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High-level FPGA synthesis tools aim towards increasing the 
productivity of FPGAs and bringing them within the reach 
software developers and domain experts. OpenCL is a 
specification introduced for parallel programming purposes 
across platforms. In this paper, an automated compilation flow to 
generate customized application-specific hardware descriptions 
from OpenCL computation kernels is reported. The flow uses 
Xilinx AutoESL tool to obtain the design specification for 
OpenCL kernel cores. The provided architecture integrates 
generated cores with memory and OpenCL host application 
interfaces. The host program in the OpenCL application is 
compiled and executed to demonstrate a proof-of-concept 
implementation towards achieving an end-to-end flow that 
provides abstraction of hardware at the front-end. 

Keywords— source-to-source translation; OpenCL; AutoESL; 
Vivado; FPGA; Convey; HPC 

I. INTRODUCTION 
An increasing number of applications are embracing High 

Performance Computing (HPC) solutions for their processing 
needs. With frequency scaling having run its course, 
conventional processors have given way to various accelerator 
technologies to meet the computational demands. These range 
from Graphic Processing Units (GPU), Field Programmable 
Gate Arrays (FPGA), heterogeneous multicore processors like 
Cell to hybrid architectures like Convey HC-1. Different 
classes of applications employ different targets best suited for 
the problem at hand. Each of the accelerator technologies 
possesses advantages over the other for variant tasks leading to 
possibilities of a heterogeneous mix of architectures [1–3]. 
Reconfigurable systems like FPGAs provide promising 
opportunities for acceleration in many fields due to their 
inherent flexibility and massive parallel computation 
capabilities. 

The availability of a multitude of hardware devices require 
comprehensive approaches to solution which include the 
knowledge of underlying architecture along with methods of 
designing the algorithm. This translates to an increase in 
implementation effort, high learning curves and architecture 
aware programming at the developer’s end. In 2004, DARPA 
launched a project named High Productivity Computing 
Systems (HPCS) that aimed at providing economically viable 
high productivity systems [4]. DARPA proposed a “time to 

solution” as a metric that includes the time to develop a 
solution as well the time taken to execute it. CPUs and GPUs 
are programmed in high-level languages like C/C++ and 
CUDA. This level of abstraction enables faster deployment of 
solutions. In the case of FPGAs, implementations require 
tedious hardware design and debug which greatly impact the 
development time. 

Enormous acceleration can be delivered by FPGAs owing 
to the flexibility and parallelism provided by the fine-grained 
architecture. However, being able to fully harness this potential 
presents challenges in terms of programmability. 
Implementation of applications on FPGAs involve 
cumbersome RTL programming and manual optimizations. 
Besides domain expertise and software design skills, 
developers are required to understand intricate details of 
hardware design including timing closure, state machine 
control and cycle-accurate implementations. 

As a result the effort in drastically reducing the execution 
time translates to a significant increase in the time to develop 
the solution. Chase et al implemented a tensor-based real time 
optical flow algorithm on FPGA and GPU platforms [31]. A 
fixed-point version was mapped on a Virtex II Pro XC2VP30 
FPGA in the Xilinx XUP V2P board and a single- precision 
floating-point implementation was mapped on an Nvidia 
Geforce 880 GTX GPU with appropriate design optimizations 
for each platform. Comparable results were achieved for 
performance on the FPGA and the GPU, while the power 
consumption was significantly lower on the FPGA. However, 
the FPGA implementation took more than 12x longer to 
develop, as compared to the GPU implementation. 

There has been significant research and industry related 
work in providing high level programming solutions for FPGA 
to reduce these design efforts. None of it yet succeed in 
abstracting all implementation details as the knowledge of 
hardware concepts is required, to an extent, to appropriately 
design the software solution for maximum performance. 

OpenCL (Open Computing Language) is a cross platform 
standard for building parallel applications. The OpenCL 
programming model provides a standard framework that 
enhances portability across devices essentially rendering it 
platform independent. It enables the developer to focus on the 
algorithm while abstracting the implementation details. Being 



able to develop applications in OpenCL for FPGA platforms 
would result in faster implementation times and time-to-
market. 

Supporting OpenCL applications on a new platform 
requires a compiler to translate the kernels to the device 
specific executable, a library for the OpenCL API and a driver 
that manages the communications between the host and the 
devices. This work reports a proof of concept system that 
enables OpenCL application development on FPGAs. An 
efficient method for compiling OpenCL kernel tasks to 
hardware is demonstrated, without having to build a compiler 
from scratch. Also, existing tools are leveraged as required. A 
system architecture is presented for the target device with an 
automated generation of interfaces for the kernel. Also, a 
library that supports a subset of the OpenCL host API is 
provided. 

The rest of the paper is organized as follows. Section 2 
presents a background on high-level synthesis for FPGA 
platforms and overviews the OpenCL specifications. Section 3 
introduces the source-to-source translation problem and details 
the compilation processes. The mapping of the execution 
model on the target hardware is also discussed. The results 
obtained in this work and comparisons with other 
implementations are discussed in Section 4. Section 5 
concludes the paper and proposes future work. 

II. EASE OF USE 
In this section, the existing high-level synthesis 

technologies for addressing FPGA productivity concerns are 
discussed. The OpenCL architecture and programming 
language are introduced. 

A. High-Level Synthesis 
FPGAs are being used in embedded systems and high 

performance computing solutions to deploy complete 
applications or act as a coprocessor to the general purpose 
processor. FPGAs provide significant performance and power 
advantages owing to their massively parallel architecture. 
However, application development on FPGA in the 
conventional manner requires dealing with the nuts and bolts of 
hardware design. This leads to longer design cycles, time 
consuming methods to iterate over different alternatives and 
tedious debugging procedures resulting in lower turns per day. 

High-level synthesis for FPGAs to enhance the portability, 
scalability and productivity while maintaining the optimized 
performance achievable, has been a classic area of interest for 
decades. Several commercial tools and academic research 
projects have risen to provide this abstraction in FPGAs and 
significantly reduce the design efforts. These follow either a 
high level programming approach or a graphical design capture 
for development. Table 1 shows few such tools categorized 
according to their source inputs. 

In the text-based approach, the most common source input 
is the C/C++ derivative with restrictions on certain aspects of 
the language like recursions and pointer manipulations. 
Interpretation of algorithms described at this level and 
conversion to hardware has been extensively explored. The 
tools aim towards facilitating faster prototype, implementation 

and debugging through the familiar C environment. Advanced 
compiler techniques are used to optimize the design for the 
target. The generated HDL from these tools, in many cases, 
have shown to outperform hand-crafted optimized HDL 
implementations in larger designs. Handel-C [5] is a high level 
language aimed towards synchronous hardware design and 
development. Parallel constructs were used to express 
parallelism in an otherwise sequential program written in 
conventional C. Communication or synchronization between 
the parallel processes was achieved through channel type. 
Impulse-C [6], by Impulse Accelerated Technologies, is yet 
another C-based language and is derived from Streams-C [7]. 
Based on ANSI-C, it is combined with a C compatible function 
library for parallel programming. The streaming programming 
model of the tool targets dataflow-oriented applications. 
Impulse¬C Co-developer tools include a C-to-FPGA compiler 
and platform support packages for a wide range of FPGA 
based embedded systems and high performance computing 
platforms. Similar to these, there are many other tools like C2H 
[8], Catapult-C [9], Mitrion-C [10], C-to-Verilog [11], to name 
a few, that explore into different techniques and mechanisms 
for efficient compilation of traditional C into optimized 
hardware. While the input specifications into these tools are 
close to the C language, the code is often annotated with 
additional constructs that control the specifics of the circuit 
implementation. The program is written at a coarse grain level 
and the tools extract instruction-level parallelism to achieve 
concurrency. Fine-grained control is provided through options 
like loop unrolling and pipelining. To be able to generate 
optimized implementations, the developer has to follow a 
hardware aware programming approach thus necessitating the 
knowledge of basic circuit design. 

TABLE I.  HIGH-LEVEL SYNTHESIS TOOLS AND THEIR SOURCE INPUTS 

Source Inputs Table Column Head 

C/C++ 
C-to-Verilog, Impulse C, Handel C, 
Xilinx Vivado(AutoESL), Mitrion C, FPGAC, 
Synphony C, ROCCC, LegUp  

System C Bluespec, Xilinx Vivado(AutoESL) 

Java JHDL, MaxCompiler 

Schematics Altium Designer, LabViewFPGA, Simulink 

Python MyHDL 

C# Kiwi 

OpenCL is a platform independent framework introduced 
by the Khronos group for parallel programming [12]. Being 
functionally portable across platforms, it has opened up various 
research avenues in heterogeneous computing. Though 
OpenCL architecture and specifications are skewed towards 
GPU programming, its framework can be efficiently mapped 
onto various accelerator technologies. Commercial compilers 
from companies such as AMD, NVIDIA, Intel and Apple 
enable development of OpenCL applications on CPUs and 
GPUs. For years, CUDA, which is available only for NVIDIA 
cards, has been used to develop many GPU-accelerated 
implementations. CUDA to OpenCL translators like CU2CL 
[13] were created in an effort to utilize these designs on other 
GPUs as well. Providing support for OpenCL on other 
hardware architectures including, but not limited to, multi-core 



models, reconfigurable FPGA fabric and heterogeneous 
environments with different combinations of CPU, GPU and 
FPGA is another path being tread. 

OpenCL computation kernels are described at the finest 
granularity making it an inherently parallel language. In case of 
C-to-HDL compilers, the input language is sequential by 
nature, placing a significant weightage on the capability of the 
tool to extraction parallelism at the instruction level. 
Optimizations at a fine-grain level can be achieved through the 
use of appropriate directives. Due to this, a learning curve is 
associated with every tool for writing C code in a manner that 
is efficient for compilation to hardware. The developer needs 
to be familiar with the hardware design concepts along with the 
programming model of the tool and the additional options 
provided in it to tweak the hardware implementation. OpenCL 
on the other hand has an architecture and a programming 
model that the developer needs to be familiar with. The manner 
in which this is mapped onto an accelerator is abstracted from 
the front end, thus ensuring that the programmer is agnostic of 
the underlying hardware. 

B. Overview of OpenCL 
OpenCL is a parallel language specification aimed to 

provide portability across different platforms in a 
heterogeneous computing system. It consists of an API for 
coordinating computational and communicational tasks with 
the accelerators and a language based on C99 for describing 
the compute core at the finest granularity. Detailed descriptions 
of OpenCL concepts and architecture can be found in the 
OpenCL Specification [12]. 

OpenCL ideas are described using four models, which 
define platform, execution model, memory access and 
programming model. 

1) Platform Model 
The OpenCL platform model consists of a host device 

connected to one or more compute devices, each of which 
contain compute units, which are internally composed of 
processing elements. This is shown in Figure 1. Computations 
are executed on these processing elements in a Single 
Instruction, Multiple Data (SIMD) or Single Program, Multiple 
Data (SPMD) fashion. The compute devices in a platform can 
be CPU, GPU, DSP, FPGA or any other accelerator. 

 
Fig. 1. The platform model for OpenCL architecture [12] 

2) Execution Model 
The kernel code in an OpenCL application contains the 

core computational part of the implementation. Kernel 

execution is mapped onto a N-dimensional index space where 
1<N<4. The size of this index space, is known as the global 
size. Each point in this space, termed as a work-item, 
corresponds to a single instance of the kernel and is assigned a 
unique global ID identified by its coordinates in space. Each of 
the work-items executes the same code but the execution flow 
of the code and the data operated on can vary. Work-items are 
organized in work-groups and each work-group is assigned a 
group ID and the work items in it have a local ID that 
corresponds to their coordinates within the group. All work 
items in a group execute concurrently.  

The host program defines the context for kernel execution, 
which includes kernel function, program objects and memory 
objects. It also submits commands that control the interaction 
between the host and the OpenCL devices. These can be kernel 
execution commands which submit the kernel code for 
execution on the devices, memory commands which control all 
memory transfers and synchronization commands which 
control the order of command execution. 

3) Memory Model 
Figure 2 illustrates OpenCL memory regions and their 

relation to the execution model. Kernel instances (work-items) 
have R/W access to four distinct memory regions, i.e. Global 
Memory, Constant Memory, Local Memory and Private 
Memory. 

 
Fig. 2. OpenCL memory regions and their relation to the execution model 

4) Programming Model 
The OpenCL execution model supports data parallel and 

task parallel programming models. In data parallel model, each 
work-item executes on one element or a subset of elements in 
memory, decided by its global ID. In task parallel 
programming model, a single instance of the kernel executes 
on the device. This is equivalent to having a single work-item 
in the index space. 

The OpenCL programming language is used to create 
kernel programs that can be executed on one or more target 
devices. It is based on the C99 specification and supports a 
subset of the language with restrictions like recursion, function 
pointers etc. It also consists of various extensions, e.g. address 
space qualifiers, synchronization objects, built-in functions etc. 



C. Related Work 
In Novemeber 2011, Altera launched its OpenCL for 

FPGAs program [14]. Kernel functions are implemented as 
dedicated pipelined hardware circuits and replicated to further 
exploit parallelism. On the host side, the OpenCL host program 
with the standard OpenCL application programming interfaces 
(API) is compiled using the ACL compiler. goHDR reported to 
have achieved a substantial reduction in the development time 
and a dramatic increase in performance using Altera’s OpenCL 
for FPGA to develop an HDR-enabled television solution[15]. 

FCUDA explored into programming FPGAs using 
Compute Unified Device Architecture (CUDA) [16. Its flow 
includes source-to-source compilation from FCUDA annotated 
CUDA code to C program for Autopilot. Autopilot is a high-
level synthesis tool that converts input specifications in C, C++ 
or SystemC into RTL descriptions for the target FPGA device 
[17]. The source-to-source translator coarsens the granularity 
and extracts parallelism at the level of thread blocks. ML-GPS 
(Multi-Level Granularity Parallelism Synthesis) [18] extends 
this framework to provide flexible parallelism at different 
levels of granularity. 

Lin et. al [19] designed the OpenRCL system for enabling 
low-power high-performance reconfigurable computing. The 
target framework is comprised of parameterized MIPS based 
processor cores as processing elements. An LLVM based 
compiler is used for conversion of kernel functions into low-
level descriptions. LLVM (formerly Low Level Virtual 
Machine) is an open source compiler infrastructure [20]. 
Experimental results, using the Parallel Prefix Sum (Scan) 
application kernel, showed that the performance of FPGA is 
comparable to that of GPU while the power metric is 
considerably in favor of FPGAs over the other platforms. This 
work is generalized in MARC [21], which consists of one 
control processor and the rest RISC or customized application 
specific processing algorithmic cores, on its target platform. 
Using the Bayesian inference application, the performance of a 
few core variants were observed against a full custom hand-
optimized reference implementation on the FPGA. to 
demonstrate the trade-offs. 

Silicon-OpenCL (SOpenCL) [22] is an architecture 
synthesis tool and follows a template-based hardware 
generation for the FPGA accelerator. Source-to-source code 
transformations coarsen the granularity of the kernel functions 
from a work-item level to that of work-groups. SOpenCL tool 
flow, which extends the LLVM compiler framework, generates 
HDL code for these functions, which are then mapped onto the 
configurable architectural template. This template includes 
distributed control logic, a parameterized data path with the 
functional units and streaming units for handling all data 
transfers. 

Falcao et. al. [3] proposed a multi-platform framework for 
accelerating simulations in Low Density Parity Check (LDPC) 
decoding. The OpenCL programming model was used to target 
a CPU, GPU and an FPGA without any modifications to the 
input code and using SOpenCL for mapping OpenCL kernels 
onto FPGA reconfigurable fabric. Results have shown the GPU 
and FPGA outperform the CPU in terms of throughput, while 

the performance of the FPGA as compared to that of the GPU 
depends on the size of the design and number of iterations. 

Most of the OpenCL to FPGA projects include 
development of a tool flow that converts the high level 
specifications from C or OpenCL C to low level RTL 
descriptions. This project aims to build an end-to-end flow 
leveraging the existing tools for this purpose. The intention is 
to use current technologies to the best advantage in converting 
high-level algorithms to RTL descriptions so that other aspects 
like architecture aware optimizations can be concentrated on. 
Another aspect is that most approaches coarsen the granularity 
to the work-group level, thereby following a sequential mode 
of execution for all the work-items within a work-group. This 
work attempts to increase the concurrency by maintaining the 
fine-grained parallelism of the language. 

D. Summary 
This section presented a brief overview of high-level 

synthesis for FPGAs and discussed a possible reason for the 
tools not having gained much popularity. OpenCL was 
introduced as a viable alternate high-level programming 
language. The OpenCL architecture, programming models and 
the language were presented including the related work in the 
field of OpenCL for FPGAs. 

III. APPROACH AND IMPLEMENTATION 
This section introduces the approach and discusses the 

implementation details involved in enabling development of 
OpenCL application on FPGA platforms. 

A. Approach and introduction to AutoESL 
The OpenCL application exists in two parts – an OpenCL C 

kernel that define the algorithm for a single instance in the 
index space on the device and a C/C++ host program that uses 
OpenCL API for configuring and managing the kernel 
execution. 

In this work, the conversion of the kernel code into 
hardware circuitry utilizes Xilinx AutoESL C-to-HDL tool 
[23]. A source-to-source translator is built to convert the kernel 
program in OpenCL C language to AutoESL C code with 
appropriate directives, thereby shifting the task of correct 
directive based programming on the translator as opposed to 
the developer. Adhering to the specifications of the OpenCL 
architecture, the granularity is maintained at the level of a 
work-item. Thus, the HDL core generated from AutoESL 
represents a single kernel instance. Multiples of these are 
instantiated and integrated with memory and dispatch 
interfaces on the FPGA devices. 

A subset of the OpenCL API for the host has been 
supported to enable testing of applications on the accelerator 
hardware. The target platform in this implementation is the 
Convey HC-1 hybrid core computer [24]. 

AutoESL, a high-level synthesis tool by Xilinx, accepts 
behavioral level and system level input specifications in C, 
C++ or System C languages and produces equivalent hardware 
description files in VHDL, Verilog and System C. It offers 
directives and design constraints that drive the optimization 
engine towards desired performance goals and RTL design. 



The directives specified can either be pertaining to the 
algorithm or the interfaces. HDL modules are generated as 
cores with a data path and Finite State Machine (FSM) based 
control logic. The AutoESL tool integrates with the LLVM 
compiler infrastructure [25] and applies a variety of 
optimization techniques on the input to reduce code 
complexity, maximize data locality and extract more 
parallelism. It also provides a method for functional 
verification of the generated hardware description using RTL-
cosimulation. 

B. Implementation Specifics 
The steps involved in generating the host executable and a 

full hardware implementation in the form of a bitstream for the 
FPGA accelerator device is as shown in Figure 3. The OpenCL 
host program is compiled and linked with the API library using 
Convey’s cnycc compiler. The right-hand side shows the 
processes involved in the conversion of a kernel from high 
level to hardware. The parts of the flow enclosed in dotted 
lines indicate the source-to-source translation from OpenCL C 
language to AutoESL C. AutoESL synthesis refers to the C to 
HDL synthesis performed by the tool. In the interface 
generation, integration and implementation step, interfaces for 
the kernel HDL modules are generated so as to integrate them 
into the convey framework. The entire design is then 
implemented to generate a bitstream using Xilinx ISE tools. 

1) OpenCL to AutoESL Source-to-Source Translation 
Various mechanisms are in use for source-to-source 

translations between languages at the same abstraction level. 
One of the methods adopted is to convert the input source to an 
intermediate representation (IR), perform required 
transformations on the IR and generate code in the output 
language. Numerous compilation frameworks [26–28] are 
available that can be leveraged for this purpose. With an 
intention of exploring into the feasibility of managing all 
transformations using simple graphs, Clang framework [29] is 
used to obtain the Abstract Syntax Tree (AST) of the input 
code and Graphtool [30] is used for further AST graph 
manipulations. 

Clang is an open source compiler front end, designed 
essentially as an API with libraries for parsing, lexing, analysis 
and more. This makes it easier to embed into other applications 
as compared to gcc, which has a monolithic static compiler 
binary. The Clang driver has an option to emit Clang AST files 
for the source inputs. Using the ASTConsumer and Visitor 
classes in the AST libraries, the tree is traversed to generate a 
simple directed graph for the kernel functions, those declared 
with the kernel qualifier, in dot format. A dot file is a plain text 
graph description of the tree and can be used by various tools 
for either graphic rendering or processing. Separate dot files 
are generated for each kernel in case of multiple kernel tasks 
defined in the application. While clang includes methods for 
recursive AST traversal and Graphviz dot file generation, 
custom methods are created for both in accordance with the 
requirements. The dot file generated from the Clang driver 
includes limited details about the code, with the information 
being only about the type of a statement or expression for the 
purpose of visualization. The custom AST traversal method 
visits all required statements and includes the variables as well 

as the operators into the dot file. This acts as input for the 
graph processing tool called Graphtool. 

 
Fig. 3. Overview of the design flow 

Figure 4 shows the OpenCL C kernel program for a vector 
addition application. It defines the task for a single instance 
which adds one element of the first vector to the corresponding 
element in the second vector and stores the sum in the result 
vector. The instance identifies the index of this element in the 
vector using its global ID. The dot file visualization for the 
abstract syntax tree of vector addition kernel is shown in 
Figure 5. The CompoundStmt node indicates the beginning of a 
function body or the body of a statement. 

Graphtool is a python-based module for graph analysis and 
manipulations, with functions for many graph algorithms. 
Filtering, purging or addition of nodes and modifications to the 
tree are relatively easier to handle using this module as 
compared to manipulating Clang’s AST within its framework. 
The subgraph_isomorphism function in the topology 
subpackage performs structural pattern matching and is used in 
the translator to identify function calls. The local ID, global ID 
and group ID for a work-item are accessed within the kernel 
code. In the vector addition example get_global_id(0) is used 
to obtain the global ID of the instance. The argument specifies 
the dimension in which the ID is requested. In the hardware 
implementation these values are to be sent to the core modules 
as an input. For this reason, they are modified from being 
called functions to arguments into the kernel function. 

The starting addresses for the input and output variables are 
passed as pointers into the kernel in OpenCL. By default, 
pointers in function arguments are used to indicate BRAM 
interfaces. In order to force additional handshake signals for 
each of the ports in RTL, the pointers in the kernel function 
arguments are annotated with AutoESL ap_bus interface 



directive. The arguments with the __private access specifier 
are transformed into variable declaration statements within the 
function. This is because the private memory is specific to a 
work-item and is implemented within the core.  

Fig. 4. OpenCL C file with the kernel function for vector addition 

Barriers in OpenCL allow for synchronization between 
threads in a work-group. All work-items within a work-group 
must execute this before any are allowed to continue beyond 
the barrier. The translator modifies the barrier functions to 
barrier_hit and barrier_done signals at the function interface. 
In the present implementation, when a core reaches a barrier 
instruction, it sends a value on the barrier_hit port and then 
waits to receive a high on barrier_done before proceeding 
further. 

 
Fig. 5. Dot format visualization for the vector addition kernel 

The resulting graph after performing all required 
transformations is reparsed to generate an AutoESL C code 
shown in Figure 6. 

2) AutoESL Synthesis 
AutoESL synthesizes the C program from the translator to 

generate customized FSM with data path RTL implementation 
that corresponds to a single processing element (PE) onto 
which work-items are mapped (see Figure 7). The required 
frequency of operation and the target FPGA device are 
provided as input to the tool along with the annotated C code. 
Apart from IO ports for the kernel function arguments, the 
tool’s interface protocol provides clock, reset, start, done and 
idle handshake signals for the generated module. Optimized 
cores from Xilinx libraries, like floating point cores, storage 
cores and functional unit cores are included into the HDL 
design, by the tool, as required. 

3) Integration and Mapping on Convey 
The target platform in the implementation is the Convey 

HC-1 hybrid core computer that consists of an Intel Xeon CPU 

and an FPGA based reconfigurable coprocessor. The 
coprocessor, connected to the CPU through the front-side bus 
(FSB), hosts four Xilinx Virtex-5 XC5VLX330 compute 
FPGAs known as application engines (AE), eight memory 
controllers (MC) that support a total of sixteen DDR2 memory 
channels and an Application Engine Hub (AEH) that 
implements the interface to the Intel host. Each AE is 
connected to the rest of the coprocessor through a dispatch 
interface, memory controller interfaces, AE-AE interface and a 
management interface. This framework is provided by Convey 
in the form of Verilog modules. 

Fig. 6. AutoESL C output generated by the translator 

The Convey coprocessor is considered as an OpenCL 
compute device with each of the AEs corresponding to a 
compute unit as shown in Figure 7. At any given time a single 
work-group is mapped onto an application engine. Scheduling 
of the work-group tasks among the four compute units is done 
by the host CPU. Each AE contains multiple instances of the 
kernel cores onto which work-items are mapped. The top-level 
Verilog module from AutoESL is parsed to generate 
appropriate wrapper, dispatch and memory access modules that 
are interfaced with the Convey provided framework. The 
dispatch unit sends the appropriate IDs and start signals to the 
cores. Round-robin arbiters control the load/store requests from 
the cores to the memory controller interfaces. There are two 
arbiters for every memory controller interface, each connecting 
to the even and odd ports of the interface, thus facilitating up to 
sixteen parallel memory accesses. The generation of the 
interface modules and their integration are automated and does 
not involve any user intervention. The final design is 
implemented using Xilinx ISE tools to generate the bitstream 
for the compute FPGAs on Convey. 

The global memory, which can be read/written to by all 
work-items, is mapped onto the external DDR2 modules on the 
coprocessor. The latency of this memory is high; however, 
sixteen channels are available for parallel accesses. Local 
memory being smaller and faster as compared to the global 
memory, is implemented using on-chip BRAMs on the AE. 
Registers within the kernel core modules are used for 
implementing private memory. 

4) Host Library 
The main() function in an OpenCL host program primarily 

performs the following operations using OpenCL API: 

• Detect the accelerator connected to the host machine, 

• Create context and command queue for the accelerator, 

__kernel void VectorAdd ( 
    __global const long * a, 
    __global const long * b, 
    __global long * c, 
    int iNumElements ){ 
    int tGID = get_global_id(0); 
    if( tGID < iNumElements ) 
       c[tGID] = a[tGID] + b[tGID];} 

#include ”VectorAdd.h” 
void VectorAdd( 
    const long * a, 
    const long * b, 
    long * c, 
    int iNumElements, 
    int get_global_id_0){ 
#pragma AP interface ap_bus depth=1024 port=a 
#pragma AP interface ap_bus depth=1024 port=b 
#pragma AP interface ap_bus depth=1024 port=c 
    int tGID = get_global_id_0; 
    if ( tGID < iNumElements ) 
       c[tGID] = a[tGID] + b[tGID];} 



• Load kernel file, build a program and kernel object, 

• Create memory objects for the kernel arguments, 

• Enqueue buffers to transfer data from host to device memory, 

• Enqueue kernel for execution, and 

• Read the results from the memory objects. 

The host library in this work contains definitions for a 
subset of the API required to test the execution of the kernel 
tasks on the hardware. The definitions are targeted specifically 
for the Convey platform. A driver for the FPGA device is yet 
to be implemented and presently all communications between 
the host and the accelerator are managed through Convey 
specific assembly routines. 

One of the aspects of OpenCL is online compilation where 
the OpenCL C programs are built at run-time. Since FPGA 
implementation times on Convey run into hours, a pre-
compiled bitstream is loaded onto the hardware. One 
disadvantage of following an offline compilation model is that 
the number of dimensions and the size of a work-group in each 
dimension has to be fixed at compile-time as the hardware 
implementation varies depending on these numbers. The 
parameters and their values are declared in a file and passed as 
input into the translator. In the current implementation the 
number of physical cores is same the work-group size. 

 
Fig. 7. System architecture on Convey 

The definitions implemented for the API are as explained 
here : 

• clSetKernelArg() function sets the value for a specific 
argument of a kernel. The AEs on Convey contain application 
engine registers (AEGs) over which the host has read/write 
access. The host sends the kernel arguments to the compute 
devices by writing these values onto the AEGs in each AE. In 
this work, the AEG registers from 0 to 9 are reserved. 
Arguments are written over starting at AEG register 10. 

• clEnqueueWriteBuffer() and clEnqueueReadBuffer() 
functions transfer data between host memory and the buffer 
object allocated on the coprocessor memory region. 

• clEnqueueNDRangeKernel() is implemented as a blocking 
function that enqueues kernel for execution and waits for its 
completion. The kernel task is divided into work-groups and 

dispatched to the compute devices. At a given instant of time, 
four work-group tasks are being executed concurrently on the 
four AEs on Convey. The scheduling of the work-group tasks 
between the AEs is managed by the host machine, using 
polling technique. The AEs are constantly polled after dispatch 
of the tasks to check their state. When any are done, the next 
work-group task is dispatched onto it. This process is 
continued until all tasks are completed. 

C. Summary 
In this section the steps involved in the compilation of 

kernels into HDL cores and the architecture of the system on 
the FPGA hardware, was discussed using the example of a 
vector addition application. It was seen that existing tools can 
be used to the best advantage without having to build our own 
compiler. The host library supports functionality for some of 
the OpenCL API, assuming the FPGA coprocessor to be 
present and available. 

IV. RESULTS 
The main objective of this work is to develop a proof of 

concept system that enables the development of OpenCL 
applications on FPGA platforms. In this section, a simple 
vector addition application is studied. The performance and 
resource utilization numbers for different input parameters are 
presented and explained. 

A. Case Study: Vector Addition 
The execution flow for the host program is shown in Figure 

8. Initialization includes allocation of host memory for the 
input vectors and assigning initial values. Kernel arguments are 
sent to the AEG registers on the application engines and the 
kernel is enqueued for execution. The total computation time 
for the accelerator in OpenCL code involves the time taken for 
transfer of input data to device or coprocessor memory, setting 
of kernel arguments, execution time on hardware and the time 
taken to transfer results back to host memory. Convey provides 
a memory allocation instruction through which the host can 
directly allocate space on the coprocessor memory. Using this 
would avoid the need to transfer data between host and 
coprocessor memory on Convey. 

Since the method of offline compilation of OpenCL kernels 
is being used, parameters pertaining to the dimensions of the 
solution index space, the global size for the solution and the 
local size of a work-group are fixed at compile time. In the 
current implementation the size of a work-group is the same as 
the number of physical cores on each AE in the Convey 
coprocessor. The performance of the application was evaluated 
for different sizes of the work-group. 

After the integration of the kernel modules and the 
interfaces into the framework, verilog simulation is performed 
over the entire design using Convey’s simulation environment. 
After ensuring functional correctness, the application was 
executed on hardware. 

1) Performance and Resource Utilization 
Table 2 compares the performance results between the 

vector addition example from Convey and the OpenCL 
implementation for the same application. All programs are 
executed over vectors of size 1024. The target devices are four 



Virtex-5 XC5VLX330 FPGAs operating at a frequency of 150 
MHz. 

 
Fig. 8. Execution flow for the vector addition application 

TABLE II.  PERFORMANCE RESULTS FOR VECTOR ADDITION 
APPLICATION FOR VECTORS OF SIZE 1024 

 Convey 
Example 

OpenCL 
implementations 

64 
cores 

132 
cores 

192 
cores 

Execution time (in ms) 
/w memory transfer 0.064 1.385 0.67 0.463 

Execution time (in ms) 
/wo memory transfer  1.677 0.968 0.755 

 

The bitstreams for the OpenCL accelerator devices are 
generated for three different values of the work-group size - 16, 
32 and 48. In each case, the number of physical cores on each 
AE corresponds to the size of the work-group. The total 
number of cores on the coprocessor device is 64, 128 and 192 
respectively. Convey’s example design consists of 16 adder 
modules per FPGA, amounting to a total of 64 modules. These 
modules access memory in a continuous manner over the entire 
range as opposed to the OpenCL implementations where 
batches of tasks are scheduled by the host. The scheduling at 
the work-group level calls for additional overhead which is 
prominent in smaller designs as can be seen from the execution 
times in the table. With the vector size constant, as the work-
group size is increased, the number of work-group tasks to be 
scheduled decreases thus reducing the total execution time. The 
performance numbers for different vector sizes is shown in 
Figure 9. 

AutoESL synthesis provides a report for every generated 
design which contains the estimated resources for the 
hardware. On testing other sample AutoESL applications, these 
numbers have been found to comply well with the actual 
resource utilization numbers from Xilinx tools after 

implementation. The area estimates, according to the AutoESL 
tool for a single vector addition module is as shown in Table 3. 

 
Fig. 9. Performance results for different vector sizes 

TABLE III.  AREA ESTIMATES FOR A SINGLE CORE FROM AUTOESL 
REPORT 

Name FF LUT BRAM DSP SLICE 
Component - - - - - 
Expression 0 44 - - - 
FIFO - - - - - 
Memory - - - - - 
Multiplexer - 3 - - - 
Register 99 - - - - 
Total 99 47 0 0 0 
Available 207360 207360 576 192 51840 

 

The total device utilization for each of the implementations 
is shown in Figure 10. The numbers represent the resources for 
a single compute FPGA and are expressed as a percentage of 
the maximum device resources available. Modules provided in 
the Convey framework consume about 11% of the device 
resources. 

The resource utilization for the OpenCL implementations 
are observed to be much lesser than the Convey example. With 
enhancements to the memory access patterns and 
differentiation between the physical and logical number of 
cores in a work-group, performance improvements over the 
current implementation can be achieved. 

 
Fig. 10. Resource Utilization for vector addition application for a single AE 

B. Case Study: Matrix multiplication 
The matrix multiplication computation is used in many 

applied math and scientific applications. The execution flow of 
the host program for this application is similar to the flow 



discussed for vector addition in the previous section. Figure 11 
shows the OpenCL kernel code. 

Figure 12 shows the equivalent AutoESL code. The index 
space for the matrix multiplication application is 2-
dimensional. Each work-item evaluates one element in the 
result matrix. In the current implementation, a work-group is of 
size 4 by 4 with a total of 16 work-items. The work-group sizes 
in each dimension can vary as long as it evenly divides the 
entire global space. The HDL generated from AutoESL was 
successfully integrated into the Convey framework and 
implemented using Xilinx ISE tools. The functionality of the 
application was tested in simulation for different matrix sizes, 
using the host program and the Verilog files for the hardware. 

Fig. 11. OpenCL C file with the kernel function for matrix multiplication 

C. Comparison of Methodologies 
Table 4 shows a comparison of the compilation flow and 

architecture presented in this work with other implementations, 
which were discussed in the related work section. The first 
parameter defines the nature of the processing element (PE) in 
each framework. OpenRCL implementation includes 
parameterized MIPS cores over which kernel instances are 
executed as threads. Though the processor supports variable 
datapath width and multi-threading, speed-up comparable to a 
complete hardware circuitry is hard to achieve. SOpenCL uses 
an architectural template for the generation of HDL. This 
template is implemented as a combination of a data path and a 
streaming unit. In the flow presented in this paper, PEs are 
customized FSMD cores generated by the AutoESL tool, 
optimized for the application at hand. For complex 
computations, aggressive optimizations can be achieved by 
enforcing area and performance constraints into the tool. 

Fig. 12. AutoESL C output for matrix multiplication generated by the 
translator 

The second aspect of comparison is the parallelism in the 
implementation. OpenCL kernels are defined at the finest 

granularity. SOpenCL coarsens the granularity to the level of 
work-groups using thread serialization technique. The 
computation is enclosed in nested loops, one for each 
dimension, thus enforcing sequential execution of work-items 
in all dimensions within a work-group. In this project, the fine-
grained parallelism of the application is maintained. 

Support for multiple FPGA devices is provided in the 
current work and has been successfully demonstrated. A higher 
degree of parallelism is achieved on partitioning the execution 
onto multiple FPGAs. There has not been any explicit mention 
of this feature in the other implementations. 

The compilation flow presented in this paper avoids the re-
invention of a C-to-HDL compiler by using an existing tool for 
the purpose of conversion. Both OpenRCL and SOpenCL build 
their compilers using the LLVM framework. 

 Another aspect is verilog simulation. A simluation 
environment is available in the current implementation using 
which the verilog files can be simulated along with the host 
program to check for functional correctness or try out 
alternatives. 

Table 5 presents comparisons against the Altera’s tool for 
supporting OpenCL applications on FPGAs. Altera’s tool 
implements the kernel logic as deeply pipelined hardware 
circuits, which are then replicated to increase parallelism. A 
common factor is that both implementations are platform 
dependant. Altera’s tool is used for Altera’s FPGA families. 
The implementation presented in this paper is specific to Xilinx 
devices due to the use of Xilinx AutoESL tool in the 
compilation flow. The current OpenCL API library in this 
work provides a limited support and will be extended in future 
to include other features as well. 

TABLE IV.  COMPARISON WITH SOPENCL AND OPENRCL 
IMPLEMENTATIONS 

Table Head Presented 
flow OpenRCL SOpenCL 

Processing elements Customized 
FSMD 

Parametrized 
MIPS FSMD 

Fine-grain 
parallelism Yes Yes No 

Support for multiple 
FPGAs Yes No No 

Design of compiler No Yes Yes 
Verilog simulation Yes No No 

D. Challenges in Using OpenCL 
OpenCL provides a good abstraction from the low level 

details of hardware implementation through its virtual 
architecture. This ensures smaller development times and faster 
time to market. Also, the applications are portable across 
different platforms. At the same time, portability is only 
functional. Various architecture aware optimizations are 
needed for every hardware device, in order to obtain maximum 
performance. 

One the biggest advantage of FPGAs is the ability to use 
different bit widths for the data. An example application that 
utilizes this is genome sequencing in bioinformatics. This 
advantage is nullified OpenCL coding, as the developer is 
limited to the numerical data types provided in the language. 

__kernel void matrixMul (__global long *C,      
__global long *B, __global long *A, uint wA, uint 
wB){ 
   int tx = get_global_id(0); 
   int ty = get_global_id(1); 
   long value = 0 ; 
   for ( int k = 0 ; k < wA; k++){ 
      long As = A[ ty * wA + k ] ; 
      long Bs = B[ k * wB + tx ] ; 
      value += As * Bs ;} 
   C[ ty * wA + tx ] = value ;} 

#include ”core_header.h” 
void matrixMul(long *C, long *B, long *A, uint wA, 
uint wB, int get_global_id_0, int get_global_id_1) { 
#pragma AP interface ap_bus depth=64 port=C 
#pragma AP interface ap_bus depth=64 port=B 
#pragma AP interface ap_bus depth=64 port=A 
    int tx = get_global_id_0; 
    int ty = get_global_id_1; 
    long value = 0; int k; 
    for ( k = 0 ; k < wA ; k++ ) { 
        long As = A [ ty * wA + k ]; 
        long Bs = B [ k * wB + tx ]; 
        value += As * Bs;} 
    C [ty _ wA + tx] = value;} 



E. Summary 
This section discussed the flow of a vector addition 

application in OpenCL and its execution on FPGA hardware. 
The performance and resource utilization values for different 
solution sizes were presented. Also, comparisons were drawn 
on the features of this work against other related 
implementations. 

TABLE V.  COMPARISON WITH ALTERA’S OPENCL FOR FPGAS 

 Presented flow OpenCL for FPGAs 
Processing elements Customized FSMD Pipelined hardware 
Platform dependent Yes Yes 
OpenCL runtime 
support Work in progress Good 

V. CONCLUSIONS 
High-performance applications often require high design 

efforts for FPGA implementations. This project aims towards 
improving the design productivity of FPGAs using OpenCL as 
the high-level programming language for development. In this 
work a method of compilation of OpenCL C kernels into 
hardware descriptions was discussed. It also presented the 
design and implementation of architecture on the 
reconfigurable fabric to support the execution of the 
computation kernels by interfacing the cores with host and 
memory modules. On the host side, the functions in the 
OpenCL API required to manage kernel execution were 
supported to test the flow. Conversion of the kernels to device 
specific executable and execution of the application was 
successfully demonstrated in simulations and on the Convey 
HC-1 hybrid computer. 

The main aim of this work was to successfully demonstrate 
the compilation and execution an OpenCL application on 
FPGA platform. The simulation and the hardware results were 
presented for a vector addition program. The work can be 
extended to provide a more complete and robust flow with 
improved performance for more complex designs. The 
following points are the main areas for enhancements. 

• In this work, only a subset of the OpenCL host API was 
supported on the host. Also, the definitions contained Convey 
specific assembly routines to perform the desired operations, 
assuming that FPGAs were connected to the host and were 
available for programming. These can be made generic.  

• The compilation flow can be extended to support more 
features of the OpenCL language. Special data types for 
images, vectors and built-in math functions are used in many 
applications.  

• In the system architecture, modifications can be done to the 
memory access patterns to improve the memory bandwidth 
utilization. For example, if the memory accesses are sequential, 
then contiguous elements can be pre-fetched from memory in 
order to reduce the latency in subsequent off-chip requests. 

REFERENCES 
[1] Tsoi, K. H. and Luk, W. Axel: A Heterogeneous Cluster with FPGAs 

and GPUs, in Proc. of FPGA’10, 2010. 
[2] Ahmed, T., OpenCL Framework for a CPU, GPU and FPGA Platform. 

Master’s thesis. University of Toronto, 2011. 

[3] Falcao, G. et al., Shortening design time through multiplatform 
simulations with a portable OpenCL golden-model: the LDPC decoder 
case. in IEEE 20th International Symposium Field-Programmable 
Custom Computing Machines, 2012. 

[4] Kepner, J., HPC Productivity: An Overarching View. International 
Journal of HPC Applications. vol. 18, 2004, pp. 393–397. 

[5] Embedded Solutions. Handel-C Language Reference Manual. 
http://www.pa.msu.edu/hep/d0/l2/Handel-C/Handel%20C.PDF. 

[6] Impulse Accelerated Tech. Impulse CoDeveloper C-to-FPGA Tools. 
http://www.impulseaccelerated.com/ products universal.htm. 

[7] Gokhale, M. Stone, J. Arnold, J. and Kalinowski M. Stream-Oriented 
FPGA Computing in the Streams-C High Level Language. in IEEE 
Symposium on FCCM, 2000. 

[8] Altera Corp. Nios II C2H Compiler User Guide, 2009. 
[9] Calypto, Catapult, http://calypto.com. 
[10] Mohl, S. The Mitrion-C Programming Language. Mitrionics Inc., 2005. 
[11] Rotem, N. C to Verilog. http://www.c-to-verilog.com/. 
[12] Khronos Group, “OpenCL specification 1.1.” 
[13] Martinez, G. Gardner, M. and Feng, W.-c. CU2CL: A CUDA-to-

OpenCL Translator for Multi- and Many-core Architectures. in Proc. of 
IEEE 17th Int. Conf. on Parallel and Distributed Systems (ICPADS), 
2011. 

[14] Altera Corp. Implementing FPGA Design with the OpenCL Standard. 
Whitepaper, 2011. 

[15] Altera Corp. Altera’s OpenCL for FPGAs Program Delivers Dramatic 
Reductions in Development Times for Early Customers. 
www.altera.com/corporate/newsroom/releases/2012/products/nr-opencl-
gohdr.html. 

[16] Nvidia. CUDA. http://www.nvidia.com/object/cuda home new.html. 
[17] Zhang, Z. et al. AutoPilot: A Platform-Based ESL Synthesis System. in 

High-Level Synthesis, 2008. 
[18] Papakonstantinou, A. et al., Multilevel Granularity Parallelism Synthesis 

on FPGAs. in Proc. of FCCM, 2011. 
[19] Lin, M. Lebedev, I. and Wawrzynek, J. OpenRCL: Low-Power High-

Performance Computing with Reconfigurable Devices,” in Proc of FPL. 
2010. 

[20] Lattner, C. and Adve, V., LLVM: A Compilation Framework for 
Lifelong Program Analysis and Transformation. in Proc. of the 
ISPCGaO, 2004. 

[21] Lebedev, I. et al., MARC: A Many-Core Approach to Reconfigurable 
Computing. in Proc. of ICRC, 2010. 

[22] Owaid, M. Bellas, N. Daloukas, K. and Antonopoulos, C. D. Synthesis 
of Platform Architectures from OpenCL Programs. in Proc. of FCCM., 
2011. 

[23] Xilinx Inc., http://www.xilinx.com/products/design-tools/ autoesl/ 
index.htm. 

[24] Convey, “Conveys hybrid-core technology: the HC-1 and the HC-1ex.” 
http://www.conveycomputer.com/Resources/Convey_HC1_ Family.pdf. 

[25] LLVM, llvm.org/Users.html. 
[26] Quinlan, D. ROSE: Compiler Support for Object Oriented Frameworks. 

in Proc. of CPC, 2000. 
[27] Dave, C. et al., Cetus: A Source-to-Source Compiler Infrastructure for 

Multicores. Journal Computer. Vol 42, Issue 12, 2009. 
[28] GCC, http://gcc.gnu.org/. 
[29] LLVM. “clang: a C language family frontend for LLVM.” 

http://clang.llvm.org/. 
[30] Graph-tool. http://projects.skewed.de/graph-tool/. 
[31] Chase, J. Nelson, B. Bodily, J. Wei, Z. and Lee, D.-J. Real-Time Optical 

Flow Calculations on FPGA and GPU Architectures: A Comparison 
Study. in Proc. of FCCM, 2008. 


