 of the OpenCL specification, as well as tools for functional

emulation and profiling of OpenCL code. For execution on the

hardware, AOCL provides support for single-command offline

compilation of the device kernels, and a host runtime library

to instantiate and control kernel execution on the FPGA. To

allow for variations in board design and IP, the hardware

interfacing code and low-level PCI Express driver are provided

by the board vendor in the form of a Board Support Package

(BSP). Despite being a relatively recent development, AOCL

has already been used successfully in the development and

acceleration of FPGA apps as described in [9]–[11]

Unlike the C-based HLS tools described in [12]–[15],

OpenCL is an explicitly parallel language, allowing it to map

well onto the FPGA architecture. OpenCL organizes data

elements into work-items, and data processing into kernels,

each with the code for processing a single work-item. In this

manner, an OpenCL app may be organized as a single large

kernel sequentially processing all work-items (the C model),

or a series of multiple small kernels, each processing a number

of work-items in parallel (the CUDA model).

Tools and methods for converting OpenCL such as Open-

RCL [16], SOpenCL [17], and [18], or from CUDA [19]

to RTL code do exist; however they are limited only to

the generation of the datapath. In contrast, Altera OpenCL

provides an end-to-end toolchain that is intended to be used

from design space exploration, to compilation, to execution.

However, this toolchain has been limited to single-FPGA

OpenCL app development thus far.

III. APPROACH

In this section, we describe our methodology for integrating

the existing Novo-G# protocol stack with the multi-FPGA

OpenCL framework, enabling the use of inter-FPGA channels

within OpenCL. We also describe how an AOCL app can be

scaled to run on multiple devices and multiple servers.

A. Inter-FPGA communication support

Comuunication between FPGAs on Novo-G# is handled

through their in-house protocol stack that provides physical,

data-link, and network layer services through Altera IP and

custom RTL code. We can leverage the lower part of the stack

(physical and data-link) to support inter-FPGA communication

in our framework. In particular, the Interlaken PHY supported

by the protocol stack is especially suited to our needs since

it provides many physical and data-link layer services like

clock recovery, line coding, framing, and error detection with

minimal area overhead.

A key disadvantage of Novo-G#’s stack is its custom nature.

Using a standard interface and communication scheme would

greatly improve the usability of inter-FPGA communication

and encourage its use. Altera’s channels extension provides

such a standard communication interface. Channels allow

OpenCL kernels to communicate with each other through

read and write calls, and are recommended by Altera as the

best method for inter-kernel data transfers. Unlike the typical

OpenCL data transfer model, the host is also completely

unaware of the existence of this channel or the data being

transferred. For our framework, we have extended the capabil-

ities of AOCL channels, allowing the user to transparently use

them for inter-FPGA communication with semantics similar to

those of the inter-kernel AOCL channels.
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Fig. 1. OpenCL device Architecture depicting inter-FPGA connections. For
brevity, not all connections are shown.

B. Integration with framework

We modified the existing ProceV BSP from Gidel to expose

the six input and output links to OpenCL as I/O channels

with the Altera streaming interface. Each I/O channel can be

connected to a single kernel as an input or output channel, and

data ordering for these channels is handled in the same manner

as the regular channels. Within the BSP, each input/output

channel connects to a receive/transmit FIFO respectively, and a

controller for the Interlaken PHY. This controller is responsible

for generating data frames, control words, and idle words

required by the Interlaken protocol. Flow control for the inter-

FPGA interface is provided through XOn/XOff bits set during

each idle control word. These words are inserted at the start

and end of every Interlaken frame, and whenever the transmit

FIFO is empty. The FIFO also serves to cross between the

(typically) higher clock speed on the kernel interface, to the

fixed 200 MHz TxRx clk frequency.

The transceiver blocks on the FPGA are configured to use

the Interlaken PHY, which provides a number of physical layer

services as shown in Figure 1. The IP is configured with a

serial rate of 32 Gbps and a parallel interface frequency of 200

MHz, for which a 256-bit data width is sufficient to saturate

the channel. While it is possible to run the channels at their

rated maximum of 40 Gbps as shown in [6], the transceivers

become highly susceptible to parameter variance at that line

rate and require the channels to be recalibrated on each FPGA.

Such parameter variance makes the task of creating a portable

framework extremely difficult since the transceiver parameters

are encoded into the base FPGA bitfile.

Once the PHY and interfacing logic was integrated with

the rest of the framework, we modified the AOCL platform

specification to include the new channel definitions. OpenCL

apps using an inter-FPGA channel can identify its source or

destination from the channel name (e.g. posx out). To con-

form with the AOCL guidelines, we also use an incremental

compilation flow using a precompiled “base” revision that

requires the end-user to only synthesize the kernel hardware

to generate a complete bitfile. The addition of the inter-FPGA

communication logic only increases the resource usage of the

BSP by 5% of overall FPGA resources and has a negligible

impact on the OpenCL kernel frequency.

C. Scaling up

1) Support for multiple devices: The precompiled bitfile

generated from the “base” revision is programmed onto all

four boards in a server, allowing them to be detected by the

AOCL runtime. Support for calling and instantiating kernels

on multiple AOCL devices is already built into the runtime,

but using the inter-FPGA channels correctly requires each

board to be assigned a unique address. For the Novo-G#

architecture, a three-dimensional address is assigned based on

the bus location and system hostname of each AOCL device.

To improve usability for the end user, we provide a pair of C

functions to convert between the AOCL device name and the

three-dimensional address.

2) Support for multiple nodes: The AOCL runtime en-

vironment does not extend beyond a single server. To run

applications on multiple servers, we use a basic MPI frame-

work to synchronize and distribute data across the system.

When executing on multiple servers, MPI barriers are used to

synchronize the FPGAs after they are initialized. However, due

to variations in the time required for the transceivers to lock

to the incoming data stream, there is a chance that some links

may start transmitting data before the transceivers on the other

end were ready to receive it. In order to avoid this problem,

we preload the bitfile compiled offline on each server, and

then create an OpenCL context without reloading the FPGAs.

Finally, the above process is not specific to MPI and can

potentially be ported to any distributed programming model

with which the user is comfortable.

IV. RESULTS

In this section, we describe the three multi-FPGA OpenCL

apps that we developed to demonstrate and evaluate the

capabilities of multi-FPGA OpenCL. “Ping-pong” is a bench-

mark run on two FPGAs that enables us to analyze effective

channel usage by saturating all the inter-FPGA channels.

“Channelizer” showcases how a single-FPGA AOCL app with

multiple kernels can be decomposed to run across two FPGAs

without loss of performance. “2DFFT” demonstrates how data

decomposition can be used to scale AOCL apps effectively

onto multiple FPGAs.

A. Ping-pong benchmark

1) Background and Implementation: The ping-pong bench-

mark is designed to saturate the inter-FPGA channels to the

maximum line rate of 32 Gbps per channel, and determine the

best configuration to maximize their utilization. The bench-

mark consists of three kernels instantiated on two FPGAs
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Fig. 2. Collected results from ping-pong OpenCL app variants on Novo-G#.
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to saturate the inter-FPGA channels with data. The “ping”

kernel on FPGA1 generates data and transmits it over the

inter-FPGA link to FPGA2, where it is received by the “incr”

(increment) kernel on FPGA2. This kernel performs some

simple data manipulation on each word of received data, in

this case adding to each word an increment specified by the

host and transmitting the data back to FPGA1. The “pong”

kernel on FPGA1 receives the modified data and verifies its

accuracy. This set of kernels is replicated six times to utilize

all inter-FPGA channels.

We created four variants of the above benchmark based

on the number of work-items and the source of the input

data, to evaluate the efficiency of the inter-FPGA channels

in various kernel configurations. First, the three kernels can

be implemented using either a single work-item (task) or a

multiple work-item (NDRange) scheme. Second, the input of

the “ping” kernel can either be generated internally via a

counter, or can be read from external memory. In the case

of inputs read from memory, the output of the “pong” kernel

is also stored in memory so that verification can be done on the

host. These four kernel variants (nomem task, nomem nd,

mem task, mem nd) are used to identify bottlenecks in

work-item scheduling, pipeline occupancy, memory utilization,

and channel bandwidth.

Data on the kernel execution can be gathered using the

OpenCL clGetEventProfilingInfo method [20]. For fine-

grained details, AOCL also provides support for its own

profiling tool [21] that instruments OpenCL code by using

extra hardware counters instantiated in the generated pipeline.

The AOCL profiler gives useful data in the form of pipeline

stalls, occupancy, and channel and memory bandwidth for each

channel or memory access instruction in the pipeline.

2) Experiments and Observations: Figure 2 shows data

collected from the four variants of the ping-pong benchmark

on two ProceV boards in the same server. In each case,

we used the AOCL profiler to collect data on the pipeline

occupancy, and channel and memory bandwidths, and the

clGetEventProfilingInfo method to measure the execution

times and end-to-end latency.

Figure 2a compares the pipeline occupancies of the task

and NDRange kernels with inputs being internally generated.

We see that the task kernels are severely limited in their

pipeline utilization and can at most only generate one 256-

bit output every four clock cycles. The higher occupancy

of the NDRange kernels causes them perform considerably

better, since work-items can be scheduled simultaneously to

hide the low throughput. While the NDRange kernels could

theoretically reach 100% occupancy, they are being limited by

the usable channel bandwidth. With inputs being read from

memory, as in Figure 2b, the task kernels perform abysmally,

limited by their inability to use burst transfers to/from memory,

and contention among the six “ping” and six “pong” kernels

for the same memory controller. In contrast, the NDRange

kernel averages close to the maximum supported burst length

of 16 64-bit words shows performance close to the non-

memory variant.

1 channel ulong4 posx out attribute ((depth(0)))

attribute ((io(”posx out”)));

2 channel ulong4 posx in attribute ((depth(0)))

attribute ((io(”posx in”)));

3 channel ulong4 data in attribute ((depth(8)));

4

5 attribute ((reqd work group size(64,1,1)))

6 kernel void iohelper nomem() {
7 ulong4 data;

8 data = read channel altera(data in);

9 write channel altera(posx out, data);

10 }
11

12 attribute ((reqd work group size(64,1,1)))

13 kernel void iohelper mem( global ulong4 ∗
restrict mem) {

14 uint gid = get global id(0);

15 ulong4 data;

16 data = read channel altera(posx in);

17 mem[gid] = data;

18 }

Fig. 3. Code listing of NDRange-based I/O channel helper functions, showing
channel declaration and use with inter-kernel channels or global memory.
Keywords in blue are added by AOCL to support OpenCL channels.

From Figures 2c, 2d, and 2f we can see that the lower

pipeline utilization with task kernels severely limits the achiev-

able channel and memory bandwidth, whereas the NDRange

kernels achieve an inter-FPGA data rate of approximately 75%

of the maximum line rate. It should be noted that for 1kB

and 16kB data sizes of the“ping” kernel, the channel and

memory bandwidths reported by the profiler are higher than

the theoretical maximum; since the channel buffer is large

enough to contain the complete data stream, the kernel exits

prematurely and artificially inflates the bandwidth reported by

the profiler. Finally, Figure 2e compares the overall kernel

execution times and the end-to-end latency for a single word

for all four variants. In this case, the average latency for

NDRange kernels is higher than that of the corresponding task

kernels due to the added overhead of scheduling work-items.

However, the execution time of the mem task variant is an

order of magnitude worse than the others.

In general, we find that while Altera recommends using task

kernels to generate deep pipelines that naturally map well to

FPGAs, they are less suited for efficient utilization of inter-

FPGA channels or highly contended memory accesses. The

use of channels in an AOCL kernel is also restricted to a

single call-site within the kernel to allow the AOCL optimizer

to improve the pipeline’s throughput. However, the scheduling

of I/O channel accesses among work-items is well defined by

Altera [21]. As long as AOCL’s requirements for deterministic

work-item ordering are met, the ordered execution behavior of

ND-Range kernels proceeds in a sequential order according

to the work-item number. By using intra-FPGA channels
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Fig. 4. Channelizer AOCL app task-distributed over two FPGAs.
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Fig. 5. Results from channelizer OpenCL app on Novo-G#.

to transfer data between task-based kernels and ND-Range

kernels, we can be assured of the data ordering within the

pipeline. Figure 3 shows two NDRange-based helper func-

tions that can be used to access the I/O channels efficiently.

The iohelper nomem kernel shows how output data of an

AOCL kernel can be transmitted over the I/O channels, and

the iohelper mem kernel shows how data read from an I/O

channel can be stored in global memory. Therefore, for the

remaining OpenCL apps in this paper, we use task kernels

exclusively for computation with uninterrupted (no memory

or I/O channel access) deep pipelines, and NDRange kernels

to provide efficient data transfer to and from the inter-FPGA

channels.

B. Channelizer

1) Background and Implementation: The channelizer [22]

OpenCL app is a design example from Altera [23] that

implements a polyphase filter followed by a highly optimized

1D FFT [24] on a single FPGA. This example was used by

Altera to demonstrate the advantages of using single work-

item kernels and channels for inter-kernel communication. The

AOCL code defines three task kernels: the polyphase filter, the

1D FFT, and a reorder kernel between the two that serves to

rearrange the filter’s output data to feed to the FFT. In addition,

they use two NDRange kernels to read input filter data from

memory and store output FFT data to memory.

We chose this particular example to demonstrate the ease

with which existing AOCL code using channels can be modi-

fied to work on multiple FPGAs. As shown in Figure 4, the app

can be executed on two FPGAs by dividing the AOCL kernels

among them and using an inter-FPGA channel to communicate

the intermediate data. The I/O helper kernels are not shown

in the figure. From the perspective of the code, all that is

required is to replace the declaration of one of the inter-

kernel channels: channel float8 REORDER TO FFT ;
with that of an I/O channel: channel float8 negx out
attribute ((io(”negx out”))); and compile the appropri-

ate kernels to each FPGA. As per the findings from the ping-

pong benchmark, we were also able to improve the channel

performance by inserting NDRange kernels to supply and

receive data from the inter-FPGA channels.

2) Experiments and Observations: We compared the ex-

ecution of the channelizer app on two FPGAs against the

single-FPGA baseline code provided by Altera as shown in

Figure 5. The number of input data points supplied to the

filter was varied from 256 to 8192, with input vectors being

continuously streamed into the hardware to achieve a stable

throughput. In general, both implementations are limited by

the 2.1 Gpoints/s input rate of the FFT kernel but the greater

proportion of setup time with small sample sizes reduces the

overall throughput of the app.

A key advantage of using two FPGAs is the greater number

of resources available. While the baseline version requires 57%

of FPGA resources (72% of DSPs) to implement a 4096-point

channelizer, the multi-FPGA version easily doubles the input

size supported. An 8192-point channelizer implementation on

two FPGAs achieves the same streaming throughput with 30%

of FPGA resources (32% of DSPs) on the FPGA with the

polyphase filter, and 61% of FPGA resources (75% of DSPs)

on the FPGA with the FFT kernel.

C. 2D FFT

1) Background and Implementation: The 2D FFT app is

derived from another AOCL design example of the same

name [25], which was created to showcase a high-performance

radix-4 FFT engine with efficient use of off-chip memory for

large problem sizes. We chose this case study since the 2D FFT

algorithm scales well, and a distributed implementation would

benefit greatly from multidimensional direct communication.

The baseline code from Altera is divided into three kernels:

an NDRange “fetch” kernel that reads input data from the

memory, a task-based “FFT” kernel that performs a 1D FFT

on each row of the input data, and an NDRange “transpose”

kernel that stores the FFT output back into memory in a

transposed fashion. This set of kernels is called twice to

perform the complete 2D FFT. To improve the throughout of
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Fig. 6. 2D FFT AOCL app data-distributed over four FPGAs.
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Fig. 7. Results from 2D FFT OpenCL app on Novo-G#.

the app, data transfer between the kernels is done through

eight parallel OpenCL channels, with appropriate work-item

allocations to the NDRange and task kernels.

The 2D FFT app can be decomposed over a number of

FPGAs by using data decomposition as shown in Figure 6.

This decomposition requires an exchange of data between each

pair of FPGAs after both transpose steps have been performed.

We modified the 2D FFT baseline code to use multiple

FPGAs by distributing the input matrix over all the FPGAs in

question. Each FPGA is now responsible of calculating only

a subset of the 1D FFTs in the first stage which required

minimal modifications to the “fetch” and “FFT” kernels. The

“transform” kernel was modified to reorganize the intermediate

data into segments that could be transmitted on the appropriate

inter-FPGA channel. We also created an NDRange “receive”

kernel to receive data from the neighboring FPGAs and store

it in memory. As before, the entire loop is performed twice

to obtain the final 2D FFT output in memory, where it can be

read out of each FPGA.

2) Experiments and Observations: As shown in Figure 7,

we synthesized and executed the multi-FPGA 2D FFT on 1,

2, 4, and 8 FPGAs, for a fixed input size of 1024×1024. The

baseline throughput of 49 GFLOPS was achieved by Altera

on a BittWare Stratix V D8 board [25]. Our single FPGA

implementation performs slightly worse than the baseline due

to the difference in clock frequency achieved. As we move up

to 8 FPGAs, the speedup increases linearly. One factor behind

the strongly linear scaling is the fact that the usable channel

bandwidth increases non-linearly with the dimensionality of

the network. Beyond 8 FPGAs (a 2×2×2 network), we expect

a sub-linear speedup with the number of FPGAs.

V. CONCLUSION

Novo-G# is a state-of-the-art platform for the acceleration

of multi-FPGA communication-intensive apps, but the lengthy

and difficult FPGA app development process has limited its

use thus far. In this paper, we have presented a multi-FPGA

OpenCL framework for Novo-G# geared towards streamlining

the end-to-end design flow for multi-FPGA apps. By mapping

Novo-G#’s inter-FPGA links to AOCL channels, AOCL ker-

nels on different FPGAs can transparently communicate with

each other within the established OpenCL model. We have

also created and tested an MPI-based framework to run AOCL

programs across multiple servers with multiple nodes each.

Finally, we described the implementation and analysis of

three AOCL apps using the multi-FPGA OpenCL framework.

The ping-pong benchmark, designed to utilize all the inter-

FPGA channels, revealed the ideal manner in which to make

use of the channels efficiently, achieving a measured data rate

of 24 Gbps on every inter-FPGA channel. The channelizer

app showed how easily task-based OpenCL apps could be

modified to make use of multiple FPGAs. The 2D FFT app

demonstrated how data decomposition of OpenCL apps on

multiple FPGAs could be achieved, and showed close to linear

speedup on up to 8 FPGAs against an optimized baseline.

The multi-FPGA OpenCL framework described here was

designed with the Novo-G# system in mind, but it can easily be

ported to other AOCL platforms that provides support for inter-

FPGA communication. The framework employs technologies

readily available from Altera and does not depend on a

particular network topology, connectivity, or protocol; these

can be readily customized to support the framework on a new

platform. Further, the lessons learned from our evaluation of

task-based and NDRange-based kernels are dependent only on

the AOCL compiler, and are thus broadly applicable to any

AOCL platform that makes use of channels.

There are a number of improvements that can be made to

this framework in the future. Adding the ability to tune the

transceiver parameters at runtime could potentially allow the

inter-FPGA channels to operate closer to the 40 Gbps line

rate. Additionally, integrating the network layer router from [6]

would allow for transparent packet routing within the 3D torus

network. Both of these improvements however, are unlikely

to fit within the established AOCL model or the OpenCL 2.0
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specification and would therefore require significant changes

to the AOCL hardware and runtime to support them.

The recent use of FPGAs in data centers has opened

up an avenue for more large-scale RC system installations.

However, there are many programmability and usability issues

that must be addressed if such systems are to find greater

acceptance in the HPC community. With our multi-FPGA

OpenCL framework, we have tried to address the high barrier-

to-entry of RTL design through the use of HLS, improve

the state of distributed RC app design tools and present a

communication model based on standard OpenCL constructs

to simplify the creation of multi-FPGA designs.
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