
Accelerating Graph Analytics
with oneAPI and Intel FPGAs

James Bickerstaff, Luke Kljucaric, Alan D. George
Department of Electrical and Computer Engineering, University of Pittsburgh
NSF Center for Space, High-performance, and Resilient Computing (SHREC)

Pittsburgh, PA, USA
{james.bickerstaff, luke.kljucaric, alan.george}@nsf-shrec.org

I. INTRODUCTION

Graphs are a popular and effective way to represent rela-
tionships between data points in a network due to their simple
data abstraction and low storage cost per data point. However,
as data continues to grow, the processing complexity of graph
operations also significantly increases. Thus, there is a need
to accelerate graph processing through specialized techniques
and hardware in order to improve analytical throughput. This
research uses the oneAPI toolkit with SYCL for FPGAs and
leverages the increased productivity when creating designs,
as compared to traditional hardware description language
methodologies. The oneAPI toolkit is used in the creation
of minimum-spanning-tree (MST) and breadth-first search
(BFS) accelerators, evaluating the impact of different high-
level design choices on the overall performance observed.

II. APPROACH

The overall architecture for both MST and BFS designs
are very similar, and are based upon partitioning the graph
between different kernels synthesized on the FPGA fabric. For
the MST operation, Borůvka’s algorithm is used, and all edges
within the graph are evenly delegated to the kernels such that
each identifies the cheapest edges to add to the overall tree
concurrently. For BFS, the current “frontier,” or list of vertices
to explore, is split into partitions. The FPGA kernels then
each process one partition at a time, traversing the frontier
concurrently until no more remain.

One key focus of this research is investigating the impact of
the different memory management techniques available within
oneAPI. The two primarily observed are explicit Unified
Shared Memory (USM), and USM with pipes incorporated.
Pipes are FIFO structures used for transferring data between
FPGA kernels. When using soley USM, a kernel will read
all necessary data in, process it, and write the results out in
that order. When incorporating pipes, however, three kernels
are used in place of the single one. The three kernels aim
to stream data from the host into kernel memory, process it,
and stream the results out. In these studies, USM-only designs
largely outperformed those using pipes.

Various numbers of kernels were tested to determine the
optimal number of kernels for both MST and BFS designs.

This research was supported by SHREC industry and agency members and
by the IUCRC Program of the National Science Foundation under Grant No.
CNS-1738783.

Table I: Results

Operation Vertices Edges FPGA CPU

61M 403M 36 MTEPS 26 MTEPS
BFS 129M 135M 74 MTEPS 25 MTEPS

226M 240M 75 MTEPS 25 MTEPS

25K 63K 11.3ms 16.8ms
MST 33K 78K 15.3ms 23.8ms

49K 117K 23.5ms 35.6ms

FPGA and CPU columns are performace numbers related to the
graph in the same row.

A single optimized kernel was first created before being
replicated in the code base to synthesize many within the same
design. A balance between high clock frequency, concurrent
processing, resource utilization, and bandwidth estimations
was found through this process of optimizing designs and
benchmarking each result on different graphs. For MST, 12
kernels was found to be optimal, while 8 kernels was best for
BFS.

An additional investigation done for the BFS operation was
optimizing the size of partitions created. As the size increased,
so did the area, clock frequency, and time required for each
kernel to fetch data before starting computations. Thus, the
granularity of partitions was fine-tuned such that data transfers
were making full use of FPGA pipelines, while also not
stalling other kernels from reading data. The MST operation
holds 26,650 edges per kernel, while the BFS partitions each
hold 8,000 edges max.

III. EVALUATION

This research was conducted on the Intel DevCloud, with
an Intel D5005 PAC equipped with a Stratix 10 SX as the
FPGA accelerator. The host CPU and that used for baseline
comparisons is the Intel Xeon Gold 6128. All graphs besides
the (61M, 403M) one used in BFS benchmarking are real-
world. The metric used for BFS performance is Million
Traversed Edges Per Second as defined by the Graph 500
benchmark [1]. For MST, a measurement of runtime was used.
The results displayed by our BFS design showcase speedups
ranging from 1.4× to 3.0× over the baseline. For MST, our
results showcase a speedup of ∼1.5× across all graphs tested.

REFERENCES

[1] “Benchmark specification - graph 500,” Nov 2021. [Online]. Available:
https://graph500.org/?page id=12

1


