
Enabling Development of OpenCL Applications
on FPGA platforms

Kavya Shagrithaya
Bradley Dept. of ECE

Virginia Tech
Blacksburg, VA, USA

Krzysztof Kępa
Bradley Dept. of ECE

Virginia Tech
Blacksburg, VA, USA

kepa@vt.edu

Peter Athanas
Bradley Dept. of ECE

Virginia Tech
Blacksburg, VA, USA

athanas@vt.edu

High-level FPGA synthesis tools aim towards increasing the
productivity of FPGAs and bringing them within the reach
software developers and domain experts. OpenCL is a
specification introduced for parallel programming purposes
across platforms. In this paper, an automated compilation flow to
generate customized application-specific hardware descriptions
from OpenCL computation kernels is reported. The flow uses
Xilinx AutoESL tool to obtain the design specification for
OpenCL kernel cores. The provided architecture integrates
generated cores with memory and OpenCL host application
interfaces. The host program in the OpenCL application is
compiled and executed to demonstrate a proof-of-concept
implementation towards achieving an end-to-end flow that
provides abstraction of hardware at the front-end.

Keywords— source-to-source translation; OpenCL; AutoESL;
Vivado; FPGA; Convey; HPC

I. INTRODUCTION
An increasing number of applications are embracing High

Performance Computing (HPC) solutions for their processing
needs. With frequency scaling having run its course,
conventional processors have given way to various accelerator
technologies to meet the computational demands. These range
from Graphic Processing Units (GPU), Field Programmable
Gate Arrays (FPGA), heterogeneous multicore processors like
Cell to hybrid architectures like Convey HC-1. Different
classes of applications employ different targets best suited for
the problem at hand. Each of the accelerator technologies
possesses advantages over the other for variant tasks leading to
possibilities of a heterogeneous mix of architectures [1–3].
Reconfigurable systems like FPGAs provide promising
opportunities for acceleration in many fields due to their
inherent flexibility and massive parallel computation
capabilities.

The availability of a multitude of hardware devices require
comprehensive approaches to solution which include the
knowledge of underlying architecture along with methods of
designing the algorithm. This translates to an increase in
implementation effort, high learning curves and architecture
aware programming at the developer’s end. In 2004, DARPA
launched a project named High Productivity Computing
Systems (HPCS) that aimed at providing economically viable
high productivity systems [4]. DARPA proposed a “time to

solution” as a metric that includes the time to develop a
solution as well the time taken to execute it. CPUs and GPUs
are programmed in high-level languages like C/C++ and
CUDA. This level of abstraction enables faster deployment of
solutions. In the case of FPGAs, implementations require
tedious hardware design and debug which greatly impact the
development time.

Enormous acceleration can be delivered by FPGAs owing
to the flexibility and parallelism provided by the fine-grained
architecture. However, being able to fully harness this potential
presents challenges in terms of programmability.
Implementation of applications on FPGAs involve
cumbersome RTL programming and manual optimizations.
Besides domain expertise and software design skills,
developers are required to understand intricate details of
hardware design including timing closure, state machine
control and cycle-accurate implementations.

As a result the effort in drastically reducing the execution
time translates to a significant increase in the time to develop
the solution. Chase et al implemented a tensor-based real time
optical flow algorithm on FPGA and GPU platforms [31]. A
fixed-point version was mapped on a Virtex II Pro XC2VP30
FPGA in the Xilinx XUP V2P board and a single- precision
floating-point implementation was mapped on an Nvidia
Geforce 880 GTX GPU with appropriate design optimizations
for each platform. Comparable results were achieved for
performance on the FPGA and the GPU, while the power
consumption was significantly lower on the FPGA. However,
the FPGA implementation took more than 12x longer to
develop, as compared to the GPU implementation.

There has been significant research and industry related
work in providing high level programming solutions for FPGA
to reduce these design efforts. None of it yet succeed in
abstracting all implementation details as the knowledge of
hardware concepts is required, to an extent, to appropriately
design the software solution for maximum performance.

OpenCL (Open Computing Language) is a cross platform
standard for building parallel applications. The OpenCL
programming model provides a standard framework that
enhances portability across devices essentially rendering it
platform independent. It enables the developer to focus on the
algorithm while abstracting the implementation details. Being

able to develop applications in OpenCL for FPGA platforms
would result in faster implementation times and time-to-
market.

Supporting OpenCL applications on a new platform
requires a compiler to translate the kernels to the device
specific executable, a library for the OpenCL API and a driver
that manages the communications between the host and the
devices. This work reports a proof of concept system that
enables OpenCL application development on FPGAs. An
efficient method for compiling OpenCL kernel tasks to
hardware is demonstrated, without having to build a compiler
from scratch. Also, existing tools are leveraged as required. A
system architecture is presented for the target device with an
automated generation of interfaces for the kernel. Also, a
library that supports a subset of the OpenCL host API is
provided.

The rest of the paper is organized as follows. Section 2
presents a background on high-level synthesis for FPGA
platforms and overviews the OpenCL specifications. Section 3
introduces the source-to-source translation problem and details
the compilation processes. The mapping of the execution
model on the target hardware is also discussed. The results
obtained in this work and comparisons with other
implementations are discussed in Section 4. Section 5
concludes the paper and proposes future work.

II. EASE OF USE
In this section, the existing high-level synthesis

technologies for addressing FPGA productivity concerns are
discussed. The OpenCL architecture and programming
language are introduced.

A. High-Level Synthesis
FPGAs are being used in embedded systems and high

performance computing solutions to deploy complete
applications or act as a coprocessor to the general purpose
processor. FPGAs provide significant performance and power
advantages owing to their massively parallel architecture.
However, application development on FPGA in the
conventional manner requires dealing with the nuts and bolts of
hardware design. This leads to longer design cycles, time
consuming methods to iterate over different alternatives and
tedious debugging procedures resulting in lower turns per day.

High-level synthesis for FPGAs to enhance the portability,
scalability and productivity while maintaining the optimized
performance achievable, has been a classic area of interest for
decades. Several commercial tools and academic research
projects have risen to provide this abstraction in FPGAs and
significantly reduce the design efforts. These follow either a
high level programming approach or a graphical design capture
for development. Table 1 shows few such tools categorized
according to their source inputs.

In the text-based approach, the most common source input
is the C/C++ derivative with restrictions on certain aspects of
the language like recursions and pointer manipulations.
Interpretation of algorithms described at this level and
conversion to hardware has been extensively explored. The
tools aim towards facilitating faster prototype, implementation

and debugging through the familiar C environment. Advanced
compiler techniques are used to optimize the design for the
target. The generated HDL from these tools, in many cases,
have shown to outperform hand-crafted optimized HDL
implementations in larger designs. Handel-C [5] is a high level
language aimed towards synchronous hardware design and
development. Parallel constructs were used to express
parallelism in an otherwise sequential program written in
conventional C. Communication or synchronization between
the parallel processes was achieved through channel type.
Impulse-C [6], by Impulse Accelerated Technologies, is yet
another C-based language and is derived from Streams-C [7].
Based on ANSI-C, it is combined with a C compatible function
library for parallel programming. The streaming programming
model of the tool targets dataflow-oriented applications.
Impulse¬C Co-developer tools include a C-to-FPGA compiler
and platform support packages for a wide range of FPGA
based embedded systems and high performance computing
platforms. Similar to these, there are many other tools like C2H
[8], Catapult-C [9], Mitrion-C [10], C-to-Verilog [11], to name
a few, that explore into different techniques and mechanisms
for efficient compilation of traditional C into optimized
hardware. While the input specifications into these tools are
close to the C language, the code is often annotated with
additional constructs that control the specifics of the circuit
implementation. The program is written at a coarse grain level
and the tools extract instruction-level parallelism to achieve
concurrency. Fine-grained control is provided through options
like loop unrolling and pipelining. To be able to generate
optimized implementations, the developer has to follow a
hardware aware programming approach thus necessitating the
knowledge of basic circuit design.

TABLE I. HIGH-LEVEL SYNTHESIS TOOLS AND THEIR SOURCE INPUTS

Source Inputs Table Column Head

C/C++
C-to-Verilog, Impulse C, Handel C,
Xilinx Vivado(AutoESL), Mitrion C, FPGAC,
Synphony C, ROCCC, LegUp

System C Bluespec, Xilinx Vivado(AutoESL)

Java JHDL, MaxCompiler

Schematics Altium Designer, LabViewFPGA, Simulink

Python MyHDL

C# Kiwi

OpenCL is a platform independent framework introduced
by the Khronos group for parallel programming [12]. Being
functionally portable across platforms, it has opened up various
research avenues in heterogeneous computing. Though
OpenCL architecture and specifications are skewed towards
GPU programming, its framework can be efficiently mapped
onto various accelerator technologies. Commercial compilers
from companies such as AMD, NVIDIA, Intel and Apple
enable development of OpenCL applications on CPUs and
GPUs. For years, CUDA, which is available only for NVIDIA
cards, has been used to develop many GPU-accelerated
implementations. CUDA to OpenCL translators like CU2CL
[13] were created in an effort to utilize these designs on other
GPUs as well. Providing support for OpenCL on other
hardware architectures including, but not limited to, multi-core

models, reconfigurable FPGA fabric and heterogeneous
environments with different combinations of CPU, GPU and
FPGA is another path being tread.

OpenCL computation kernels are described at the finest
granularity making it an inherently parallel language. In case of
C-to-HDL compilers, the input language is sequential by
nature, placing a significant weightage on the capability of the
tool to extraction parallelism at the instruction level.
Optimizations at a fine-grain level can be achieved through the
use of appropriate directives. Due to this, a learning curve is
associated with every tool for writing C code in a manner that
is efficient for compilation to hardware. The developer needs
to be familiar with the hardware design concepts along with the
programming model of the tool and the additional options
provided in it to tweak the hardware implementation. OpenCL
on the other hand has an architecture and a programming
model that the developer needs to be familiar with. The manner
in which this is mapped onto an accelerator is abstracted from
the front end, thus ensuring that the programmer is agnostic of
the underlying hardware.

B. Overview of OpenCL
OpenCL is a parallel language specification aimed to

provide portability across different platforms in a
heterogeneous computing system. It consists of an API for
coordinating computational and communicational tasks with
the accelerators and a language based on C99 for describing
the compute core at the finest granularity. Detailed descriptions
of OpenCL concepts and architecture can be found in the
OpenCL Specification [12].

OpenCL ideas are described using four models, which
define platform, execution model, memory access and
programming model.

1) Platform Model
The OpenCL platform model consists of a host device

connected to one or more compute devices, each of which
contain compute units, which are internally composed of
processing elements. This is shown in Figure 1. Computations
are executed on these processing elements in a Single
Instruction, Multiple Data (SIMD) or Single Program, Multiple
Data (SPMD) fashion. The compute devices in a platform can
be CPU, GPU, DSP, FPGA or any other accelerator.

Fig. 1. The platform model for OpenCL architecture [12]

2) Execution Model
The kernel code in an OpenCL application contains the

core computational part of the implementation. Kernel

execution is mapped onto a N-dimensional index space where
1<N<4. The size of this index space, is known as the global
size. Each point in this space, termed as a work-item,
corresponds to a single instance of the kernel and is assigned a
unique global ID identified by its coordinates in space. Each of
the work-items executes the same code but the execution flow
of the code and the data operated on can vary. Work-items are
organized in work-groups and each work-group is assigned a
group ID and the work items in it have a local ID that
corresponds to their coordinates within the group. All work
items in a group execute concurrently.

The host program defines the context for kernel execution,
which includes kernel function, program objects and memory
objects. It also submits commands that control the interaction
between the host and the OpenCL devices. These can be kernel
execution commands which submit the kernel code for
execution on the devices, memory commands which control all
memory transfers and synchronization commands which
control the order of command execution.

3) Memory Model
Figure 2 illustrates OpenCL memory regions and their

relation to the execution model. Kernel instances (work-items)
have R/W access to four distinct memory regions, i.e. Global
Memory, Constant Memory, Local Memory and Private
Memory.

Fig. 2. OpenCL memory regions and their relation to the execution model

4) Programming Model
The OpenCL execution model supports data parallel and

task parallel programming models. In data parallel model, each
work-item executes on one element or a subset of elements in
memory, decided by its global ID. In task parallel
programming model, a single instance of the kernel executes
on the device. This is equivalent to having a single work-item
in the index space.

The OpenCL programming language is used to create
kernel programs that can be executed on one or more target
devices. It is based on the C99 specification and supports a
subset of the language with restrictions like recursion, function
pointers etc. It also consists of various extensions, e.g. address
space qualifiers, synchronization objects, built-in functions etc.

C. Related Work
In Novemeber 2011, Altera launched its OpenCL for

FPGAs program [14]. Kernel functions are implemented as
dedicated pipelined hardware circuits and replicated to further
exploit parallelism. On the host side, the OpenCL host program
with the standard OpenCL application programming interfaces
(API) is compiled using the ACL compiler. goHDR reported to
have achieved a substantial reduction in the development time
and a dramatic increase in performance using Altera’s OpenCL
for FPGA to develop an HDR-enabled television solution[15].

FCUDA explored into programming FPGAs using
Compute Unified Device Architecture (CUDA) [16. Its flow
includes source-to-source compilation from FCUDA annotated
CUDA code to C program for Autopilot. Autopilot is a high-
level synthesis tool that converts input specifications in C, C++
or SystemC into RTL descriptions for the target FPGA device
[17]. The source-to-source translator coarsens the granularity
and extracts parallelism at the level of thread blocks. ML-GPS
(Multi-Level Granularity Parallelism Synthesis) [18] extends
this framework to provide flexible parallelism at different
levels of granularity.

Lin et. al [19] designed the OpenRCL system for enabling
low-power high-performance reconfigurable computing. The
target framework is comprised of parameterized MIPS based
processor cores as processing elements. An LLVM based
compiler is used for conversion of kernel functions into low-
level descriptions. LLVM (formerly Low Level Virtual
Machine) is an open source compiler infrastructure [20].
Experimental results, using the Parallel Prefix Sum (Scan)
application kernel, showed that the performance of FPGA is
comparable to that of GPU while the power metric is
considerably in favor of FPGAs over the other platforms. This
work is generalized in MARC [21], which consists of one
control processor and the rest RISC or customized application
specific processing algorithmic cores, on its target platform.
Using the Bayesian inference application, the performance of a
few core variants were observed against a full custom hand-
optimized reference implementation on the FPGA. to
demonstrate the trade-offs.

Silicon-OpenCL (SOpenCL) [22] is an architecture
synthesis tool and follows a template-based hardware
generation for the FPGA accelerator. Source-to-source code
transformations coarsen the granularity of the kernel functions
from a work-item level to that of work-groups. SOpenCL tool
flow, which extends the LLVM compiler framework, generates
HDL code for these functions, which are then mapped onto the
configurable architectural template. This template includes
distributed control logic, a parameterized data path with the
functional units and streaming units for handling all data
transfers.

Falcao et. al. [3] proposed a multi-platform framework for
accelerating simulations in Low Density Parity Check (LDPC)
decoding. The OpenCL programming model was used to target
a CPU, GPU and an FPGA without any modifications to the
input code and using SOpenCL for mapping OpenCL kernels
onto FPGA reconfigurable fabric. Results have shown the GPU
and FPGA outperform the CPU in terms of throughput, while

the performance of the FPGA as compared to that of the GPU
depends on the size of the design and number of iterations.

Most of the OpenCL to FPGA projects include
development of a tool flow that converts the high level
specifications from C or OpenCL C to low level RTL
descriptions. This project aims to build an end-to-end flow
leveraging the existing tools for this purpose. The intention is
to use current technologies to the best advantage in converting
high-level algorithms to RTL descriptions so that other aspects
like architecture aware optimizations can be concentrated on.
Another aspect is that most approaches coarsen the granularity
to the work-group level, thereby following a sequential mode
of execution for all the work-items within a work-group. This
work attempts to increase the concurrency by maintaining the
fine-grained parallelism of the language.

D. Summary
This section presented a brief overview of high-level

synthesis for FPGAs and discussed a possible reason for the
tools not having gained much popularity. OpenCL was
introduced as a viable alternate high-level programming
language. The OpenCL architecture, programming models and
the language were presented including the related work in the
field of OpenCL for FPGAs.

III. APPROACH AND IMPLEMENTATION
This section introduces the approach and discusses the

implementation details involved in enabling development of
OpenCL application on FPGA platforms.

A. Approach and introduction to AutoESL
The OpenCL application exists in two parts – an OpenCL C

kernel that define the algorithm for a single instance in the
index space on the device and a C/C++ host program that uses
OpenCL API for configuring and managing the kernel
execution.

In this work, the conversion of the kernel code into
hardware circuitry utilizes Xilinx AutoESL C-to-HDL tool
[23]. A source-to-source translator is built to convert the kernel
program in OpenCL C language to AutoESL C code with
appropriate directives, thereby shifting the task of correct
directive based programming on the translator as opposed to
the developer. Adhering to the specifications of the OpenCL
architecture, the granularity is maintained at the level of a
work-item. Thus, the HDL core generated from AutoESL
represents a single kernel instance. Multiples of these are
instantiated and integrated with memory and dispatch
interfaces on the FPGA devices.

A subset of the OpenCL API for the host has been
supported to enable testing of applications on the accelerator
hardware. The target platform in this implementation is the
Convey HC-1 hybrid core computer [24].

AutoESL, a high-level synthesis tool by Xilinx, accepts
behavioral level and system level input specifications in C,
C++ or System C languages and produces equivalent hardware
description files in VHDL, Verilog and System C. It offers
directives and design constraints that drive the optimization
engine towards desired performance goals and RTL design.

The directives specified can either be pertaining to the
algorithm or the interfaces. HDL modules are generated as
cores with a data path and Finite State Machine (FSM) based
control logic. The AutoESL tool integrates with the LLVM
compiler infrastructure [25] and applies a variety of
optimization techniques on the input to reduce code
complexity, maximize data locality and extract more
parallelism. It also provides a method for functional
verification of the generated hardware description using RTL-
cosimulation.

B. Implementation Specifics
The steps involved in generating the host executable and a

full hardware implementation in the form of a bitstream for the
FPGA accelerator device is as shown in Figure 3. The OpenCL
host program is compiled and linked with the API library using
Convey’s cnycc compiler. The right-hand side shows the
processes involved in the conversion of a kernel from high
level to hardware. The parts of the flow enclosed in dotted
lines indicate the source-to-source translation from OpenCL C
language to AutoESL C. AutoESL synthesis refers to the C to
HDL synthesis performed by the tool. In the interface
generation, integration and implementation step, interfaces for
the kernel HDL modules are generated so as to integrate them
into the convey framework. The entire design is then
implemented to generate a bitstream using Xilinx ISE tools.

1) OpenCL to AutoESL Source-to-Source Translation
Various mechanisms are in use for source-to-source

translations between languages at the same abstraction level.
One of the methods adopted is to convert the input source to an
intermediate representation (IR), perform required
transformations on the IR and generate code in the output
language. Numerous compilation frameworks [26–28] are
available that can be leveraged for this purpose. With an
intention of exploring into the feasibility of managing all
transformations using simple graphs, Clang framework [29] is
used to obtain the Abstract Syntax Tree (AST) of the input
code and Graphtool [30] is used for further AST graph
manipulations.

Clang is an open source compiler front end, designed
essentially as an API with libraries for parsing, lexing, analysis
and more. This makes it easier to embed into other applications
as compared to gcc, which has a monolithic static compiler
binary. The Clang driver has an option to emit Clang AST files
for the source inputs. Using the ASTConsumer and Visitor
classes in the AST libraries, the tree is traversed to generate a
simple directed graph for the kernel functions, those declared
with the kernel qualifier, in dot format. A dot file is a plain text
graph description of the tree and can be used by various tools
for either graphic rendering or processing. Separate dot files
are generated for each kernel in case of multiple kernel tasks
defined in the application. While clang includes methods for
recursive AST traversal and Graphviz dot file generation,
custom methods are created for both in accordance with the
requirements. The dot file generated from the Clang driver
includes limited details about the code, with the information
being only about the type of a statement or expression for the
purpose of visualization. The custom AST traversal method
visits all required statements and includes the variables as well

as the operators into the dot file. This acts as input for the
graph processing tool called Graphtool.

Fig. 3. Overview of the design flow

Figure 4 shows the OpenCL C kernel program for a vector
addition application. It defines the task for a single instance
which adds one element of the first vector to the corresponding
element in the second vector and stores the sum in the result
vector. The instance identifies the index of this element in the
vector using its global ID. The dot file visualization for the
abstract syntax tree of vector addition kernel is shown in
Figure 5. The CompoundStmt node indicates the beginning of a
function body or the body of a statement.

Graphtool is a python-based module for graph analysis and
manipulations, with functions for many graph algorithms.
Filtering, purging or addition of nodes and modifications to the
tree are relatively easier to handle using this module as
compared to manipulating Clang’s AST within its framework.
The subgraph_isomorphism function in the topology
subpackage performs structural pattern matching and is used in
the translator to identify function calls. The local ID, global ID
and group ID for a work-item are accessed within the kernel
code. In the vector addition example get_global_id(0) is used
to obtain the global ID of the instance. The argument specifies
the dimension in which the ID is requested. In the hardware
implementation these values are to be sent to the core modules
as an input. For this reason, they are modified from being
called functions to arguments into the kernel function.

The starting addresses for the input and output variables are
passed as pointers into the kernel in OpenCL. By default,
pointers in function arguments are used to indicate BRAM
interfaces. In order to force additional handshake signals for
each of the ports in RTL, the pointers in the kernel function
arguments are annotated with AutoESL ap_bus interface

directive. The arguments with the __private access specifier
are transformed into variable declaration statements within the
function. This is because the private memory is specific to a
work-item and is implemented within the core.

Fig. 4. OpenCL C file with the kernel function for vector addition

Barriers in OpenCL allow for synchronization between
threads in a work-group. All work-items within a work-group
must execute this before any are allowed to continue beyond
the barrier. The translator modifies the barrier functions to
barrier_hit and barrier_done signals at the function interface.
In the present implementation, when a core reaches a barrier
instruction, it sends a value on the barrier_hit port and then
waits to receive a high on barrier_done before proceeding
further.

Fig. 5. Dot format visualization for the vector addition kernel

The resulting graph after performing all required
transformations is reparsed to generate an AutoESL C code
shown in Figure 6.

2) AutoESL Synthesis
AutoESL synthesizes the C program from the translator to

generate customized FSM with data path RTL implementation
that corresponds to a single processing element (PE) onto
which work-items are mapped (see Figure 7). The required
frequency of operation and the target FPGA device are
provided as input to the tool along with the annotated C code.
Apart from IO ports for the kernel function arguments, the
tool’s interface protocol provides clock, reset, start, done and
idle handshake signals for the generated module. Optimized
cores from Xilinx libraries, like floating point cores, storage
cores and functional unit cores are included into the HDL
design, by the tool, as required.

3) Integration and Mapping on Convey
The target platform in the implementation is the Convey

HC-1 hybrid core computer that consists of an Intel Xeon CPU

and an FPGA based reconfigurable coprocessor. The
coprocessor, connected to the CPU through the front-side bus
(FSB), hosts four Xilinx Virtex-5 XC5VLX330 compute
FPGAs known as application engines (AE), eight memory
controllers (MC) that support a total of sixteen DDR2 memory
channels and an Application Engine Hub (AEH) that
implements the interface to the Intel host. Each AE is
connected to the rest of the coprocessor through a dispatch
interface, memory controller interfaces, AE-AE interface and a
management interface. This framework is provided by Convey
in the form of Verilog modules.

Fig. 6. AutoESL C output generated by the translator

The Convey coprocessor is considered as an OpenCL
compute device with each of the AEs corresponding to a
compute unit as shown in Figure 7. At any given time a single
work-group is mapped onto an application engine. Scheduling
of the work-group tasks among the four compute units is done
by the host CPU. Each AE contains multiple instances of the
kernel cores onto which work-items are mapped. The top-level
Verilog module from AutoESL is parsed to generate
appropriate wrapper, dispatch and memory access modules that
are interfaced with the Convey provided framework. The
dispatch unit sends the appropriate IDs and start signals to the
cores. Round-robin arbiters control the load/store requests from
the cores to the memory controller interfaces. There are two
arbiters for every memory controller interface, each connecting
to the even and odd ports of the interface, thus facilitating up to
sixteen parallel memory accesses. The generation of the
interface modules and their integration are automated and does
not involve any user intervention. The final design is
implemented using Xilinx ISE tools to generate the bitstream
for the compute FPGAs on Convey.

The global memory, which can be read/written to by all
work-items, is mapped onto the external DDR2 modules on the
coprocessor. The latency of this memory is high; however,
sixteen channels are available for parallel accesses. Local
memory being smaller and faster as compared to the global
memory, is implemented using on-chip BRAMs on the AE.
Registers within the kernel core modules are used for
implementing private memory.

4) Host Library
The main() function in an OpenCL host program primarily

performs the following operations using OpenCL API:

• Detect the accelerator connected to the host machine,

• Create context and command queue for the accelerator,

__kernel void VectorAdd (
 __global const long * a,
 __global const long * b,
 __global long * c,
 int iNumElements){
 int tGID = get_global_id(0);
 if(tGID < iNumElements)
 c[tGID] = a[tGID] + b[tGID];}

#include ”VectorAdd.h”
void VectorAdd(
 const long * a,
 const long * b,
 long * c,
 int iNumElements,
 int get_global_id_0){
#pragma AP interface ap_bus depth=1024 port=a
#pragma AP interface ap_bus depth=1024 port=b
#pragma AP interface ap_bus depth=1024 port=c
 int tGID = get_global_id_0;
 if (tGID < iNumElements)
 c[tGID] = a[tGID] + b[tGID];}

• Load kernel file, build a program and kernel object,

• Create memory objects for the kernel arguments,

• Enqueue buffers to transfer data from host to device memory,

• Enqueue kernel for execution, and

• Read the results from the memory objects.

The host library in this work contains definitions for a
subset of the API required to test the execution of the kernel
tasks on the hardware. The definitions are targeted specifically
for the Convey platform. A driver for the FPGA device is yet
to be implemented and presently all communications between
the host and the accelerator are managed through Convey
specific assembly routines.

One of the aspects of OpenCL is online compilation where
the OpenCL C programs are built at run-time. Since FPGA
implementation times on Convey run into hours, a pre-
compiled bitstream is loaded onto the hardware. One
disadvantage of following an offline compilation model is that
the number of dimensions and the size of a work-group in each
dimension has to be fixed at compile-time as the hardware
implementation varies depending on these numbers. The
parameters and their values are declared in a file and passed as
input into the translator. In the current implementation the
number of physical cores is same the work-group size.

Fig. 7. System architecture on Convey

The definitions implemented for the API are as explained
here :

• clSetKernelArg() function sets the value for a specific
argument of a kernel. The AEs on Convey contain application
engine registers (AEGs) over which the host has read/write
access. The host sends the kernel arguments to the compute
devices by writing these values onto the AEGs in each AE. In
this work, the AEG registers from 0 to 9 are reserved.
Arguments are written over starting at AEG register 10.

• clEnqueueWriteBuffer() and clEnqueueReadBuffer()
functions transfer data between host memory and the buffer
object allocated on the coprocessor memory region.

• clEnqueueNDRangeKernel() is implemented as a blocking
function that enqueues kernel for execution and waits for its
completion. The kernel task is divided into work-groups and

dispatched to the compute devices. At a given instant of time,
four work-group tasks are being executed concurrently on the
four AEs on Convey. The scheduling of the work-group tasks
between the AEs is managed by the host machine, using
polling technique. The AEs are constantly polled after dispatch
of the tasks to check their state. When any are done, the next
work-group task is dispatched onto it. This process is
continued until all tasks are completed.

C. Summary
In this section the steps involved in the compilation of

kernels into HDL cores and the architecture of the system on
the FPGA hardware, was discussed using the example of a
vector addition application. It was seen that existing tools can
be used to the best advantage without having to build our own
compiler. The host library supports functionality for some of
the OpenCL API, assuming the FPGA coprocessor to be
present and available.

IV. RESULTS
The main objective of this work is to develop a proof of

concept system that enables the development of OpenCL
applications on FPGA platforms. In this section, a simple
vector addition application is studied. The performance and
resource utilization numbers for different input parameters are
presented and explained.

A. Case Study: Vector Addition
The execution flow for the host program is shown in Figure

8. Initialization includes allocation of host memory for the
input vectors and assigning initial values. Kernel arguments are
sent to the AEG registers on the application engines and the
kernel is enqueued for execution. The total computation time
for the accelerator in OpenCL code involves the time taken for
transfer of input data to device or coprocessor memory, setting
of kernel arguments, execution time on hardware and the time
taken to transfer results back to host memory. Convey provides
a memory allocation instruction through which the host can
directly allocate space on the coprocessor memory. Using this
would avoid the need to transfer data between host and
coprocessor memory on Convey.

Since the method of offline compilation of OpenCL kernels
is being used, parameters pertaining to the dimensions of the
solution index space, the global size for the solution and the
local size of a work-group are fixed at compile time. In the
current implementation the size of a work-group is the same as
the number of physical cores on each AE in the Convey
coprocessor. The performance of the application was evaluated
for different sizes of the work-group.

After the integration of the kernel modules and the
interfaces into the framework, verilog simulation is performed
over the entire design using Convey’s simulation environment.
After ensuring functional correctness, the application was
executed on hardware.

1) Performance and Resource Utilization
Table 2 compares the performance results between the

vector addition example from Convey and the OpenCL
implementation for the same application. All programs are
executed over vectors of size 1024. The target devices are four

Virtex-5 XC5VLX330 FPGAs operating at a frequency of 150
MHz.

Fig. 8. Execution flow for the vector addition application

TABLE II. PERFORMANCE RESULTS FOR VECTOR ADDITION
APPLICATION FOR VECTORS OF SIZE 1024

 Convey
Example

OpenCL
implementations

64
cores

132
cores

192
cores

Execution time (in ms)
/w memory transfer 0.064 1.385 0.67 0.463

Execution time (in ms)
/wo memory transfer 1.677 0.968 0.755

The bitstreams for the OpenCL accelerator devices are
generated for three different values of the work-group size - 16,
32 and 48. In each case, the number of physical cores on each
AE corresponds to the size of the work-group. The total
number of cores on the coprocessor device is 64, 128 and 192
respectively. Convey’s example design consists of 16 adder
modules per FPGA, amounting to a total of 64 modules. These
modules access memory in a continuous manner over the entire
range as opposed to the OpenCL implementations where
batches of tasks are scheduled by the host. The scheduling at
the work-group level calls for additional overhead which is
prominent in smaller designs as can be seen from the execution
times in the table. With the vector size constant, as the work-
group size is increased, the number of work-group tasks to be
scheduled decreases thus reducing the total execution time. The
performance numbers for different vector sizes is shown in
Figure 9.

AutoESL synthesis provides a report for every generated
design which contains the estimated resources for the
hardware. On testing other sample AutoESL applications, these
numbers have been found to comply well with the actual
resource utilization numbers from Xilinx tools after

implementation. The area estimates, according to the AutoESL
tool for a single vector addition module is as shown in Table 3.

Fig. 9. Performance results for different vector sizes

TABLE III. AREA ESTIMATES FOR A SINGLE CORE FROM AUTOESL
REPORT

Name FF LUT BRAM DSP SLICE
Component - - - - -
Expression 0 44 - - -
FIFO - - - - -
Memory - - - - -
Multiplexer - 3 - - -
Register 99 - - - -
Total 99 47 0 0 0
Available 207360 207360 576 192 51840

The total device utilization for each of the implementations
is shown in Figure 10. The numbers represent the resources for
a single compute FPGA and are expressed as a percentage of
the maximum device resources available. Modules provided in
the Convey framework consume about 11% of the device
resources.

The resource utilization for the OpenCL implementations
are observed to be much lesser than the Convey example. With
enhancements to the memory access patterns and
differentiation between the physical and logical number of
cores in a work-group, performance improvements over the
current implementation can be achieved.

Fig. 10. Resource Utilization for vector addition application for a single AE

B. Case Study: Matrix multiplication
The matrix multiplication computation is used in many

applied math and scientific applications. The execution flow of
the host program for this application is similar to the flow

discussed for vector addition in the previous section. Figure 11
shows the OpenCL kernel code.

Figure 12 shows the equivalent AutoESL code. The index
space for the matrix multiplication application is 2-
dimensional. Each work-item evaluates one element in the
result matrix. In the current implementation, a work-group is of
size 4 by 4 with a total of 16 work-items. The work-group sizes
in each dimension can vary as long as it evenly divides the
entire global space. The HDL generated from AutoESL was
successfully integrated into the Convey framework and
implemented using Xilinx ISE tools. The functionality of the
application was tested in simulation for different matrix sizes,
using the host program and the Verilog files for the hardware.

Fig. 11. OpenCL C file with the kernel function for matrix multiplication

C. Comparison of Methodologies
Table 4 shows a comparison of the compilation flow and

architecture presented in this work with other implementations,
which were discussed in the related work section. The first
parameter defines the nature of the processing element (PE) in
each framework. OpenRCL implementation includes
parameterized MIPS cores over which kernel instances are
executed as threads. Though the processor supports variable
datapath width and multi-threading, speed-up comparable to a
complete hardware circuitry is hard to achieve. SOpenCL uses
an architectural template for the generation of HDL. This
template is implemented as a combination of a data path and a
streaming unit. In the flow presented in this paper, PEs are
customized FSMD cores generated by the AutoESL tool,
optimized for the application at hand. For complex
computations, aggressive optimizations can be achieved by
enforcing area and performance constraints into the tool.

Fig. 12. AutoESL C output for matrix multiplication generated by the
translator

The second aspect of comparison is the parallelism in the
implementation. OpenCL kernels are defined at the finest

granularity. SOpenCL coarsens the granularity to the level of
work-groups using thread serialization technique. The
computation is enclosed in nested loops, one for each
dimension, thus enforcing sequential execution of work-items
in all dimensions within a work-group. In this project, the fine-
grained parallelism of the application is maintained.

Support for multiple FPGA devices is provided in the
current work and has been successfully demonstrated. A higher
degree of parallelism is achieved on partitioning the execution
onto multiple FPGAs. There has not been any explicit mention
of this feature in the other implementations.

The compilation flow presented in this paper avoids the re-
invention of a C-to-HDL compiler by using an existing tool for
the purpose of conversion. Both OpenRCL and SOpenCL build
their compilers using the LLVM framework.

 Another aspect is verilog simulation. A simluation
environment is available in the current implementation using
which the verilog files can be simulated along with the host
program to check for functional correctness or try out
alternatives.

Table 5 presents comparisons against the Altera’s tool for
supporting OpenCL applications on FPGAs. Altera’s tool
implements the kernel logic as deeply pipelined hardware
circuits, which are then replicated to increase parallelism. A
common factor is that both implementations are platform
dependant. Altera’s tool is used for Altera’s FPGA families.
The implementation presented in this paper is specific to Xilinx
devices due to the use of Xilinx AutoESL tool in the
compilation flow. The current OpenCL API library in this
work provides a limited support and will be extended in future
to include other features as well.

TABLE IV. COMPARISON WITH SOPENCL AND OPENRCL
IMPLEMENTATIONS

Table Head Presented
flow OpenRCL SOpenCL

Processing elements Customized
FSMD

Parametrized
MIPS FSMD

Fine-grain
parallelism Yes Yes No

Support for multiple
FPGAs Yes No No

Design of compiler No Yes Yes
Verilog simulation Yes No No

D. Challenges in Using OpenCL
OpenCL provides a good abstraction from the low level

details of hardware implementation through its virtual
architecture. This ensures smaller development times and faster
time to market. Also, the applications are portable across
different platforms. At the same time, portability is only
functional. Various architecture aware optimizations are
needed for every hardware device, in order to obtain maximum
performance.

One the biggest advantage of FPGAs is the ability to use
different bit widths for the data. An example application that
utilizes this is genome sequencing in bioinformatics. This
advantage is nullified OpenCL coding, as the developer is
limited to the numerical data types provided in the language.

__kernel void matrixMul (__global long *C,
__global long *B, __global long *A, uint wA, uint
wB){
 int tx = get_global_id(0);
 int ty = get_global_id(1);
 long value = 0 ;
 for (int k = 0 ; k < wA; k++){
 long As = A[ty * wA + k] ;
 long Bs = B[k * wB + tx] ;
 value += As * Bs ;}
 C[ty * wA + tx] = value ;}

#include ”core_header.h”
void matrixMul(long *C, long *B, long *A, uint wA,
uint wB, int get_global_id_0, int get_global_id_1) {
#pragma AP interface ap_bus depth=64 port=C
#pragma AP interface ap_bus depth=64 port=B
#pragma AP interface ap_bus depth=64 port=A
 int tx = get_global_id_0;
 int ty = get_global_id_1;
 long value = 0; int k;
 for (k = 0 ; k < wA ; k++) {
 long As = A [ty * wA + k];
 long Bs = B [k * wB + tx];
 value += As * Bs;}
 C [ty _ wA + tx] = value;}

E. Summary
This section discussed the flow of a vector addition

application in OpenCL and its execution on FPGA hardware.
The performance and resource utilization values for different
solution sizes were presented. Also, comparisons were drawn
on the features of this work against other related
implementations.

TABLE V. COMPARISON WITH ALTERA’S OPENCL FOR FPGAS

 Presented flow OpenCL for FPGAs
Processing elements Customized FSMD Pipelined hardware
Platform dependent Yes Yes
OpenCL runtime
support Work in progress Good

V. CONCLUSIONS
High-performance applications often require high design

efforts for FPGA implementations. This project aims towards
improving the design productivity of FPGAs using OpenCL as
the high-level programming language for development. In this
work a method of compilation of OpenCL C kernels into
hardware descriptions was discussed. It also presented the
design and implementation of architecture on the
reconfigurable fabric to support the execution of the
computation kernels by interfacing the cores with host and
memory modules. On the host side, the functions in the
OpenCL API required to manage kernel execution were
supported to test the flow. Conversion of the kernels to device
specific executable and execution of the application was
successfully demonstrated in simulations and on the Convey
HC-1 hybrid computer.

The main aim of this work was to successfully demonstrate
the compilation and execution an OpenCL application on
FPGA platform. The simulation and the hardware results were
presented for a vector addition program. The work can be
extended to provide a more complete and robust flow with
improved performance for more complex designs. The
following points are the main areas for enhancements.

• In this work, only a subset of the OpenCL host API was
supported on the host. Also, the definitions contained Convey
specific assembly routines to perform the desired operations,
assuming that FPGAs were connected to the host and were
available for programming. These can be made generic.

• The compilation flow can be extended to support more
features of the OpenCL language. Special data types for
images, vectors and built-in math functions are used in many
applications.

• In the system architecture, modifications can be done to the
memory access patterns to improve the memory bandwidth
utilization. For example, if the memory accesses are sequential,
then contiguous elements can be pre-fetched from memory in
order to reduce the latency in subsequent off-chip requests.

REFERENCES
[1] Tsoi, K. H. and Luk, W. Axel: A Heterogeneous Cluster with FPGAs

and GPUs, in Proc. of FPGA’10, 2010.
[2] Ahmed, T., OpenCL Framework for a CPU, GPU and FPGA Platform.

Master’s thesis. University of Toronto, 2011.

[3] Falcao, G. et al., Shortening design time through multiplatform
simulations with a portable OpenCL golden-model: the LDPC decoder
case. in IEEE 20th International Symposium Field-Programmable
Custom Computing Machines, 2012.

[4] Kepner, J., HPC Productivity: An Overarching View. International
Journal of HPC Applications. vol. 18, 2004, pp. 393–397.

[5] Embedded Solutions. Handel-C Language Reference Manual.
http://www.pa.msu.edu/hep/d0/l2/Handel-C/Handel%20C.PDF.

[6] Impulse Accelerated Tech. Impulse CoDeveloper C-to-FPGA Tools.
http://www.impulseaccelerated.com/ products universal.htm.

[7] Gokhale, M. Stone, J. Arnold, J. and Kalinowski M. Stream-Oriented
FPGA Computing in the Streams-C High Level Language. in IEEE
Symposium on FCCM, 2000.

[8] Altera Corp. Nios II C2H Compiler User Guide, 2009.
[9] Calypto, Catapult, http://calypto.com.
[10] Mohl, S. The Mitrion-C Programming Language. Mitrionics Inc., 2005.
[11] Rotem, N. C to Verilog. http://www.c-to-verilog.com/.
[12] Khronos Group, “OpenCL specification 1.1.”
[13] Martinez, G. Gardner, M. and Feng, W.-c. CU2CL: A CUDA-to-

OpenCL Translator for Multi- and Many-core Architectures. in Proc. of
IEEE 17th Int. Conf. on Parallel and Distributed Systems (ICPADS),
2011.

[14] Altera Corp. Implementing FPGA Design with the OpenCL Standard.
Whitepaper, 2011.

[15] Altera Corp. Altera’s OpenCL for FPGAs Program Delivers Dramatic
Reductions in Development Times for Early Customers.
www.altera.com/corporate/newsroom/releases/2012/products/nr-opencl-
gohdr.html.

[16] Nvidia. CUDA. http://www.nvidia.com/object/cuda home new.html.
[17] Zhang, Z. et al. AutoPilot: A Platform-Based ESL Synthesis System. in

High-Level Synthesis, 2008.
[18] Papakonstantinou, A. et al., Multilevel Granularity Parallelism Synthesis

on FPGAs. in Proc. of FCCM, 2011.
[19] Lin, M. Lebedev, I. and Wawrzynek, J. OpenRCL: Low-Power High-

Performance Computing with Reconfigurable Devices,” in Proc of FPL.
2010.

[20] Lattner, C. and Adve, V., LLVM: A Compilation Framework for
Lifelong Program Analysis and Transformation. in Proc. of the
ISPCGaO, 2004.

[21] Lebedev, I. et al., MARC: A Many-Core Approach to Reconfigurable
Computing. in Proc. of ICRC, 2010.

[22] Owaid, M. Bellas, N. Daloukas, K. and Antonopoulos, C. D. Synthesis
of Platform Architectures from OpenCL Programs. in Proc. of FCCM.,
2011.

[23] Xilinx Inc., http://www.xilinx.com/products/design-tools/ autoesl/
index.htm.

[24] Convey, “Conveys hybrid-core technology: the HC-1 and the HC-1ex.”
http://www.conveycomputer.com/Resources/Convey_HC1_ Family.pdf.

[25] LLVM, llvm.org/Users.html.
[26] Quinlan, D. ROSE: Compiler Support for Object Oriented Frameworks.

in Proc. of CPC, 2000.
[27] Dave, C. et al., Cetus: A Source-to-Source Compiler Infrastructure for

Multicores. Journal Computer. Vol 42, Issue 12, 2009.
[28] GCC, http://gcc.gnu.org/.
[29] LLVM. “clang: a C language family frontend for LLVM.”

http://clang.llvm.org/.
[30] Graph-tool. http://projects.skewed.de/graph-tool/.
[31] Chase, J. Nelson, B. Bodily, J. Wei, Z. and Lee, D.-J. Real-Time Optical

Flow Calculations on FPGA and GPU Architectures: A Comparison
Study. in Proc. of FCCM, 2008.

