
A Methodology for Evaluating and Analyzing
FPGA-Accelerated, Deep-Learning Applications

for Onboard Space Processing
Sebastian Sabogal, Alan George

NSF Center for Space, High-Performance, and Resilient Computing (SHREC)
University of Pittsburgh

Pittsburgh, PA, USA
{sebastian.sabogal,alan.george}@pitt.edu

Abstract—Due to continued innovations in onboard data
analysis and spacecraft autonomy, enabled by deep learning
(DL), modern spacecraft require dependable, high-performance
computers to process onboard an immense volume of raw sensor
data into actionable information to formulate critical decisions
autonomously. To enable compute-intensive DL algorithms,
commercial-off-the-shelf processors, including FPGAs and
system-on-chips, are often employed for their superior perfor-
mance, energy-efficiency, and affordability compared to tradi-
tional radiation-hardened alternatives; however, these processors
are highly susceptible to radiation-induced single-event effects
(SEEs) that can degrade the dependability of DL applications.

Researchers have created a diverse collection of DL models
that perform a variety of tasks useful for Earth-observation
missions. However, due to characteristic differences between
models and accelerators, their tradeoffs can vary in terms of ac-
curacy, area, performance, energy-efficiency, and dependability,
which are factors crucial for resource-constrained and mission-
critical systems. To select the optimal DL solution that maximizes
inference performance, conserves onboard resources, and satisfies
mission dependability requirements, a methodology is required to
evaluate and compare the tradeoffs between competing options.

In this paper, we propose a methodology for evaluating
and analyzing the tradeoffs of FPGA-accelerated DL models,
including a hierarchical fault-injection approach to accelerate
the characterization of SEE susceptibility of DL solutions in
terms of well-established dependability metrics. Furthermore,
we identify performance and dependability trends, analyze the
impact of SEEs on the inference accuracy, and predict design
fault rates for near-Earth orbital environments. To demonstrate
the versatility of our methodology, we evaluate and analyze
four semantic-segmentation models accelerated on four Xilinx
Deep-Learning Processing Unit accelerators.

Index Terms—FPGA, deep learning, semantic segmentation,
single-event effects, fault injection, space computing

I. INTRODUCTION

Machine learning (ML), particularly deep learning (DL),
continues to proliferate in space applications to enhance
mission capabilities in onboard data analysis and spacecraft
autonomy [1], [2]. DL can enable a variety of complex mission
tasks for both science and defense missions such as remote

This work was supported by SHREC industry and agency members and
by the IUCRC Program of the National Science Foundation under Grant No.
CNS-1738783.

sensing [3], [4], constellation management [5], and terrain-
relative navigation [6]. However, despite these advantages,
DL algorithms are computationally intensive and require
dependable, high-performance space computers capable of
converting onboard an immense volume of raw sensor data
into actionable information that can be used to formulate
critical decisions autonomously. Additionally, constraints in
size, weight, power, and cost (SWaP-C) and requirements
in mission dependability for the harsh radiation environment
further exacerbate the space-computing challenge.

To address these challenges, small satellites (SmallSats),
including CubeSats, have proliferated in space applications as
low-SWaP-C platforms enabled by miniaturized technologies
[2], [7]. To improve onboard processing capabilities, SmallSat
missions often employ computers composed partially or solely
of commercial-off-the-shelf devices due to their superior
performance, energy-efficiency, and affordability compared
to traditional radiation-hardened (rad-hard) alternatives.
Often, these computers will also include FPGAs and hybrid
system-on-chips (SoCs), which synergize multiple, distinct
computing architectures within one device to attain the
architectural advantages of each. FPGA-based hybrid SoCs,
which combine fixed-logic CPUs with reconfigurable-logic
FPGAs, provide several architectural advantages suitable for
onboard DL acceleration. However, commercial FPGAs and
SoCs are highly susceptible to radiation-induced single-event
effects (SEEs) that can degrade the dependability of the DL
application. Consequently, dependability must be considered
for systems that use these commercial devices to deploy DL
in mission-critical applications.

Furthermore, researchers have created a broad variety of DL
models for applications that will also vary in dependability.
Some examples include DL models that perform classification,
detection, localization, and segmentation tasks on imagery and
can be applied to enhance applications in Earth observation
(EO) and remote sensing [8]. However, due to characteristic
differences between DL models (e.g., network structure,
operations, and trained parameters) and accelerators (e.g.,
architecture, optimizations, and data-flow), DL solutions
can vary broadly in terms of accuracy, resource utilization,

143

2021 IEEE Space Computing Conference (SCC)

978-1-6654-2400-4/21/$31.00 ©2021 IEEE
DOI 10.1109/SCC49971.2021.00022

20
21

 IE
EE

 S
pa

ce
 C

om
pu

tin
g

C
on

fe
re

nc
e

(S
C

C
) |

 9
78

-1
-6

65
4-

24
00

-4
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
SC

C
49

97
1.

20
21

.0
00

22

Authorized licensed use limited to: University of Pittsburgh. Downloaded on April 08,2022 at 19:08:38 UTC from IEEE Xplore. Restrictions apply.

performance, energy-efficiency, and dependability. All these
tradeoffs are crucial for resource-constrained and mission-
critical systems. To select an optimal DL solution for a
specific task that maximizes inference performance, conserves
onboard resources, and satisfies dependability requirements,
a methodology is required to evaluate and compare the
tradeoffs between competing options.

In this paper, we propose a methodology for evaluating
FPGA-accelerated DL models and analyzing their tradeoffs.
With an emphasis on the dependability evaluation, we also
propose a hierarchical fault-injection approach to accelerate
the characterization of fault susceptibility in DL solutions.
In our hierarchical approach, fault injection is performed at
multiple levels, in order of decreasing application granularity
(coarse to fine), and the targeted area at each level is continu-
ally reduced by omitting inconsequential bits of the preceding
level, thus substantially reducing the number of fault injections
required. Furthermore, we propose analytical methods that
use our hierarchical fault-injection approach to quantify and
examine FPGA-accelerated DL models in terms of well-
established dependability metrics and to observe the impact of
faults on inference accuracy, profile and map vulnerability to
node-level operations, and predict design fault rates for near-
Earth orbital environments. To demonstrate the versatility of
our methodology, we evaluate four semantic-segmentation DL
models accelerated on four Xilinx Deep-Learning Processing
Unit (DPU) accelerator configurations implemented on two
generations of Xilinx SoCs: Zynq-7000 SoC (Zynq-7000)
and Zynq UltraScale+ MPSoC (Zynq-MPSoC).

II. BACKGROUND

This section provides a cursory overview of hybrid space
computing for SmallSat missions. In addition, the section
discusses dependable computing for FPGAs, including
radiation effects on FPGAs, SEE-mitigation techniques and
evaluation methods needed in a space environment. Next,
this section presents concepts in semantic segmentation and
FPGA acceleration of DL applications, including deep neural
network (DNN) architectures and optimizations. Finally, this
section provides a discussion of related work in the evaluation
and analysis of the SEE susceptibility of FPGA-accelerated
DL models.

A. Hybrid and Reconfigurable Space Systems

To enable onboard DL applications, SmallSat missions often
employ commercial hybrid SoCs, including the Xilinx Zynq-
7000 SoC (Zynq-7000) and Zynq UltraScale+ MPSoC (Zynq-
MPSoC). Both SoC series combine fixed-logic CPU cores with
reconfigurable-logic FPGA fabric within a single chip, with
both subsystems interconnected by high-speed Advanced eX-
tensible Interface (AXI) interfaces. The Zynq-7000 Z7020 SoC
features a dual-core ARM Cortex-A9 CPU with Artix 7-Series
FPGA fabric interconnected by 64-bit AXI3 interfaces. The
Zynq-MPSoC ZU3EG SoC features a quad-core ARM Cortex-
A53 CPU with UltraScale+ Architecture FPGA fabric inter-
connected by 128-bit AXI4 interfaces. Furthermore, both SoC

series include configuration access ports (CAPs) that enable
FPGA reconfiguration and configuration memory (CRAM)
access. These ports include the processor CAP (PCAP; periph-
eral in CPU) and internal CAP (ICAP; special block in FPGA).

The CHREC Space Processor (CSP) and SHREC
Space Processor (SSP) are two examples of multifaceted
hybrid space computers developed by researchers at the
National Science Foundation (NSF) Center for Space,
High-Performance, and Resilient Computing (SHREC) in
collaboration with government and industry partners [9].
Both single-board computers feature a Zynq-7000 SoC
(Z7020 or Z7030/Z7030/Z7045) and combine a novel mix of
commercial and rad-hard technology, supplemented by SEE
mitigation enhancements, to achieve the nexus in dependable,
high-performance computing. CSP has flight heritage as part
of two U.S. Department of Defense Space Test Program (STP)
Houston missions to the International Space Station (ISS),
including STP-H5 CHREC Space Processor (STP-H5-CSP)
and STP-H6 Spacecraft Supercomputing for Image and Video
Processing (STP-H6-SSIVP). Both CSP and SSP are planned
for flight on the STP-H7 Configurable and Autonomous
Sensor Processing Research (STP-H7-CASPR). The Innoflight
Compact Flight Computer (CFC-300), GomSpace Nanomind
Z7000, and Xiphos Q7 are alternative examples of single-
board computers featuring a Zynq-7000. The NASA
SpaceCube v3.0 VPX (SCv3VPX) [10], Innoflight CFC-400,
and Xiphos Q8 are examples that feature a Zynq-MPSoC.

B. Radiation Effects and FPGA Dependability

Space radiation poses several challenges for electronic
devices. Sources of radiation include galactic cosmic rays,
solar particle events, and charged particles trapped within the
geomagnetic field. Radiation effects on electronic devices are
often categorized as cumulative or transient effects. Total ion-
izing dose and displacement damage dose are both long-term,
cumulative effects due to continuous exposure to radiation.
Single-event effects (SEEs) are transient, short-term effects
that occur when a single radiation particle strikes the device
causing an effect. SEEs can be destructive (e.g., latch-up) or
nondestructive (upsets, transients, or functional interrupts).
Radiation effects testing is extensively covered in [11].

1) FPGA Dependability: SRAM-based FPGAs are high-
density, reconfigurable architectures consisting of many
resources (e.g., logic blocks, DSPs, BRAM, I/O blocks,
etc.) interconnected by a complex, configurable routing
network. At runtime, a bitstream is stored in SRAM-based
CRAM which configures the resources and network routing
to implement a design on the FPGA. This architectural
paradigm enables users to create massively parallel datapaths
to accelerate compute-intensive algorithms on FPGAs, and the
capability for runtime reconfiguration. However, despite these
advantages, SRAM-based FPGAs are highly susceptible to
radiation-induced SEEs that can affect the dependability of the
design. Faults in static CRAM bits, which define the internal
architecture, can cause functional changes in the design
operation. Faults in dynamic CRAM bits and other on-chip

144

Authorized licensed use limited to: University of Pittsburgh. Downloaded on April 08,2022 at 19:08:38 UTC from IEEE Xplore. Restrictions apply.

memories can also cause a wide variety of adverse effects.
In practice, fault-masking techniques (e.g., triple-modular
redundancy), CRAM scrubbing, and error correction code are
employed to improve design dependability with tradeoffs in
performance, area, and energy-efficiency. A comprehensive
overview of the radiation effects on FPGAs, including SEE
mitigation techniques, is covered in the literature [12].

2) Dependability Analysis: The dependability of an FPGA
design can be measured experimentally using fault-injection
or radiation-beam testing. CRAM fault injection involves
injecting a bit-flip into CRAM to observe the architectural
response to the fault during design operation. The architectural
vulnerability factor (AVF) and mean-work-to-failure (MWTF)
are two useful metrics for quantifying the dependability of a
design. AVF refers to the probability that an injected fault will
manifest into an observable event, and MWTF refers to the
amount of useful work completed (e.g., number of inferences)
until an observable event is expected. Observable events are
user-defined and can vary by application. Examples include
silent data corruption (SDC) or hangs. AVF and MWTF are
calculated using Eq. (1) and Eq. (2), respectively. In practice,
the AVF results are reported with the corresponding 95%
confidence interval (CI) to provide context for uncertainty in
the measurements of the experiment [13].

AVF =
Number of Observable Events

Number of Fault Injections
(1)

MWTF =
Amount of Useful Work Completed

Number of Observable Events
(2)

For a specific near-Earth orbital environment and observable
event, the fault rate of an FPGA design can be approximated
using Eq. (3). For each FPGA resource type r ∈ R, the
resource SEE rate λr,SEE is calculated and scaled by the
resource utilization RUr times the resource AVF (AVFr). To
calculate the resource SEE rate, the Cosmic Ray Effects on
Micro-Electronics (CRÈME96) tool can be used. CRÈME96,
developed by Vanderbilt University and supported by NASA,
is a state-of-the-art tool that uses phenomenological models
with device, mission, orbital, and environmental characteristics
to predict SEE rates induced by protons and heavy ions [14].
The resource utilization of the design is generated by the
design tools. Finally, the resource AVF can be quantified
by fault injection or radiation-beam testing. In cases where
determining the AVF of a specific resource type is infeasible,
an estimate is made (e.g., assume worst case or use the AVF
of another resource). The fault rate of the final design is the
summation of the scaled fault rates for all resource types.

λdesign =
∑
r∈R

λr,SEE · RUr · AVFr (3)

C. Semantic Segmentation

Semantic segmentation is a DL task that can label images
at the pixel level, where pixels with the same label share the
same semantic characteristics [15]. Semantic segmentation can
be applied in numerous EO applications (e.g., land use, land
cover, and cloud masking). Four examples of DL models that

perform semantic segmentation include U-Net [16], Efficient
Neural Network (ENet) [17], Feature Pyramid Network (FPN)
[18], and Efficient Spatial Pyramid Neural Network (ESPNet)
[19], each with unique characteristics. U-Net is a symmetric
autoencoder and contains contracting and expanding data
pathways. The contracting pathway is a sequence of en-
coder blocks that perform feature extraction and pooling-based
downsampling, and the expanding pathway is a sequence of
decoder blocks that perform deconvolutional upsampling using
feature maps (FMs) from preceding and lateral blocks. ENet
is an asymmetric autoencoder that uses dilated convolution
to achieve a larger receptive field of each convolutional filter,
stores pooling indices from early pooling layers for unpooling-
based upsampling, and factorizes filters to drastically reduce
the number of parameters. FPN is a pyramidal structure with
bottom-up and top-down pathways. The bottom-up pathway
generates FMs with increasing semantic value at decreasing
resolution, and the top-down pathway reconstructs higher
resolution layers using FMs from the preceding and lateral
levels. Finally, ESPNet is an asymmetric autoencoder that uses
efficient spatial pyramid convolutional modules, which per-
form point-wise convolution followed by a spatial pyramid of
dilated convolutions that significantly decreases the number of
parameters required while maintaining a large receptive field.

A variety of metrics exist to quantify the inference
accuracy of a DL model depending upon the task. For
semantic segmentation, the mean intersection-over-union
(mIoU) and mean F1 (Dice) score are two standard metrics
used to quantify the accuracy of a segmented output compared
to a ground-truth label mask [15].

D. Deep Learning on FPGAs

Researchers have explored a broad variety of architectures,
optimizations, and design-exploration methods to maximize
DL acceleration capabilities for FPGAs that enable a diverse
range of DL applications for edge systems [20]. One example
is the Xilinx Deep-Learning Processing Unit (DPU) [21], the
hardware component of the Vitis AI stack [22], illustrated
in Fig. 1. The DPU is a general-purpose DNN accelerator
that uses a coprocessing architecture. The DPU includes
(1) an instruction unit, which performs instruction fetching
and scheduling of node-level operations on FM data, (2) a
global memory pool, which manages on-chip and off-chip
memory buffers, and (3) a hybrid computing array, which
is composed of a scalable number of processing engines
(PEs) that perform multiply-accumulate (MAC) and other
miscellaneous operations for node processing.

The Vitis AI stack features a variety of model-compression,
algorithmic, and architectural optimizations to efficiently map
DL models onto the FPGA for acceleration. Model-
compression optimizations include parameter pruning and
data quantization that improve efficiency at the expense of
minimally decreased accuracy. Pruning removes parameters
with minimal representation in the model to reduce the
model size, and quantization replaces resource-intensive
floating-point data with low-precision integer data to

145

Authorized licensed use limited to: University of Pittsburgh. Downloaded on April 08,2022 at 19:08:38 UTC from IEEE Xplore. Restrictions apply.

reduce area, bandwidth, energy, and storage requirements.
Next, algorithmic optimizations include loop optimizations
(unrolling, tiling, and interchange) to maximize the data-flow
efficiency and cache performance of on-chip memory. Finally,
architectural optimizations include DSP time multiplexing
and node fusion. The DPU operates DSP resources at twice
the frequency of surrounding logic to accomplish the same
amount of computations with only half of the DSP resources.
Node fusion involves fusing multiple node operations into
one supernode to improve latency and efficiency.

PLPS

Off-Chip Memory

Interconnect

Xilinx DPU IP

H
y
b

ri
d

C
o

m
p

u
ti

n
g

A
rr

a
y Convolution Architecture

PE PE PE• • •
Misc.

Engine

G
lo

b
a

l

M
e

m
o

ry
 P

o
o

l

D
a
ta

 M
o
v
e
r

O
n
-C

h
ip

 B
R

A
M

B
R

A
M

 A
c
c
e
s
s
o
r

In
s

tr
u

c
ti

o
n

U
n

it

F
e
tc

h
e
r

D
e
c
o
d
e
r

D
is

p
a
tc

h
e
r

Interface
Monitor

Vitis AI
DNNDK

Memory
Controller

IR
Q

Fig. 1. Xilinx deep-learning processing unit (DPU) architecture.

E. Related Work

The dependability of FPGA-accelerated ML models,
including methods for evaluation and mitigation, has been
explored in the literature [23]. A variety of approaches
for evaluating ML dependability using fault injection and
radiation-beam testing have also been proposed. In [24],
single-bit and multi-bit fault injection were performed in
both static and dynamic CRAM to observe the architectural
response of a binary neural network to both single and multi-
bit upsets. In [25], [26], the dependability tradeoffs between
mixed-precision float-point and binary quantization data types
of a CNN were analyzed. In [27], fault injection and neutron
irradiation were performed on multi-layer perceptron with
layers assigned to separate FPGA partitions to analyze the
ML model at the model and layer levels.

The dependability analysis of FPGA-accelerated ML
models has also enabled efficient methods for SEE mitigation.
In [28], [29], fault injection was performed to identify the
most vulnerable layers and channels, respectively, for

selective replication to improve overall dependability with
minimal overhead due to replication. In [30], a CNN was
disaggregated into a static, replicated control-flow subset
and a runtime-reconfigurable data-flow subset that can be
exchanged with unmitigated, high-performance and mitigated,
low-performance versions of the accelerator. In this paper,
we propose an efficient fault-injection approach to accelerate
the evaluation of DL solutions for FPGAs to enable a rapid
tradespace analysis between DL models and accelerators for
optimal selection, and to quickly identify vulnerable parts of
the DL solution for selective or adaptive SEE mitigation.

III. APPROACH

Due to the depth of DL models (up to hundreds of nodes)
and area of FPGA accelerators (up to tens of millions of
CRAM bits), which can amount to billions of possible
fault injections per DL solution, a time-efficient approach
is required to accurately and comprehensively quantify
the dependability of FPGA-accelerated DL models. In this
section, we present an overview of our hierarchical fault-
injection approach and describe the low-level details about
our CRAM fault-injection process used in our evaluation.

A. Hierarchical Fault-Injection Approach

Our hierarchical approach involves fault injection at multi-
ple levels, in order of decreasing granularity (e.g., application
→ phases→ subphases), and focuses on continually narrowing
the size of targeted CRAM between levels by omitting bits
with noncritical representation in the preceding level. At each
level transition, the subset of tested CRAM that manifests into
observable events becomes the target CRAM for the subse-
quent level, and the remaining bits (noncritical and untested)
are omitted. The continual omission of inconsequential bits
can substantially reduce the number of fault injections required
to analyze an FPGA-accelerated application at low levels
of granularity. For our evaluation of FPGA-accelerated DL
models, two levels are sufficient to evaluate a DL model at the
model and node levels. The approach is illustrated in Fig. 2.

Initially, the set of targeted CRAM must be determined
prior to fault injection. The Xilinx design tools can be used
to generate the set of essential CRAM bits (essential area),
which refers to the subset of CRAM that is actively used by
the design. Since nonessential bits do not effect the design,
these bits are omitted. Furthermore, to evaluate the DL
accelerator exclusively, only the subset of the essential area
associated with the partial design is to be targeted. To generate
the essential area of a partial design, the Xilinx design tools
are used to generate the essential areas from two designs.
The first design is the complete design that generates the full
essential area. The second design is a post-implementation
modification the first design, with all cells and nets associated
with the DL accelerator removed, that generates an essential
area that excludes the partial design. The difference between
both essential areas is the partial essential area (AreaE) that
is exclusive to the DL accelerator.

146

Authorized licensed use limited to: University of Pittsburgh. Downloaded on April 08,2022 at 19:08:38 UTC from IEEE Xplore. Restrictions apply.

CRAM

Tested Area

Untested Area

Target Area

Evaluation

CRAM CRAM CRAM

Model-level
Fault Injection

Node-level
Fault Injection

Model-Level

Coverage C
0

Full Essential Area

Partial Essential Area

Model-Level Critical Area

Node-Level Critical Area

CRAMCRAM

Node-Level

Coverage C1

Design A

Full Design

Including Target

Design B

Full Design

Excluding Target

Difference

Partial Design

with Target Only

Fig. 2. Hierarchical fault-injection approach.

In our hierarchical approach, fault injection is first
performed at the model level (highest granularity), where
injected faults are present during the execution of the
entire model (all nodes). AreaE is the target area, and fault
injection is performed to generate the model-level critical area
(AreaM,C), which is the subset of AreaE that is vulnerable to
model-level faults that will manifest into observable events.
The coverage factor C0 refers to the fraction of the target
area that has been tested. At this level, the model-level
dependability metrics AVFM, MWTFM, and AreaM,C are
measured, and AreaM,C can be approximated using Eq. (4).

AreaM,C = AVFM × AreaE (4)

Next, fault injection is performed at the node level, where
injected faults are present only during the execution of
a randomly selected node. AreaM,C is the targeted area,
and fault injection is performed to generate the node-level
critical area (AreaN,C), which is the subset of AreaM,C that is
vulnerable for node-level faults that cause observable events.
At this level, node-level dependability metrics are measured,
and AreaN,C can be approximated using Eq. (5). The coverage
factor C0 inversely scales the AreaM,C to account for any
untested, critical bits potentially missed in the previous level
of fault injection. The accuracy of AreaN,C increases when the
coverage factor of the model-level process increases (C0 → 1).

AreaN,C =
1

C0
× AVFN × AreaM,C (5)

B. Fault-Injection Procedure

Initially, a target CRAM bit, input image, and node (node-
level process only) are randomly selected. In the model-level

process, the fault is injected, then the model is executed
completely, and finally, the fault is repaired. In the node-level
process, the DL model executed is halted immediately before
and after the execution of the randomly selected node to inject
and repair a fault, respectively. Fault injection is performed
using a CAP device (PCAP or ICAP). First, a frame-readback
command is issued via the CAP to read a CRAM frame into a
software buffer. Next, a bit-flip is performed on the randomly
selected bit in the buffered CRAM frame. Finally, a frame-
writeback command is issued via the CAP to write the fault-
injected, buffered CRAM frame back to CRAM. To repair the
fault, the same process is repeated on the same CRAM bit.

In our evaluation of the DPU, a custom interface monitor
(IM), illustrated in Fig. 1, was created to monitor the interrupt
and all AXI interfaces of the DPU (one instruction and two
data interfaces). Since the DPU interrupt fires at the end of
each node operation, the IM can calculate checksums of each
interface at the node level. Consequently, the IM can identify
errors at the node level, including harmless faults that may
corrupt intermediate data but may be masked by a later node
(e.g., faulty FMs generated from convolutional nodes masked
by later pooling or activation nodes).

At the end of each fault-injection iteration, the execution
output and intermediate data are analyzed to classify the
outcome. We focus upon two classifications of observable
events, including SDC and hangs, and the criticality of the
faults. SDC events are erroneous and normally undetectable
outcomes of an application execution due to faults. SDC
events usually occur when faults affect the data-flow subset
of a design (e.g., corrupting datapaths). In our fault-injection
procedure, SDC events are observed if the checksum of the
predicted output does not equal the checksum of the golden
(fault-free) output. SDC events can also be observed if any
intermediate checksums generated by the IM are not equal
to the checksums of a golden execution. Hang events refer to
the nonperformance of the application execution due to faults.
Hang events usually occur when faults affect the control-flow
subset of a design (e.g., corrupting finite-state machines). In
our fault-injection procedure, hang events are observed if a
model execution is preempted to abort by timeout prior to
completion. The DPU runtime software was configured to
timeout after 3 seconds if the execution did not finish.

Criticality is associated with SDC events and refers
to the negative impact a fault has on inference accuracy.
The criticality of SDC events can vary broadly, from low
criticality (e.g., few bad pixels) to high criticality (e.g., severe
distortions). Depending upon mission requirements, SDC with
low criticality may be acceptable. SDC events with criticality
below a user-specified tolerance threshold can be classified as
tolerable SDC (SDCT), and SDC events above this threshold
can be classified as critical SDC (SDCC). SDCC events are the
primary classification used to analyze dependability. Due to
high redundancy in the parameters of a model, DL algorithms
have been demonstrated to have an inherent tolerance to
faults [23]. Therefore, the SDC criticality is essential for an
accurate dependability assessment. When an SDC event is

147

Authorized licensed use limited to: University of Pittsburgh. Downloaded on April 08,2022 at 19:08:38 UTC from IEEE Xplore. Restrictions apply.

observed, the criticality can be measured as the difference
in accuracy between the predicted output and golden output
using a standard metric depending upon the DL task (e.g.,
mIoU or F1 metrics for semantic segmentation).

IV. EVALUATION

In our evaluation, we quantify and analyze the accuracy,
area, performance, energy-efficiency, and dependability char-
acteristics of four semantic-segmentation models (ENet, ESP-
Net, FPN, and U-Net, shown in Table I) on four configurations
of the DPU (B512, B800, B1024, and B1152, shown in
Table II) on two generations of Xilinx SoC platforms: the TUL
PYNQ-Z2 (PYNQ-Z2) and UltraZed-EG (UZED-EG), which
feature a Z7020 and ZU3EG, respectively. The DL models are
based on the Caffe models in [31] and were modified to use
the Potsdam dataset [32] in 512×512 RGB image patches. The
pixel parallelism (PP), input channel parallelism (ICP), and
output channel parallelism (OCP) parameters correspond to
the convolution architecture of the DPU, and the peak number
of operations per cycle is equal to 2×PP×ICP×OCP. The
DPU exposes 64-bit AXI3 and 128-bit AXI4 interfaces for the
Zynq-7000 and Zynq-MPSoC, respectively. The DPU v3.1 IP
is configured with one DPU core, low RAM and DSP usage,
and extras enabled (channel augmentation, depth-wise convo-
lution, average pool, ReLU, Leaky ReLU, and ReLU6). The
trained DL models are quantized and compiled for the DPU
using the DNN Development Kit (DNNDK; Vitis AI predeces-
sor) v3.1 flow, with PetaLinux v2019.2 and Vivado v2020.1.

TABLE I
EVALUATED DL MODELS COMPILED FOR THE DPU

Model Number Parameter Workload I/O Memory
of Nodes Size (MB) MACs (GOps) Space (MB)

ENet 98 0.36 4.06 3.53
ESPNet 190 0.33 3.71 6.96

FPN 76 5.84 17.30 8.63
U-Net 33 7.40 96.68 40.78

TABLE II
DPU CONVOLUTION ARCHITECTURES

DPU PP ICP OCP Peak Ops

B512 4 8 8 512
B800 4 10 10 800

B1024 8 8 8 1024
B1152 4 12 12 1152

A. Accuracy

The Vitis AI (and DNNDK) compiler quantizes the DL
models to use the INT8 data type as a model-compression
technique to reduce area, bandwidth, energy, and storage
requirements with low-precision integer arithmetic at the cost
of reduced accuracy. Table III shows the inference accuracy
(mIoU and F1) of each evaluated DL model in single-
precision floating-point (FP32) and quantized INT8 forms

and the accuracy loss due to quantization. As demonstrated,
these efficiency benefits of quantization can be attained with
a slight tradeoff in accuracy. The accuracy loss varies by DL
model but was less than 2% across all evaluated models.

TABLE III
MODEL ACCURACY

Model FP32 INT8 Difference

mIoU F1 mIoU F1 mIoU F1

ENet 64.9 76.1 63.3 74.8 –1.7 –1.3
ESPNet 56.7 69.4 55.5 68.4 –1.2 –1.0

FPN 65.7 77.1 65.3 76.9 –0.4 –0.3
U-Net 62.1 74.3 61.4 73.8 –0.7 –0.5

B. Resource Utilization

The FPGA design resource utilization for each DPU is
shown in Table IV. The DSP resources, which implement the
PEs that form the convolution architecture of the DPU, scale
linearly to PP×ICP×OCP and quadratically to the channel
parallelism (ICP/OCP parameter). Since the DPU uses the DSP
time-multiplexing optimization, the DSPs operate at twice the
frequency to halve the number of DSPs required. Observing
configurations B512, B800, and B1152, which have fixed PP
and varied ICP/OCP, the resource utilization of other resource
types (LUTs, FFs, BRAM, and essential CRAM) is approxi-
mately linear to the channel parallelism (ICP/OCP parameter).

TABLE IV
DPU RESOURCE UTILIZATION

DPU LUTs FFs BRAM DSPs CRAM Bits
(36b×1k) (Essential)

Z7020 53,200 106,400 140 220 25,636,224

B512 48.47% 39.60% 52.14% 35.45% 28.61%
B800 59.57% 50.03% 57.86% 53.18% 36.73%

B1024 64.87% 62.33% 75.00% 70.00% 45.49%
B1152 67.18% 61.39% 80.00% 74.55% 46.93%

ZU3EG 70,560 141,120 216 360 30,834,336

B512 38.24% 24.85% 33.80% 21.67% 35.28%
B800 42.28% 29.89% 37.50% 32.50% 40.94%

B1024 47.81% 35.77% 48.61% 42.78% 47.61%
B1152 45.85% 34.55% 51.85% 45.56% 46.68%

C. Performance and Energy-Efficiency

The inference performance, in frames per second (FPS),
and energy-efficiency, in FPS per Watt (FPS/W), for each
DL solution are shown in Table VI. Both performance
and energy-efficiency are dependent upon both the DL
model (e.g., network, operations, size, and data-flow) and
accelerator (e.g., number of PEs and other computational
units, bandwidth and caching, and operating frequency). Vitis
AI (and DNNDK) provide runtime tools and libraries that can
profile the inference performance and DPU utilization of a
DL model. Furthermore, a power meter was used to measure

148

Authorized licensed use limited to: University of Pittsburgh. Downloaded on April 08,2022 at 19:08:38 UTC from IEEE Xplore. Restrictions apply.

the board power when the DL solution was (1) active and (2)
unloaded (i.e., the FPGA is programmed with the design with
all cells and nets associated with the DPU removed). The
difference is approximately the power consumption exclusive
to the DPU. The power of the unloaded DPU was measured
at approximately 2.1W and 6.5W for the PYNQ-Z2 and
UZED-EG, respectively.

The DPU primarily accelerates convolutional operations that
often dominate the execution time of DL model inference. De-
spite this capability, DL models may contain nodes with little
to no convolutional operations that underutilize the convolu-
tion architecture of the DPU. When profiled, all four evaluated
DL models demonstrate varied DPU utilizations, resulting in
varied performance scalability. For example, for the PYNQ-Z2
and B512 configuration operating at 100MHz/200MHz opera-
tion, both FPN and U-Net have high average utilizations (83%
and 94%, respectively) resulting in an inference performance
that scales approximately linearly to the DPU peak perfor-
mance (2×PP×ICP×OCP), and both ENet and ESPNet have
low average utilizations (51% and 22%, respectively) resulting
in an inference performance that scales sublinearly. For the
evaluated models, the DPU utilization decreases when the
DPU scales and operating frequency increases, possibly due to
insufficient scaling of memory bandwidth to maintain the DPU
utilization. Furthermore, as the DPU scales, the area and power
increase but the maximum frequency decreases due to place-
and-route difficulties in designs with high resource utilization.

Next, we compare DL models in order of performance.
ENet achieves the best performance due to low parameter
count and workload MACs despite a medium DPU utilization
(51%). Next, FPN is second due to a high DPU utilization
(83%) despite high parameter count and workload MACs.
Next, ESPNet is third due to having the lowest DPU
utilization (22%) despite also having the lowest parameter
count, workload MACs. Next, U-Net is fourth due to having
the highest parameter count, workload MACs despite also
having the highest DPU utilization (94%).

When compared cycle-per-cycle, the Z7020 and ZU3EG
both have similar inference performance. However, the max-
imum frequency is substantially higher for the ZU3EG than
the Z7020, possibly due to a combination of (1) generational
differences between both FPGA architectures (i.e., combined
configurable logic blocks, added control sets, distribution
RAM control, and flip-flop I/O, upgraded tile-based columnar
architecture to improve flexibility and logic and routing
efficiency in UltraScale and UltraScale+ FPGAs compared to
7-Series FPGAs [33]) and (2) higher bandwidth in the UZED-
EG compared to the PYNQ-Z2 (128-bit AXI4 interface and
DDR4 memory versus 64-bit AXI3 and DDR3 memory).

To summarize, DL models with higher DPU utilization have
greater scalability, and performance and energy-efficiency
will increase with larger DPUs; however, this will decrease
the maximum frequency and increase resource utilization
and critical area vulnerable to SDC and hangs. DL models
with lower DPU utilization have lesser scalability and
can suffice with smaller DPUs with improved maximum

frequency, resource utilization, and critical area. Additionally,
lightweight properties (e.g., low parameter size and workload
MACs) in DL models can also be favorable to improve
performance and energy-efficiency.

D. Dependability

In this section, we apply our hierarchical CRAM fault-
injection approach to evaluate and analyze the susceptibility
of each DL solution (model, configuration, and SoC) to
CRAM faults. Dependability metrics are quantified at both
the model and node levels and are used to compare tradeoffs
between options and to identify trends. Finally, we compare
our hierarchical fault-injection approach to a traditional, direct
approach to demonstrate substantial efficiency improvements.
To parallelize the process, fault injection was performed on
a cluster of 20 PYNQ-Z2 and 2 UZED-EG boards.

1) Model-Level Analysis: At the model level, fault injection
is performed on the full DL solution, and the model-level AVF,
MWTF, and critical area are calculated using Eq. (1), Eq. (2),
and Eq. (4), respectively, and are shown in Table VI. In Fig. 3,
SDC criticality is represented as a histogram to illustrate the
probabilities of losses in inference accuracy due to CRAM
faults. Fig. 4 illustrates experimental samples including the
input image, ground-truth label mask, golden output, and
SDC outputs with varied criticality. To demonstrate the
significance of SDC criticality in our dependability analysis,
we assume a tolerance threshold of −5%, where an mIoU
difference greater than or equal to −5% is tolerable.

Most fault injections resulted as correct outputs or SDCT
with minor defects (mIoU difference near 0%). This observa-
tion is supported by related works that have demonstrated an
inherent fault tolerance in DL algorithms [23]. A few fault in-
jections resulted in SDCT that improved the inference accuracy
considerably (mIoU difference greater than 0%). A benign
SDC event occurs when a faulty execution results in the correct
classification of pixels that would otherwise be mislabeled.
The remaining fault injections resulted in SDCC (mIoU dif-
ference less than the −5% tolerance threshold). Most notably,
for each model, the shape of the distribution is similar across
all tested DPUs for both SoCs. This observation indicates that
SDC criticality is possibly more dependent on the character-
istics of the DL model than the characteristics of the DPU.

Fig. 5 shows the SDC-critical area averaged across all
DL solutions in terms of SDCT and SDCC. For both SoCs,
the SDCT and SDCC-critical areas both increase as the DPU
scales. However, both the AVF and critical areas increase
more rapidly in the Z7020 compared to the ZU3EG, possibly
due to (1) generational differences between both FPGA
architectures or (2) substantially fewer resources in the Z7020
resulting in higher FPGA design resource utilization. This
trend is not observed for the average hang-critical area, which
increases slightly as the DPU scales. For both SoCs, the
ratio of SDC criticality (SDCT to SDCC) increases as the
DPU scales, possibly due to the increasing ratio of functional
to faulty PEs. For example, each PE in B512 will process
more FM data and parameters than each PE in B1152 due

149

Authorized licensed use limited to: University of Pittsburgh. Downloaded on April 08,2022 at 19:08:38 UTC from IEEE Xplore. Restrictions apply.

100 80 60 40 20 0 +20
Accuracy Difference [mIoU]

10 5

10 4

10 3

10 2

10 1

10±0
Pr

ob
ab

ili
ty

 [
%

]
SDCC SDCT

To
le

ra
nc

e
Th

re
sh

ol
d

5

ENet ESPNet FPN U Net All
(a) PYNQ-Z2 (Z7020)

100 80 60 40 20 0 +20
Accuracy Difference [mIoU]

10 5

10 4

10 3

10 2

10 1

10±0

Pr
ob

ab
ili

ty
 [

%
]

SDCC SDCT
To

le
ra

nc
e

Th
re

sh
ol

d

5

ENet ESPNet FPN U Net All
(b) UZED-EG (ZU3EG)

Fig. 3. Impact of CRAM faults on mIoU with distribution of mIoU difference
in SDC events by DL solution for the (a) PYNQ-Z2 (Z7020) and (b) UZED-
EG (ZU3EG). Multiple histograms represented as line plots are overlaid. 60
bins with widths of 2% mIoU loss per bin.

to reduced parallelism in B512. As a result, one faulty PE in
B512 can corrupt more data than one PE in B1152. However,
the ratio of SDC criticality is greater and increases more
rapidly in the Z7020 compared to the ZU3EG.

In the context of DL dependability, MWTF is a useful
metric that combines the amount of useful work completed
(performance and energy-efficiency) between SDCC events.
The MWTF for each DL solution is shown in Table VI. MWTF
is highly dependent upon the performance and SDC AVF
of the DL solution. For the Z7020, MWTF decreases as the
DPU scales due to rapid increases in SDC-critical area despite
varied increases in performance. For the ZU3EG, MWTF
increases slightly as the DPU scales due to moderate increases
in SDC-critical area surpassed by increases in performance.
ENet offers the highest performance and has a relatively low
SDC AVF, and thus, achieves the highest MWTF. FPN offers
medium performance but has the lowest SDC AVF, resulting
in the second-highest MWTF. ESPNet also offers medium
performance but has the highest SDC AVF, resulting in a low
MWTF. Finally, U-Net offers the lowest performance despite

(a) Input image (b) Ground-truth mask (c) Golden output

(d) SDCT (–4.86%) (e) SDCC (–16.93%) (f) SDCC (–33.81%)

(g) SDCC (–50.07%) (h) SDCC (–64.74%) (i) SDCC (–76.76%)

Fig. 4. Experiment samples including input image, ground-truth label mask,
golden output (86.33% mIoU), and variety of SDC outputs (with mIoU
difference).

0 1 2 3 4 5
Critical Area [Mbits]

Z7020 B512
Z7020 B800
Z7020 B1024
Z7020 B1152
ZU3EG B512
ZU3EG B800
ZU3EG B1024
ZU3EG B1152

14.9%
15.5%

17.2%
18.0%

11.4%
11.7%

11.6%
11.7%

15.0%
19.8%

23.8%
25.0%

8.7%
9.4%

10.1%
10.0%

SDCC SDCT
Fig. 5. Average SDC-critical area of DPUs in terms of SDCT and SDCC.
Percentage with respect to total area of DPU.

a low SDC AVF, resulting in the lowest MWTF.
Using CRÈME96, the SEE fault rates for the low-Earth

orbit (LEO; particularly ISS orbit) and geostationary orbit
(GEO) environments were predicted for various resource
types of the Z7020, assuming solar-minimum conditions and
100 mils of spherical, aluminum shielding. Using Eq. (3), the
predicted SEE rates are scaled by the DPU resource utilization
(Table IV) and AVF of SDC (Table VI) to approximate the
SDC rates of each DPU for both orbital environments,
as shown in Table VI. The SDC rates are approximately

150

Authorized licensed use limited to: University of Pittsburgh. Downloaded on April 08,2022 at 19:08:38 UTC from IEEE Xplore. Restrictions apply.

proportional to the SDC-critical area of the DL solution. The
substantially lower SDC rates in ZU3EG compared to the
Z7020 designs are due to the reduced SEE susceptibility in
UltraScale+ FPGAs compared to 7-Series FPGAs [34].

2) Node-Level Analysis: At the node level, fault injection is
performed on randomly selected nodes of each DL model for
each DL solution, and fault injection is performed exclusively
on the model-level critical area vulnerable to both SDC and
hangs. The node-level critical areas are calculated using
Eq. (5). Fig. 6 illustrates the sequence of nodes executed by
the DPU for each DL model, including the SDCC-critical
area (tolerance threshold of −5%) and set of operations
performed by each node. Nodes with more than one operation
are referred to as supernodes which have fused multiple node
operations into one to improve efficiency. Convolution-based
operations include convolution (ConvNd) and deconvolution
(DeConvNd), and miscellaneous operations include
concatenation (Concat), pooling (Pooling), elementwise
(Eltwise), scale (Scale), and rectified linear unit (ReLU).

When all SDC (SDCC and SDCT) is considered, the
SDC-critical area is roughly consistent between nodes and
supernodes with the same set of operations. Furthermore,
the SDC-critical area is generally much greater in nodes
containing convolution-based operations than nodes containing
solely miscellaneous operations, possibly due to the much
greater DPU utilization in convolution-based operations.
However, the hang-critical area is roughly consistent across
all nodes and supernodes regardless of the operations.

However, when only SDCC is considered, the SDCC-critical
area has a much greater variation between nodes and supern-
odes with the same set of operations. Generally, the SDCC-
critical area in convolution-based nodes is greater than nodes
without it, but some nodes are substantially less vulnerable
than others. For example, in FPN, convolution-based nodes
54-66 are an order of magnitude less vulnerable than other
convolution-based nodes of the same model. By evaluating
and analyzing DL models at the node level, one can identify
the most vulnerable nodes that can be prioritized for efficient
SEE mitigation (e.g., selective replication).

3) Fault-Injection Evaluation: To demonstrate the
efficiency and accuracy of our hierarchical fault-injection
approach, we compare with a direct fault-injection approach
targeting solely the essential area of the DPU for both
model and node levels. First, we compare the fault-injection
efficiency and speed-up. The total number of possible fault
injections for both direct and hierarchical approaches is
represented by Eq. (6) and Eq. (7), respectively, where Nm

is the number of nodes for each model m ∈M .

InjectionsDirect =
∑
m∈M

(Nm + 1)× AreaE (6)

InjectionsHierarchical =
∑
m∈M

(AreaE +Nm × AreaM,C) (7)

For example, in the B512 configuration for the Z7020, the
partial essential area (AreaE) is 7.3 Mbits, and the aggregated

critical area (AreaM,C), which is the union of critical areas
across all evaluated DL models, is 2.6 Mbits (AVFM =
35%). To evaluate all four models (397 nodes) at the node
level, a direct approach has 2.91 billion possible injections,
whereas our hierarchical approach has 1.04 billion possible
injections, thus a maximum efficiency improvement of 2.7×.
Similarly, the B512 configuration for the ZU3EG, with AreaE
and aggregated AreaM,C equal to 10.9 Mbits and 2.5 Mbits,
respectively, there is a maximum efficiency improvement of
4.2×. Efficiency is dependent upon the ratio of AreaM,C to
AreaE. As shown in Fig. 5, this ratio increases rapidly as the
DPU scales for the Z7020, resulting in efficiency decreasing
from 2.7× (B512) to 2.1× (B1152). However, this ratio
increases relatively slightly for the ZU3EG, so efficiency
decreases slightly from 4.2× (B512) to 4.1× (B1152).

TABLE V
FAULT-INJECTION ACCURACY FOR B512 CONFIGURATION ON Z7020

Approach Level Target Area (bits) AVF Critical Area
SDC (bits)

Both Model AreaE (7,333,820) 29.76% 2,182,702
Direct Node AreaE (7,333,820) 16.39% 1,201,803

Hierarchical Node AreaM,C (2,459,512) 46.07% 1,133,154

Inverse scaling by model-level coverage C0 (94.72%) 1,196,380
Error compared to direct node-level approach 0.45%

Next, we compare the fault-injection accuracy. Both
direct and hierarchical approaches result in equivalent
approximations for AreaM,C and similar estimations for
AreaN,C. An example for the B512 configuration for the
Z7020 averaging all four DL models is shown in Table V.
The direct approach, which targets AreaE, has a SDC AVF
of 16.39% resulting in AreaN,C with 1,201,803 bits. The
hierarchical approach, which targets AreaM,C, has a SDC AVF
of 46.07% resulting in AreaN,C with 1,133,154 bits. However,
our model-level procedure had a coverage C0 of 94.72%,
so 1–C0 of AreaE, which may contain critical bits, was not
tested. To adjust for untested, critical bits, AreaN,C is inversely
scaled by C0, resulting in a final approximation for AreaN,C
with 1,196,380 bits, and a 0.45% error compared to the direct
approach. Notably, compared to the direct approach, the SDC
AVF of the hierarchical approach increased by a factor of
2.7× (equal to the maximum efficiency improvement), thus
reaffirming the efficiency benefits of omitting inconsequential
bits and exclusively targeting vulnerable bits.

V. CONCLUSION

Modern spacecraft increasingly require more computational
capabilities to enable compute-intensive, deep-learning (DL)
methods that can enhance onboard analysis, spacecraft
autonomy, and intelligent applications. Commercial-off-the-
shelf FPGAs and hybrid SoCs, which provide the architectural
capabilities for the onboard acceleration of DL algorithms,
can address these requirements. However, commercial
FPGAs and SoCs are highly susceptible to radiation-induced
single-event effects (SEEs) that can affect dependability.

151

Authorized licensed use limited to: University of Pittsburgh. Downloaded on April 08,2022 at 19:08:38 UTC from IEEE Xplore. Restrictions apply.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96
AV

G
M

od
el

103

104

105

106

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

14
0

14
5

15
0

15
5

16
0

16
5

17
0

17
5

18
0

18
5

AV
G

M
od

el

103

104

105

106

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
AV

G
M

od
el

103

104

105

106

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
AV

G

M
od

el

103

104

105

106

ConvNd
ConvNd/ReLU
ConvNd/ReLU/Pooling
ConvNd/ReLU/Eltwise/ReLU

ConvNd/Eltwise
ConvNd/Eltwise/ReLU
Concat
Concat/Pooling

DeConvNd
DeConvNd/ReLU
Eltwise
Pooling
Scale/ReLU

Node

Cr
it

ic
al

 C
RA

M
 B

it
s

Node

Cr
it

ic
al

 C
RA

M
 B

it
s

Node

Cr
it

ic
al

 C
RA

M
 B

it
s

Node

Cr
it

ic
al

 C
RA

M
 B

it
s

ENet

ESPNet

FPN

U-Net

Fig. 6. SDCC-critical area and operations by node for each DL model for the B512 configuration of the DPU on the Z7020.

Furthermore, with a broad variety of DL tasks and a diverse
collection of DL models, each with its own accuracy, resource
utilization, performance, energy-efficiency, and dependability
characteristics, a methodology is required to evaluate and
compare the tradeoffs between DL models and accelerators
to select the optimal design.

In this paper, we proposed a comprehensive methodology
to evaluate the tradeoffs between DL models and accelerators.
With an emphasis on dependability, we proposed a hierarchical
fault-injection approach that continually narrows the set of
targeted bits by removing bits with noncritical representation
and thereby accelerating the fault-injection process. Compared

to direct fault injection, our approach achieves an efficiency
improvement of 2.1-2.7× and 4.1-4.2× for the Zynq-7000
and Zynq-MPSoC, respectively, to evaluate all DL solutions
in this study. Furthermore, we describe methods to analyze the
dependability of DL models and accelerators at both the model
and node levels and in terms of the architectural vulnerability
factor, mean-work-to-failure, and critical area. Finally, using
this methodology, we evaluated, analyzed, and compared the
tradeoffs and trends of four semantic-segmentation models
across four configurations of the Xilinx DPU for two genera-
tions of Xilinx SoCs (Zynq-7000 SoC and Zynq UltraScale+
MPSoC). Our evaluation, which was conducted on emulators

152

Authorized licensed use limited to: University of Pittsburgh. Downloaded on April 08,2022 at 19:08:38 UTC from IEEE Xplore. Restrictions apply.

of flight hardware that is currently deployed in space missions,
demonstrates that compute-intensive DL applications can be
dependably executed onboard for next-generation missions.

Opportunities for future work include (1) applying this
methodology to evaluate DL models for other DL tasks (e.g.,
classification, detection, and localization) and alternative DL
accelerators, (2) devising and evaluating adaptive and selective
methods for efficient SEE mitigation (e.g., adapting between
DL models or accelerators at runtime, or applying SEE mitiga-
tion to the most vulnerable nodes), and (3) exploring extrapola-
tion methods using fault-injection results of one DL model and
DPU to predict the results for other configurations of the DPU.

REFERENCES

[1] B. DARPA, “Blackjack Pit Boss (BAA HR001119S0012),” April 2019.
[2] National Academies of Sciences, Engineering, and Medicine, Thriving

on Our Changing Planet: A Decadal Strategy for Earth Observation
from Space. Washington, DC: The National Academies Press, 2018.

[3] B. DARPA, “Blackjack (BAA HR001118S0032),” May 2018.
[4] M. Esposito, S. S. Conticello, M. Pastena, and B. C. Domı́nguez,

“In-orbit demonstration of artificial intelligence applied to hyperspectral
and thermal sensing from space,” in CubeSats and SmallSats for
Remote Sensing III, vol. 11131, International Society for Optics
and Photonics. SPIE, 2019, pp. 88 – 96. [Online]. Available:
https://doi.org/10.1117/12.2532262

[5] C. Scolese, “2020 Small Satellite Conference keynote address,” in Pro-
ceedings of the 34th Annual AIAA/USU Conference on Small Satellites.
Logan, UT: AIAA, August 2020.

[6] A. E. Johnson, Y. Cheng, J. F. Montgomery, N. Trawny, B. Tweddle,
and J. X. Zheng, Real-Time Terrain Relative Navigation Test Results
from a Relevant Environment for Mars Landing. [Online]. Available:
https://arc.aiaa.org/doi/abs/10.2514/6.2015-0851

[7] National Academies of Sciences, Engineering, and Medicine, Achieving
Science with CubeSats: Thinking Inside the Box. Washington, DC: The
National Academies Press, 2016.

[8] J. E. Ball, D. T. Anderson, and C. S. C. Sr., “Comprehensive survey of
deep learning in remote sensing: theories, tools, and challenges for the
community,” Journal of Applied Remote Sensing, vol. 11, no. 4, pp. 1 –
54, 2017. [Online]. Available: https://doi.org/10.1117/1.JRS.11.042609

[9] C. Wilson and A. D. George, “CSP hybrid space computing,” Journal
of Aerospace Information Systems, vol. 15, no. 4, pp. 215–227,
February 2018. [Online]. Available: https://doi.org/10.2514/1.I010572

[10] A. Geist, C. Brewer, M. Davis, N. Franconi, S. Heyward, T. Wise,
G. Crum, D. Petrick, R. Ripley, C. Wilson, and T. Flatley, “SpaceCube
v3.0 NASA next-generation high-performance processor for science
applications,” in Proceedings of the 33rd Annual AIAA/USU Conference
on Small Satellites. Logan, UT: AIAA, 2019, pp. 1–9.

[11] National Academies of Sciences, Engineering, and Medicine, Testing at
the Speed of Light: The State of U.S. Electronic Parts Space Radiation
Testing Infrastructure. Washington, DC: The National Academies Press,
2018.

[12] F. Siegle, T. Vladimirova, J. Ilstad, and O. Emam, “Mitigation of
radiation effects in SRAM-based FPGAs for space applications,”
ACM Comput. Surv., vol. 47, no. 2, pp. 37:1–37:34, 2015. [Online].
Available: http://doi.acm.org/10.1145/2671181

[13] H. Quinn, “Challenges in testing complex systems,” IEEE Transactions
on Nuclear Science, vol. 61, no. 2, pp. 766–786, April 2014.

[14] A. J. Tylka, J. H. Adams, P. R. Boberg, B. Brownstein, W. F. Dietrich,
E. O. Flueckiger, E. L. Petersen, M. A. Shea, D. F. Smart, and E. C.
Smith, “CREME96: A revision of the Cosmic Ray Effects on Micro-
Electronics Code,” IEEE Transactions on Nuclear Science, vol. 44, no. 6,
pp. 2150–2160, December 1997.

[15] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez,
P. Martinez-Gonzalez, and J. Garcia-Rodriguez, “A survey on deep
learning techniques for image and video semantic segmentation,”
Applied Soft Computing, vol. 70, pp. 41–65, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1568494618302813

[16] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional net-
works for biomedical image segmentation,” in Medical Image Com-
puting and Computer-Assisted Intervention – MICCAI 2015. Cham:
Springer International Publishing, 2015, pp. 234–241.

[17] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “ENet:
A deep neural network architecture for real-time semantic
segmentation,” CoRR, vol. abs/1606.02147, 2016. [Online]. Available:
http://arxiv.org/abs/1606.02147

[18] T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2017, pp.
936–944.

[19] S. Mehta, M. Rastegari, A. Caspi, L. Shapiro, and H. Hajishirzi,
“ESPNet: Efficient spatial pyramid of dilated convolutions for semantic
segmentation,” in Proceedings of the European Conference on Computer
Vision (ECCV), September 2018.

[20] S. Mittal, “A survey of FPGA-based accelerators for convolutional
neural networks,” Neural Computing and Applications, vol. 32,
no. 4, pp. 1109–1139, February 2020. [Online]. Available:
https://doi.org/10.1007/s00521-018-3761-1

[21] Xilinx, Zynq DPU, v3.3 ed., Xilinx, December 2020, Xilinx Product
Guide (PG338).

[22] ——, Vitis AI User Guide, v1.3 ed., Xilinx, December 2020, Xilinx User
Guide (UG1414).

[23] C. Torres-Huitzil and B. Girau, “Fault tolerance in neural networks:
Neural design and hardware implementation,” in 2017 International
Conference on ReConFigurable Computing and FPGAs (ReConFig),
December 2017, pp. 1–6.

[24] B. Du, S. Azimi, C. de Sio, L. Bozzoli, and L. Sterpone, “On the
reliability of convolutional neural network implementation on SRAM-
based FPGA,” in 2019 IEEE International Symposium on Defect and
Fault Tolerance in VLSI and Nanotechnology Systems (DFT), October
2019, pp. 1–6.

[25] F. F. dos Santos, C. Lunardi, D. Oliveira, F. Libano, and P. Rech,
“Reliability evaluation of mixed-precision architectures,” in 2019 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), February 2019, pp. 238–249.

[26] F. Libano, B. Wilson, M. Wirthlin, P. Rech, and J. Brunhaver, “Un-
derstanding the impact of quantization, accuracy, and radiation on the
reliability of convolutional neural networks on FPGAs,” IEEE Transac-
tions on Nuclear Science, vol. 67, no. 7, pp. 1478–1484, July 2020.

[27] F. Benevenuti, F. Libano, V. Pouget, F. L. Kastensmidt, and P. Rech,
“Comparative analysis of inference errors in a neural network imple-
mented in SRAM-based FPGA induced by neutron irradiation and fault
injection methods,” in 2018 31st Symposium on Integrated Circuits and
Systems Design (SBCCI), August 2018, pp. 1–6.

[28] F. Libano, B. Wilson, J.-P. Anderson, M. J. Wirthlin, C. Cazzaniga,
C. Frost, and P. Rech, “Selective hardening for neural networks in
FPGAs,” IEEE Transactions on Nuclear Science, vol. 66, no. 1, pp.
216–222, January 2019.

[29] G. Gambardella, J. Kappauf, M. Blott, C. Doehring, M. Kumm, P. Zipf,
and K. Vissers, “Efficient error-tolerant quantized neural network accel-
erators,” in 2019 IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT), October 2019,
pp. 1–6.

[30] S. Sabogal, A. George, and G. Crum, “ReCoN: A reconfigurable CNN
acceleration framework for hybrid semantic segmentation on hybrid
SoCs for space applications,” in 2019 IEEE Space Computing Confer-
ence (SCC), July 2019, pp. 41–52.

[31] Xilinx, “ML Caffe segmentation tutorial,” Xilinx, December 2020,
accessed: 2021-02-01.

[32] I. Potsdam, “2D semantic labeling dataset,” 2018. [On-
line]. Available: http://www2.isprs.org/commissions/comm3/wg4/2d-
sem-label-potsdam.html

[33] Xilinx, UltraScale Architecture Configurable Logic Block, v1.5 ed.,
Xilinx, February 2017, xilinx User Guide (UG574).

[34] D. S. Lee, M. King, W. Evans, M. Cannon, A. Pérez-Celis, J. Anderson,
M. Wirthlin, and W. Rice, “Single-event characterization of 16 nm Fin-
FET Xilinx UltraScale+ devices with heavy ion and neutron irradiation,”
in 2018 IEEE Nuclear Space Radiation Effects Conference (NSREC
2018), July 2018, pp. 1–8.

153

Authorized licensed use limited to: University of Pittsburgh. Downloaded on April 08,2022 at 19:08:38 UTC from IEEE Xplore. Restrictions apply.

TABLE VI
EVALUATION RESULTS FOR PERFORMANCE, ENERGY-EFFICIENCY, AND MODEL-LEVEL DEPENDABILITY.

SoC DPU Model Performance MWTF AVF (%) SDC-Critical Area SDC Rates (SDC·dev–1·day–1)

FPS FPS/W Util (%) FPS FPS/W SDC SDCT SDCC Hangs ±95% CI Error LEO GEO

Z
70

20
(P

Y
N

Q
-Z

2)

B
51

2
25

0/
50

0M
H

z ENet 13.2 4.9 41.9 63.4 23.6 31.0 17.2 13.8 2.8 2,270,773 ± 3,954 0.19 0.11
ESPNet 5.5 2.3 15.9 18.6 7.8 31.4 12.0 19.3 3.2 2,299,408 ± 4,180 0.19 0.11

FPN 6.0 2.1 80.5 33.4 12.0 27.9 15.5 12.4 2.7 2,045,829 ± 4,227 0.17 0.10
U-Net 1.2 0.5 88.3 5.9 2.6 28.8 15.4 13.5 2.7 2,114,796 ± 4,466 0.18 0.10

Average 6.5 2.5 56.7 29.4 11.6 29.8 15.0 14.8 2.8 2,182,701 ± 2,100 0.18 0.10

B
80

0
25

0/
50

0M
H

z ENet 13.3 4.1 26.9 58.8 18.0 36.2 22.3 13.9 2.3 3,406,655 ±12,562 0.33 0.18
ESPNet 6.2 2.2 11.4 18.0 6.4 36.6 15.8 20.8 2.6 3,445,554 ±12,450 0.33 0.18

FPN 7.8 2.0 67.3 39.2 10.2 33.6 20.9 12.7 2.3 3,165,791 ±13,581 0.30 0.16
U-Net 1.5 0.5 73.6 6.9 2.2 34.5 20.6 13.9 2.3 3,247,737 ±11,928 0.31 0.17

Average 7.2 2.2 44.8 29.2 9.0 35.2 19.9 15.3 2.4 3,316,434 ± 6,298 0.32 0.17

B
10

24
20

0/
40

0M
H

z ENet 14.8 5.0 29.3 53.5 18.2 42.5 27.3 15.2 2.6 4,958,499 ±15,683 0.50 0.27
ESPNet 6.5 2.6 11.8 14.8 5.9 42.2 18.0 24.1 2.9 4,917,392 ±16,489 0.50 0.27

FPN 8.9 2.3 75.3 36.1 9.5 39.3 25.0 14.3 2.5 4,587,410 ±16,751 0.46 0.25
U-Net 1.7 0.6 81.2 6.5 2.2 39.7 24.4 15.3 2.5 4,627,702 ±14,580 0.47 0.25

Average 8.0 2.6 49.4 26.2 8.5 40.9 23.7 17.2 2.6 4,772,751 ± 7,907 0.48 0.26

B
11

52
16

7/
33

3M
H

z ENet 12.7 4.2 26.9 44.7 14.7 43.9 28.6 15.3 2.3 5,276,269 ±18,517 0.55 0.29
ESPNet 5.8 2.3 11.3 12.4 4.9 44.4 19.5 24.9 2.7 5,344,894 ±18,015 0.56 0.29

FPN 8.6 2.3 77.8 32.8 8.7 41.3 26.4 14.9 2.3 4,964,799 ±19,871 0.52 0.27
U-Net 1.5 0.5 75.1 5.3 1.8 41.8 25.9 15.9 2.3 5,026,491 ±17,671 0.52 0.28

Average 7.2 2.3 47.8 22.2 7.2 42.8 25.1 17.7 2.4 5,153,113 ± 9,236 0.54 0.28

Z
U

3E
G

(U
Z

E
D

-E
G

)

B
51

2
37

5/
75

0M
H

z ENet 23.3 7.4 49.3 158.5 50.2 20.6 9.3 11.3 2.2 2,240,818 ± 5,569 0.03 0.08
ESPNet 9.7 3.4 18.8 51.7 17.8 21.7 7.4 14.3 2.5 2,357,773 ± 9,253 0.03 0.09

FPN 9.2 3.1 82.5 80.9 27.4 18.1 9.0 9.0 2.2 1,966,019 ± 7,946 0.03 0.07
U-Net 1.8 0.7 91.4 12.8 5.1 19.3 8.2 11.2 2.2 2,100,344 ± 8,769 0.03 0.08

Average 11.0 3.8 60.5 74.5 25.9 19.9 8.5 11.5 2.3 2,166,238 ± 3,714 0.03 0.08

B
80

0
37

5/
75

0M
H

z ENet 24.8 6.6 33.5 165.8 43.9 21.3 9.9 11.5 2.0 2,692,359 ±22,366 0.05 0.13
ESPNet 11.5 3.5 14.2 60.4 18.3 22.2 7.8 14.4 2.4 2,803,479 ±22,630 0.05 0.13

FPN 12.2 3.1 70.6 102.7 26.3 20.0 10.7 9.3 2.0 2,526,930 ±21,299 0.04 0.12
U-Net 2.4 0.7 77.0 16.0 4.9 20.8 9.4 11.5 2.0 2,631,772 ±22,479 0.05 0.13

Average 12.7 3.6 48.9 84.3 23.7 21.1 9.4 11.7 2.1 2,663,635 ±11,095 0.05 0.13

B
10

24
30

0/
60

0M
H

z ENet 25.2 7.5 33.2 168.7 50.1 22.5 11.2 11.3 1.8 3,301,512 ±26,157 0.07 0.18
ESPNet 11.7 3.8 14.2 60.9 19.5 22.9 8.4 14.5 2.0 3,363,317 ±26,821 0.07 0.18

FPN 14.1 3.5 79.6 119.5 29.5 20.2 11.0 9.2 1.7 2,968,996 ±24,144 0.06 0.16
U-Net 2.7 0.8 85.6 18.5 5.6 20.9 9.5 11.4 1.7 3,071,384 ±27,529 0.06 0.17

Average 13.4 3.9 53.1 89.1 25.7 21.6 10.0 11.6 1.8 3,176,302 ±13,051 0.06 0.17

B
11

52
30

0/
60

0M
H

z ENet 25.0 6.6 29.4 170.3 45.1 21.9 10.7 11.2 1.7 3,150,305 ±25,030 0.07 0.18
ESPNet 11.4 3.5 12.2 59.6 18.5 22.5 8.1 14.4 2.0 3,240,436 ±26,008 0.07 0.19

FPN 16.3 3.7 81.5 133.4 29.9 20.9 11.5 9.4 1.7 3,011,382 ±26,530 0.06 0.18
U-Net 2.8 0.8 77.2 18.6 5.3 21.2 9.8 11.4 1.7 3,052,462 ±28,955 0.07 0.18

Average 13.9 3.7 50.1 91.3 24.4 21.6 10.0 11.6 1.8 3,113,646 ±13,264 0.07 0.18

154

A
uthorized licensed use lim

ited to: U
niversity of P

ittsburgh. D
ow

nloaded on A
pril 08,2022 at 19:08:38 U

T
C

 from
 IE

E
E

 X
plore. R

estrictions apply.

