

Accelerating End-to-End Machine Learning Using
the Intel® oneAPI Toolkit and Intel® Flex Series
GPU
January 2023

H19432

White Paper

Abstract

This white paper describes the accelerated performance of an E2E ML
pipeline using Intel’s oneAPI AI Analytics Toolkit as compared to a
baseline pandas implementation.

Dell Technologies

Copyright

2 Accelerating End-to-End Machine Learning Using the Intel® oneAPI Toolkit and Intel® Flex Series GPU

The information in this publication is provided as is. Dell Inc. makes no representations or warranties of any kind with respect
to the information in this publication, and specifically disclaims implied warranties of merchantability or fitness for a particular
purpose.

Use, copying, and distribution of any software described in this publication requires an applicable software license.

Copyright © 2023 Dell Inc. or its subsidiaries. Published in the USA January 2023 H19432.

Dell Inc. believes the information in this document is accurate as of its publication date. The information is subject to change
without notice.

 Contents

3 Accelerating End-to-End Machine Learning Using the Intel® oneAPI Toolkit and Intel® Flex Series GPU

Contents

Executive summary .. 4

Introduction ... 6

Evaluation of oneAPI compatible ETL libraries .. 8

Optimized End-to-End ML Pipeline vs. Serial Pipeline .. 10

Evaluation of ML Pipeline with Varying Dataset Sizes .. 12

Conclusions ... 17

Appendix: Reproducibility .. 19

References ... 20

Executive summary

4 Accelerating End-to-End Machine Learning Using the Intel® oneAPI Toolkit and Intel® Flex Series GPU

Executive summary

An end-to-end (E2E) Machine Learning (ML) pipeline consists of three general stages:

• Extraction, Transfer, and Loading (ETL) of data

• Model Training

• Inference and Visualization

These stages are generally computationally expensive, which impacts the performance

and effectiveness of the resulting ML pipeline. The goal of this project is to accelerate the

performance of an E2E ML pipeline using Intel’s oneAPI AI Analytics Toolkit and compare

its performance against a baseline pandas implementation1.

In evaluating the ETL stage (the most time-consuming stage in the pipeline), we compare

the ETL performance when implemented using Modin (with Ray, Dask, or Omnisci

backends) against the native pandas library. We showed that all three Modin backends

performed better than the baseline serial panda library, with Modin-Dask the best

performing (~5x speedup). This experiment verified that the Modin API can efficiently

make use of all available CPU cores to process data in parallel, thus allowing Modin to

support the pandas API efficiently. Based on this result, an optimized E2E ML pipeline

was implemented and deployed on a computing node of the Intel® DevCloud (consisting

of an Intel® Ice Lake CPU and a 150W Intel® Arctic Sound GPU), to test the acceleration

of large-scale workloads using Intel’s OneAPI toolkit.

The optimized implementation uses Modin-Dask to accelerate the ETL stage and oneDAL

to accelerate the Inference stage. The comparison was performed using a NYC Taxi

historical dataset (~64GB) for ML regression analysis; and a Higgs dataset (~7.5GB) for

the classification problem. The optimized E2E ML pipeline was compared against an

unoptimized baseline version (using native pandas and XGBoost libraries). The ETL stage

of the E2E ML pipeline achieved ~5x speedup for the NYC dataset and ~3x for the Higgs

dataset. For the backend Inference stage, a significant improvement was also seen (~3x

for NYC dataset, ~2.25x for Higgs dataset) when using oneDAL with XGBoost in an

optimized ML pipeline. The reason is that oneDAL utilizes all the capabilities of the Intel

hardware by using Intel® Advanced Vector Extensions 512 (Intel® AVX-512) vector

instruction set to maximize the utilization of the Intel® Xeon® processors. Finally,

experiments were performed for both datasets to observe the speedup trends as the

dataset sizes were varied.

Date Description

January 2023 Initial release

1 Data structures for statistical computing in Python, McKinney, Proceedings of the 9th Python in

Science Conference, Volume 445, 2010.

Overview

Revisions

 Executive summary

5 Accelerating End-to-End Machine Learning Using the Intel® oneAPI Toolkit and Intel® Flex Series GPU

Dell Technologies and the authors of this document welcome your feedback on this

document. Contact the Dell Technologies team by email.

Authors:

Carol Pagolu, SHREC Center2, University of Florida

Manjari Misra, SHREC Center1, University of Florida

Bhavesh Patel, Dell Technologies

Herman Lam, SHREC Center1, University of Florida

Contributors: Trokon Johnson, SHREC Center1, University of Florida

Note: For links to other documentation for this topic, see the Artificial Intelligence Info Hub.

2 SHREC: NSF Center for Space, High-Performance, and Resilient Computing

We value your

feedback

mailto:tech.doc.feedback@dell.com?subject=Document:%20%3cTitle%3e%20%3cPart%20Number%3e
https://infohub.delltechnologies.com/t/artificial-intelligence-12/

Introduction

6 Accelerating End-to-End Machine Learning Using the Intel® oneAPI Toolkit and Intel® Flex Series GPU

Introduction

An end-to-end (E2E) Machine Learning (ML) pipeline consists of three general stages: (1)

Extraction, Transfer, and Loading (ETL) of data; (2) Model Training; and (3) Inference and

Visualization, as illustrated in Figure 1. These stages are generally computationally

expensive, which impacts the performance and effectiveness of the resulting ML pipeline.

The goal of this project is to accelerate the performance of an end-to-end ML pipeline

using Intel’s oneAPI AI Analytics Toolkit [1]. The oneAPI AI Analytics toolkit is a set of

powerful and familiar Python packages and frameworks which are optimized to deliver

drop-in acceleration for Intel architectures. With oneAPI libraries built for low-level

compute optimizations, it is possible to achieve highly efficient multithreading,

vectorization, and memory management, and to scale scientific computations efficiently

across a cluster.

Figure 1. End-to-end ML Pipeline using Intel’s oneAPI AI Analytics Toolkit

Some of the key features of this toolkit, as shown in Figure 1, are:

1. Data Analytics at Scale:

▪ Delivers an excellent out-of-the-box developer experience using open,

optimized software tools coupled with optimal compute and memory hardware

configurations for AI applications.

▪ Considerable reduction in time for preprocessing: sort, filter, label. and

transform data using high-memory systems that can accommodate large

datasets efficiently.

▪ Accelerate pandas workloads across multiple cores and multiple nodes using

Intel’s distribution of Modin.

2. Optimized Frameworks and Middleware:

▪ Efficient data transfer performance across packages through efficient copy data

exchange with data-parallel Python technology.

 Introduction

7 Accelerating End-to-End Machine Learning Using the Intel® oneAPI Toolkit and Intel® Flex Series GPU

▪ Intel optimized frameworks for TensorFlow and PyTorch, pre-trained models,

and low-precision tools to deliver high-performance training on Intel XPUs and

incorporate fast inference into the AI development workflow.

▪ Integrated Intel performance libraries such as Intel® oneMKL (Math Kernel

Library) and Intel® oneDAL (Data Analytics Library) to accelerate NumPy, scikit-

learn and XGBoost.

The oneAPI AI Analytics Toolkit [1] is implemented using the oneAPI Data Analytics

Library (oneDAL), a powerful machine learning library that helps speed up big data

analysis. oneDAL is an extension of Intel® Data Analytics Acceleration Library (DAAL) and

is a part of oneAPI. oneAPI is a cross-industry, open, standards-based unified

programming model that delivers a common developer experience across accelerator

architectures. For more details about these libraries, see the References section for

oneAPI [2] and oneDAL [3].

This study was conducted using two datasets: the New York City (NYC) Taxi historical

dataset [4] and the Higgs dataset [5]:

• The NYC dataset is used to study the performance of the regression function for

machine learning. The data was collected and provided to the NYC Taxi and

Limousine Commission (TLC) by technology providers authorized under the

Taxicab & Livery Passenger Enhancement Programs (TPEP/LPEP). It contains

historical records accumulated and saved on individual monthly files from 2014 to

2016 (total: ~64GB).

• The Higgs dataset is used for classification problems to distinguish between a

signal process which produces Higgs bosons and a background process which

does not. The data was produced using Monte Carlo simulations. The first 21

features (columns 2-22) are kinematic properties measured by the particle

detectors in the accelerator. The last seven features are functions of the first 21

features and are high-level features derived by physicists to help discriminate

between the two classes. The Higgs dataset has 11 million instances (total:

~7.5GB).

As stated above and illustrated in Figure 1, the E2E ML pipeline consists of three general

stages. The Extraction, Transfer, and Loading (ETL) stage is the first stage of the pipeline.

In this stage, the data is extracted from different sources and transformed into the

required format to be used for the Model Training stage. Because the ETL stage is the

most time-consuming stage in the pipeline, it is essential to optimize this stage. In the

section Evaluation of oneAPI compatible ETL libraries in this paper, we describe the

experiments that we performed to evaluate the various oneAPI-compatible ETL libraries.

We compared the ETL performance when implemented using Modin [6] (with Ray, Dask,

and Omnisci) and the native pandas library. The performance comparison is further

broken down into the most commonly used ETL functions: df.read_csv, df.rename,

df.drop, df.fill_na, and df.concat. Based on the performance advantage of Modin-Dask, we

optimized the ETL stage of our ML pipeline using the Modin-Dask library.

The optimized end-to-end ML pipeline was implemented and deployed on a computing

node of the Intel® DevCloud [7], containing an Intel® Ice Lake CPU (with 96 CPU cores)

and a 150W Intel® Arctic Sound GPU. In the section Optimized End-to-End ML Pipeline

vs. Serial Pipeline, the performance of the optimized implementation (using Modin-Dask

and oneDAL) is compared against the unoptimized version (using native panda and

Evaluation of oneAPI compatible ETL libraries

8 Accelerating End-to-End Machine Learning Using the Intel® oneAPI Toolkit and Intel® Flex Series GPU

XGBoost libraries), with a performance breakdown by the three stages in the pipeline.

The comparison is performed for both a NYC dataset (for ML regression analysis) and a

Higgs dataset (for classification problem). In the section Evaluation of ML Pipeline with

Varying Dataset Sizes, the optimized code is then used to study the pipeline performance

based on varying dataset size. The NYC dataset was varied from 2 GB to 64 GB

(increment of power of 2). The Higgs dataset was varied from 1 GB to 7.5 GB (increment

of 1 GB).

Evaluation of oneAPI compatible ETL libraries

As stated, the ETL stage is the most time-consuming stage in the ML Pipeline and thus, it

is essential to optimize this stage. In this section, we compare the ETL performance when

implemented using Modin ([8] (with Ray, Dask, and Omnisci backends) against the native

pandas library. Because the performance of the ETL stage depends mainly on the size of

the dataset, the evaluation for the ETL stage was performed using the NYC Taxi dataset

at 64GB. Also, we determined experimentally that the best performance occurs when the

maximum number of CPU cores (96) are used to process the 64 GB dataset. Thus, all 96

CPU cores are used when studying the NYC dataset.

As shown in Figure 2, for the ETL stage of the ML pipeline, all three Modin backends

performed better than the baseline serial panda library. Modin-Dask was the best

performing, with a ~5x speedup vs. the serial pandas library. These results are as

expected because the Modin API can efficiently use all available CPU cores to process

data in parallel. Additionally, Modin promotes parallelism by supporting both row and

column cell-oriented partitioning of a dataframe. The Modin API transparently reshapes

the partitioning of the dataframe based on the operation being performed. This allows

Modin to support the pandas API efficiently. Modin’s fine-grained control over partitioning

allows it to support various pandas operations that are otherwise very challenging to

parallelize. Also, Modin with Dask as backend is the fastest because it supports more of

the pandas API as compared to the Ray and OmniSci and hence minimal operations must

be defaulted to its original pandas implementations.

 Evaluation of oneAPI compatible ETL libraries

9 Accelerating End-to-End Machine Learning Using the Intel® oneAPI Toolkit and Intel® Flex Series GPU

Figure 2. Performance comparison of Modin libraries and native pandas library

The performance comparison is further broken down into the most commonly used ETL

functions: df.read_csv, df.rename, df.drop, df.fillna, and df.concat [8]. The results are

shown in Figure 3 and Figure 4. Figure 3 shows the run time (in secs) of each ETL

function for the serial pandas library vs. Modin-Dask. The corresponding speedups can be

observed in Figure 4. Note that df.drop (~110x) and df.rename (~75x) have tremendous

speedups, however, their corresponding run times are very small, thus contributing very

little to the overall speedup. The most time consuming ETL functions shown in Figure 3

are df.read.csv and df.concat, which have speedups of ~4.6x and ~9.4x, respectively.

Finally, the performance of the overall ETL stage (~5x shown in Figure 2) is limited by the

serial performance of another ETL function df.query, which is used to divide the dataframe

into train and test samples. Because this function is not completely supported by Modin,

there is a computational penalty involved to convert Modin’s partitioned dataframe to

serial pandas.

Optimized End-to-End ML Pipeline vs. Serial Pipeline

10 Accelerating End-to-End Machine Learning Using the Intel® oneAPI Toolkit and Intel® Flex Series GPU

Figure 3. Run time of ETL functions: Modin-Dask vs. native pandas

Figure 4. Speedup using Modin-Dask vs. native pandas

Based on these results, we optimized the ETL stage of our ML pipeline by using Modin-

Dask. In the next section, the optimized implementation of the ML pipeline is compared to

the performance of a serial baseline pandas implementation on an Intel® DevCloud node.

Optimized End-to-End ML Pipeline vs. Serial Pipeline

In this section, the performance of the optimized implementation (using Modin-Dask and

oneDAL) is compared against the unoptimized version (using native panda and XGBoost

[9] libraries), with a performance breakdown by the three stages in the pipeline. The

comparison is performed for both the New York City (NYC) Taxi dataset and the Higgs

dataset. The NYC dataset is used to study the performance of the regression function; the

Higgs dataset is used to study the classification problem.

 Optimized End-to-End ML Pipeline vs. Serial Pipeline

11 Accelerating End-to-End Machine Learning Using the Intel® oneAPI Toolkit and Intel® Flex Series GPU

Figure 5. Performance of end-to-end ML Pipeline using the NYC Taxi dataset

The comparison results for the NYC dataset are shown in Figure 5. The overall speedup

of the optimized pipeline is ~3x, with the following breakdown:

• The ETL stage shows a speedup of ~5x using Intel® oneAPI AI Analytics toolkit’s

distribution of Modin with Dask due to efficient use of CPU cores.

• For the Inference stage, a speedup of ~3x is seen as it uses oneDAL with XGBoost

[10] to utilize all the capabilities of the Intel hardware by using Intel® Advanced

Vector Extensions 512 (AVX-512) [11] vector instruction set to maximize the

utilization of the Intel® Xeon® processors.

• In the Training stage, XGBoost model training is converted to oneDAL using

daal4py (overhead), hence taking slightly more time than the native pandas and

XGBoost. However, because the data size for the NYC dataset is large (64GB), the

overhead is proportionally negligible by comparison. But still, there is a slight

slowdown in this stage.

Figure 6. Performance of end-to-end ML Pipeline using the Higgs dataset

Shown in Figure 6 is the performance of the ML pipeline using the Higgs dataset. Again,

the optimized implementation (using Modin-Dask and oneDAL) is compared against the

native panda and XGBoost libraries, and the performance is also broken down by the

Evaluation of ML Pipeline with Varying Dataset Sizes

12 Accelerating End-to-End Machine Learning Using the Intel® oneAPI Toolkit and Intel® Flex Series GPU

three stages in the ML pipeline. Note that only 20 computing cores were used for

processing the Higgs dataset. Because the Higgs dataset is relatively small (7.5 GB vs

64GB for the NYC dataset), it was not large enough to be effectively partitioned beyond

20 cores. The results show a speedup of ~3x for the ETL stage and a speedup of ~2.25x

for the Inference stage. Again, the XGBoost model training is converted to oneDAL using

daal4py, and because the Higgs dataset size is smaller than the NYC dataset, the

overhead becomes more of a factor, that is, the Training stage for the optimized version is

taking more time than native pandas and XGBoost in the Training stage. As a result, the

overall speedup of the optimized pipeline is ~1.9x.

Evaluation of ML Pipeline with Varying Dataset Sizes

In the section Optimized End-to-End ML Pipeline vs. Serial Pipeline, the performance of

the optimized implementation (using Modin-Dask and oneDAL) was compared against the

unoptimized version (using native pandas and XGBoost libraries), with a performance

breakdown by the three stages in the pipeline. In this section, the optimized code is used

to study the pipeline performance based on the varying dataset size of both datasets. In

the section ML Pipeline Performance: NYC Dataset, Varying Dataset Sizes, the optimized

code is used to study the pipeline performance based on the varying dataset size of the

NYC dataset. The performance comparison is broken down for each of the three stages of

the ML pipeline. The composite performance (all three pipeline stages) of the E2E ML

pipeline for the NYC dataset is then summarized. Similarly, in the section ML Pipeline

Performance: Higgs Dataset, Varying Dataset Sizes, the optimized code is used to study

the pipeline performance based on the varying dataset size of the Higgs dataset.

In this section, the optimized code is used to study the pipeline performance based on the

varying dataset size of the NYC dataset. The performance comparison is broken down for

each of the three stages of the ML pipeline. Figure 7, Figure 8, and Figure 9 show the

performance comparison of the ETL, Training, and Inference stages, respectively, for

varying the dataset size of the NYC dataset. Figure 10 presents the composite

performance (all three pipeline stages) of the E2E ML pipeline for the NYC dataset,

summarizing the data from Figure 7, Figure 8, and Figure 9. The dataset is varied from 2

GB to 64 GB (increment of power of 2).

ML Pipeline

Performance:

NYC Dataset,

Varying Dataset

Sizes

 Evaluation of ML Pipeline with Varying Dataset Sizes

13 Accelerating End-to-End Machine Learning Using the Intel® oneAPI Toolkit and Intel® Flex Series GPU

Figure 7. Performance of ML Pipeline ETL, varying NYC dataset size

Figure 7 shows a slight increase in speedup in the ETL stage of the ML pipeline as the

size of the NYC dataset increases, ranging from ~4x at 2GB to ~4.8x at 16GB to ~5x at

64GB. As stated previously, the performance increase is due to Intel® AI Analytics toolkit’s

distribution of Modin with Dask which uses all the CPU cores efficiently.

Figure 8. Performance of ML Pipeline Training, varying the NYC dataset size

Figure 8 shows the performance of the Training stage of the ML pipeline. As stated in

Optimized End-to-End ML Pipeline vs. Serial Pipeline, in the Training stage, XGBoost

model training is converted to oneDAL using daal4py (overhead). Hence, as confirmed in

this figure, training in the optimized version takes slightly more time than the native

pandas and XGBoost throughout the sizes of the NYC dataset. However, because the

data size for the NYC dataset is large (64GB), the overhead is proportionally negligible by

comparison.

Evaluation of ML Pipeline with Varying Dataset Sizes

14 Accelerating End-to-End Machine Learning Using the Intel® oneAPI Toolkit and Intel® Flex Series GPU

Figure 9. Performance of ML Pipeline Inference, varying NYC dataset size

For the Inference stage, shown in Figure 9, there is an increase in speedup as the dataset

size increases, from ~1.8x at 2GB to the largest speedup of ~3x at 64GB. As stated

previously, the performance boost is due to the Intel® Advanced Vector Extensions 512

(Intel® AVX-512) vector instruction set which maximizes the utilization of the Intel® Xeon®

processors.

Figure 10. Composite E2E ML pipeline performance, varying NYC dataset size

Figure 10 shows the composite performance (all three pipeline stages) of the E2E ML

pipeline for the NYC dataset, summarizing the data from Figure 7, Figure 8, and Figure 9.

We can see (confirmed) that the ETL stage is the most time-consuming stage in the

pipeline, for all dataset sizes. The Training stage cannot be accelerated at all by the AI

Analytics Toolkit. In fact, at small dataset sizes, the overhead of the Training stage is

especially noticeable. The overall speedup of the E2E pipeline increases steadily from

~2x at 2GB to ~2.6x at 16GB to the maximum speedup of ~3x for 64G.

 Evaluation of ML Pipeline with Varying Dataset Sizes

15 Accelerating End-to-End Machine Learning Using the Intel® oneAPI Toolkit and Intel® Flex Series GPU

In this section, the optimized code is used to study the pipeline performance based on the

varying size of the Higgs dataset. The performance comparison is broken down for each

of the three stages of the ML pipeline. Figure 11, Figure 12, and Figure 13 show the

performance comparison of the ETL, Training, and Inference stages, respectively, for

varying the size of the Higgs dataset. Figure 14 presents the composite performance (all

three pipeline stages) of the E2E ML pipeline for the Higgs dataset, summarizing the data

from Figure 11, Figure 12, and Figure 13.

Figure 11. Performance of ML Pipeline ETL, varying Higgs dataset size

Figure 12. Performance of ML Pipeline Training, varying Higgs dataset size

ML Pipeline

Performance:

Higgs Dataset,

Varying Dataset

Sizes

Evaluation of ML Pipeline with Varying Dataset Sizes

16 Accelerating End-to-End Machine Learning Using the Intel® oneAPI Toolkit and Intel® Flex Series GPU

Figure 13. Performance of ML Pipeline Inference, varying Higgs dataset size

Figure 14. Composite E2E ML pipeline performance, varying Higgs dataset size

The Higgs dataset was varied from 1 GB to 7.5 GB (increment of 1 GB). The following is a

summary of the observations:

• For the ETL stage (Figure 11), there is a steady increase in speedup, ranging from

~1.9x at 1GB to ~2.9x at 4GB to ~3x at 7.5GB. The performance boost is again

because of Intel® AI Analytics toolkit’s distribution of Modin with Dask which uses all

the CPU cores efficiently.

• For the Training stage (Figure 12), the baseline pandas performed better

(confirming this observation made in Figure 6). As stated previously, the XGBoost

 Conclusions

17 Accelerating End-to-End Machine Learning Using the Intel® oneAPI Toolkit and Intel® Flex Series GPU

model training is converted to oneDAL using daal4py, which added the overhead.

Because the Higgs dataset size is smaller than the NYC dataset, the overhead

becomes more of a factor.

• Finally, for the Inference stage (Figure 13), there is an increase in speedup as the

dataset size increases (similar to the NYC dataset), from slightly >1x at 1GB to

~1.8x at 4GB to the largest speedup of >3x at 7.5GB. The performance boost is

again due to the Intel® Advanced Vector Extensions 512 (Intel® AVX-512) vector

instruction set which maximizes the utilization of the Intel® Xeon® processors.

• Figure 14 shows the composite performance (all three pipeline stages) of the E2E

ML pipeline for the Higgs dataset, summarizing the data from Figure 11, Figure 12,

and Figure 13. Similar to the observation of the NYC dataset, we can see that the

ETL stage is the most time-consuming stage in the pipeline, for all dataset sizes

and the Training cannot be accelerated at all by the AI Analytics Toolkit. At very

small dataset sizes (1GB, 2GB), the overall E2E pipeline speedup is very modest.

Beyond 2GB, the speedup stayed fairly constant at <2x, with a speedup of ~1.9x at

7.5GB. In summary, the Higgs dataset is too small to take full advantage of the

parallel benefits offered by the AI Analytics Toolkit.

Conclusions

An end-to-end (E2E) Machine Learning (ML) pipeline consists of three general stages:

• Extraction, Transfer, and Loading (ETL) of data

• Model Training

• Inference and Visualization

These stages are generally computationally expensive, which impacts the performance

and effectiveness of the resulting ML pipeline. The goal of this project is to accelerate the

performance of an E2E ML pipeline using Intel’s oneAPI AI Analytics Toolkit and compare

its performance against a baseline pandas implementation.

In evaluating the ETL stage (the most time-consuming stage in the pipeline), we showed

that all three Modin backends (Ray, Dask, and Omnisci) performed better than the

baseline serial pandas library, with Modin-Dask the best performing (~5x speedup). This

experiment verified that the Modin libraries can efficiently make use of all available CPU

cores to process data in parallel, thus allowing Modin to support the pandas API

efficiently. Modin Dask also performed the best since it supports more of the pandas API

as compared to the Modin Ray and OmniSci, thus minimizing the need for operations to

be defaulted to its original pandas implementations. Modin’s fine-grained control over

partitioning allows it to support various pandas operations that are otherwise very

challenging to parallelize.

Based on this result, an optimized E2E ML pipeline was implemented and deployed on a

computing node of the Intel® DevCloud (consisting of an Intel® Ice Lake CPU and a 150W

Intel® Arctic Sound GPU), to test the acceleration of large-scale workloads using Intel’s

OneAPI toolkit. The comparison was performed using a NYC Taxi historical dataset

(64GB) for ML regression analysis; and a Higgs dataset (7.5GB) for the classification

problem. The optimized E2E ML pipeline was compared against an unoptimized version

Conclusions

18 Accelerating End-to-End Machine Learning Using the Intel® oneAPI Toolkit and Intel® Flex Series GPU

(using native pandas and XGBoost libraries). Experiments were also performed for

varying dataset sizes.

In summary, Intel’s AI Analytics toolkit provides familiar Python tools and frameworks built

with low-level optimizations to conveniently accelerate end-to-end ML algorithms. With

oneAPI libraries built for low-level compute optimizations, it is possible to achieve highly

efficient multithreading, vectorization, and memory management, and scale scientific

computations across a cluster.

The optimized implementation uses Modin Dask to accelerate the ETL stage of the E2E

ML pipeline. For the ETL stage, there is a steady speedup increase for each of the

datasets as the size of the dataset increases: the NYC dataset ranges from ~4x at 2GB to

~4.8x at 16GB to ~5x at 64GB; the Higgs dataset ranges from ~1.9x at 1GB to ~2.9x at

4GB to ~3x at 7.5GB. The performance increase of the ETL stage can be attributed to

Intel® AI Analytics toolkit’s distribution of Modin with Dask which uses all the CPU cores

efficiently.

The optimized implementation uses oneDAL to accelerate the Inference stage of the E2E

ML pipeline. For the NYC dataset, there is an increase in speedup of the Inference stage

as the dataset size increases, from ~1.8x at 2GB to the largest speedup of ~3x at 64GB.

For the Higgs dataset, the increase in speedup is from slightly >1x at 1GB to ~1.8x at

4GB to the largest speedup of >3x at 7.5GB. The performance boost for the Inference

stage is the result of the Intel® Advanced Vector Extensions 512 (Intel® AVX-512) vector

instruction set which maximizes the utilization of the Intel® Xeon® processors.

For the Training stage, the baseline pandas performed better for both datasets. This is

expected because the XGBoost model training is converted to oneDAL using daal4py,

which added some overhead. For the NYC dataset, training in the optimized version takes

slightly more time than the native pandas for all sizes of the NYC dataset. For the smaller

Higgs dataset, the overhead is even more of a factor.

Finally, as shown in the section Evaluation of ML Pipeline with Varying Dataset Sizes, the

composite performance (all three pipeline stages) of the E2E ML pipeline summarizes the

results. The ETL stage is the most time-consuming stage in the pipeline, for all dataset

sizes. Both the ETL and Inference stages showed a steady increase in speedup, but the

Training stage cannot be accelerated at all by the AI Analytics Toolkit. In fact, at small

dataset sizes, the overhead of the Training stage is especially noticeable. For the NYC

dataset, the overall speedup of the E2E pipeline increases steadily from ~2x at 2GB to

~2.6x at 16GB to the maximum speedup of ~3x for 64G. For the Higgs dataset, the overall

speedup is very modest at very small dataset sizes (1GB, 2GB). Beyond 2GB, the

speedup stayed fairly constant at <2x, with a speedup of ~1.9x at 7.5GB. Thus, small

datasets, such as the Higgs dataset, are too small to take full advantage of the parallel

benefits offered by the AI Analytics Toolkit

 Appendix: Reproducibility

19 Accelerating End-to-End Machine Learning Using the Intel® oneAPI Toolkit and Intel® Flex Series GPU

Appendix: Reproducibility

Software

• Python 3.7

• pandas 1.2.3

• XGBoost 1.4.2

• Intel oneAPI AI Analytics Toolkit

• Intel Modin 0.9.1

• Intel daal4py 2021.4.0

Data

Dataset 1: NYC Taxi

• Size: 72 GB

• Link: https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

Dataset 2: Higgs

• Size: 7.5 GB

• Link: https://archive.ics.uci.edu/ml/datasets/HIGGS

Code Repository

Models:

• NYC Taxi: XGBoost regression

• Higgs: XGBoost classification

E2EMLpipeline code repository:

• (Link to be determined)

Hardware

Platform: Intel DevCloud

• CPU model name: Intel® Xeon® Ice Lake-SP

• CPU cores: 96

• CPU Sockets: 2

GPU: ATS-M

• GPU Model: 150W

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://archive.ics.uci.edu/ml/datasets/HIGGS

References

20 Accelerating End-to-End Machine Learning Using the Intel® oneAPI Toolkit and Intel® Flex Series GPU

References

1. https://www.intel.com/content/www/us/en/developer/tools/oneapi/ai-analytics-

toolkit.html#gs.djbqeh

2. https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html#gs.

dkgl45

3. https://www.intel.com/content/www/us/en/develop/documentation/oneapi-

programming-guide/top/api-based-programming/intel-oneapi-data-analytics-library-

onedal.html

4. https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

5. https://archive.ics.uci.edu/ml/datasets/HIGGS

6. https://www.intel.com/content/www/us/en/developer/tools/oneapi/distribution-of-

modin.html#gs.djbww7

7. https://devcloud.intel.com/oneapi/home/

8. https://towardsdatascience.com/modin-accelerating-your-pandas-functions-by-

changing-one-line-of-code-504c39b5ddbc

9. https://www.intel.com/content/www/us/en/developer/articles/technical/improve-

performance-xgboost-lightgbm-inference.html#gs.dkgrcf

10. https://medium.com/intel-analytics-software/fast-gradient-boosting-tree-inference-

for-intel-xeon-processors-35756f174f55

11. https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-

overview.html

https://www.intel.com/content/www/us/en/developer/tools/oneapi/ai-analytics-toolkit.html#gs.djbqeh
https://www.intel.com/content/www/us/en/developer/tools/oneapi/ai-analytics-toolkit.html#gs.djbqeh
https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html#gs.dkgl45
https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html#gs.dkgl45
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/api-based-programming/intel-oneapi-data-analytics-library-onedal.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/api-based-programming/intel-oneapi-data-analytics-library-onedal.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/api-based-programming/intel-oneapi-data-analytics-library-onedal.html
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://www.intel.com/content/www/us/en/developer/tools/oneapi/distribution-of-modin.html#gs.djbww7
https://www.intel.com/content/www/us/en/developer/tools/oneapi/distribution-of-modin.html#gs.djbww7
https://devcloud.intel.com/oneapi/home/
https://towardsdatascience.com/modin-accelerating-your-pandas-functions-by-changing-one-line-of-code-504c39b5ddbc
https://towardsdatascience.com/modin-accelerating-your-pandas-functions-by-changing-one-line-of-code-504c39b5ddbc
https://www.intel.com/content/www/us/en/developer/articles/technical/improve-performance-xgboost-lightgbm-inference.html#gs.dkgrcf
https://www.intel.com/content/www/us/en/developer/articles/technical/improve-performance-xgboost-lightgbm-inference.html#gs.dkgrcf
https://medium.com/intel-analytics-software/fast-gradient-boosting-tree-inference-for-intel-xeon-processors-35756f174f55
https://medium.com/intel-analytics-software/fast-gradient-boosting-tree-inference-for-intel-xeon-processors-35756f174f55
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html

