
Abstract—Recent developments in High-Level Synthesis
(HLS) for FPGAs are making it possible to “run” C code on
FPGAs thereby making modern programming environments
available to FPGA developers. In this paper, C code for a
complex optical-flow algorithm is optimized for both a desktop
PC and for an FPGA-based system, the Xilinx Zynq-7000, a
device containing both a programmable fabric and two ARM
cores. The paper discusses how the code is optimized and
restructured to execute effectively on the programmable fabric
and the ARM cores. The resulting Zynq version of the C code
is competitive with the desktop PC but only consumes 1/7th as
much energy.

Keywords-FPGA, configurable computing, ARM

I. INTRODUCTION

Relatively recently, High-Level Synthesis (HLS) tools
such as Vivado HLS (commercial) [1] and LegUp (aca-
demic) [2] have made it possible to program FPGAs using C
code instead of VHDL/Verilog. HLS tools accept C syntax
and generate a file format (typically VHDL/Verilog) that can
be processed by the FPGA vendor software. HLS holds out
the following promise: the ability to program in C while
simultaneously achieving high performance and consuming
low power.

This paper compares several highly-optimized versions of
a complex optical-flow algorithm: one version optimized to
run on a desktop microprocessor, one version operating on
an embedded Arm processor, and one version optimized
to run on an FPGA. The C language is used exclusively
for all implementations. Vivado HLS is used to process the
C code for the FPGA implementation. This paper demon-
strates that it is feasible to create an FPGA accelerator
for a complex algorithm using only C that: 1) achieves
performance comparable to the optimized version running
on a high-performance desktop machine, and 2) consumes
approximately 7.4X less energy.

II. RELATED WORK

There has been strong interest in creating hardware-based
accelerators for optical flow within an FPGA [3]. FPGAs
can provide significant improvements in both overall per-
formance and power efficiency by customizing the datapath

of the algorithm and optimizing memory accesses. There
are many examples of FPGAs implementing an optical flow
algorithm for improved performance or for a real-time, low-
power implementation [4], [5], [6].

To improve the design productivity of implementing
FPGA-based optical flow systems, several researchers have
demonstrated optical flow implementations using high-level
synthesis tools. In [7], the author develops a high per-
formance circuit implementing the “Lucas” optical flow
algorithm using the Mentor Graphics Catapult C high-level
synthesis tool. This work identifies a number of tips for
improving the quality of the synthesized circuit including
a number of transforms, including memory access man-
agement, for exploring the design space and improving
circuit throughput [8]. The Synfora PICO Extreme HLS
tool was used to demonstrate the productivity of HLS for
two machine vision algorithms including optical flow [9].
This work implemented a gradient optical flow algorithm
based on Farneback’s technique and demonstrate that HLS
can provide a result close to the quality of RTL, hand-
designed circuit. The Handel-C design language was used
to implement a novel, bio-inspired optical flow algorithm
on an FPGA [10] and a real-time optical flow vision system
was developed using an FPGA with the optical flow al-
gorithm programmed using the Celoxica [11] programming
language.

This work differs from previous related work in two ways.
First, this work implements multiple optical flow accelerators
from a C specification using various HLS directives and
code transformations. Second, this work targets a unique
programmable SOC (Zynq) that includes both an embedded
processor and a programmable logic fabric.

III. LK-OPTICAL FLOW SUMMARY

The goal of optical flow is to create a flow field
that estimates the displacement of interesting features
between successive frames. The optical flow algorithm
used in this paper is based on the OpenCV function
calcOpticalFlowPyrLK [12]. This function imple-
ments the sparse iterative optical flow algorithm described by

Josh Monson, Mike Wirthlin, Brad L Hutchings

NSF Center for High-Performance Reconfigurable Computing (CHREC)

Department of Electrical and Computer Engineering
Brigham Young University, Provo, Utah

jsmonson@gmail.com, wirthlin@ee.byu.edu, hutch@ee.byu.edu

Implementing High-Performance, Low-Power
FPGA-Based Optical Flow Accelerators in C

978-1-4799-0493-8/13/$31.00  2013 IEEE ASAP 2013363

Bouguet [13]. The OpenCV implementation of the Bouguet
algorithm (shown in Fig. 1) is accomplished using the Lucas
and Kanade [14] method on multiple levels of an image
pyramid. The optical flow algorithm, including the OpenCV
implementation, is computationally demanding and requires
significant computational resources to operate in real time.
The OpenCV implementation has three major computational
steps: Pyramid Creation, Calculate Gradients, and Feature
Tracking.

Figure 1. A Block Diagram showing the different steps of the LK-Optical
Flow Algorithm.

A. Pyramid Creation
The Optical Flow algorithm takes two images as inputs.

These are referred to as the “previous” and “next” images.
The first step in calculating optical flow is to create image
pyramids of both the Previous and Next images. Image
pyramids are sets of images where the first image is the
original image and successive images are down-sampled
versions of the first. The first image or one at the “bottom”
of the pyramid is the largest (highest resolution) and the
image at the “top” of the pyramid is the smallest (lowest
resolution). Starting with the original image as level L=0,
level L+1 is created by applying a gaussian image filter
to level L and removing the odd rows and columns from
the filtered image. The gaussian filter is applied before
down-sampling to prevent the aliasing of the high frequency
components of the image.

After filtering and down-sampling, each level of the
pyramid is set within a “reflected” border. Borders are used
in image processing to handle cases where image data is
needed from outside the image. The reflected border used
in this algorithm does not repeat the edge pixel. For example,
if pixel A is on the left edge of the image, followed by B,
C, D, and E to the right, the reflected border from left to
right would be E, D, C, and then B would be right next to
the original A pixel on the edge of the image.

Bouguet proposed to use image pyramids to mitigate the
trade-off between the accuracy and robustness of the algo-
rithms. Small feature windows favor accuracy but are more
sensitive to camera motion and changes in lighting. Large
windows provide better tolerance to motion and changes in
lighting but are less accurate. The use of image pyramids,
therefore, allows the search to begin at a coarse resolution
(providing a large feature window) and conclude at a fine
resolution (providing a small window).

B. Gradient Calculation

The second step in the calculation of optical flow is to
compute the gradient of each level of the previous image
pyramid. The image gradient is an important piece of data
used to estimate the displacement. The resulting image
gradients (or derivatives) are set within a border like the
image pyramids were. However, in this case constant borders
are used rather than a reflected one.

The image gradient is computed for a given pixel by
multiplying all pixels in a given neighborhood by an image
kernel and then summing the results. The gradient in both
the horizontal (x) and vertical (y) directions are required.
Bouguet recommends that the Scharr kernels be used to
calculate the gradient. As shown in Fig. 1, the gradient
and the image pyramids are passed as input to the feature
tracking phase.

C. Feature Tracking
Feature tracking is the heart of the optical flow algorithm.

This is the phase where feature displacement is estimated.
Features are represented by small neighborhoods of pixels
known as windows. A window is represented by the coor-
dinate of the pixel in the upper left corner.

Fig. 2 is a block diagram of the feature tracking process.
First the windows are created from the previous, next, and
derivative windows located at the pixel coordinate repre-
senting the feature. Each of these windows are interpolated.
The interpolated pixels of the derivative window are sent to
a multiply-accumulate block where 3 sums are computed.
The first and third sums are the squares of the x and y
components of the derivative. The second sum is the sum
of the product of the x and y components. A pixel-by-pixel
difference of the interpolated previous and next windows is
taken. These results are sent to a multiply accumulate block
where 2 sums are computed. The first sum is the pixel-
by-pixel difference multiplied by the x-component of the
derivative. The second sum is the pixel-by-pixel difference
multiplied by the y-component of the derivative.

These five summations are then used to calculate the
displacement estimate. If the magnitude of the displacement
is small (below a specified threshold) the feature is assumed
to have been found and the computation is complete. How-
ever, if the magnitude of the displacement is large another
iteration is required. The second iteration starts by shifting

364

the next window by the value of the displacement and
repeating the process. The results from the interpolation
and summation of the previous and derivative windows can
be reused in the successive iteration. However, since the
next window has been shifted, interpolation and summation
must be re-calculated. The resulting displacement estimate
is used as input to the feature tracking computation on lower
levels of the pyramid (as shown in Fig. 1). The displacement
estimate is refined as the results travel down the pyramid.

Figure 2. A Block Diagram of the feature tracking computation.

IV. PROCESSOR IMPLEMENTATIONS OF OPTICAL FLOW

The baseline source code for the optical flow
algorithm described above was obtained from the
calcOpticalFlowPyrLK function of the OpenCV
library. This function was written in C and can be compiled
to a number of different processor architectures. For this
paper, this function was compiled and run on two different
processor architectures: an Intel Core i7 processor and
the ARM Cortex A9 embedded processor. Each processor
offers a different trade-off between performance, power,
and system complexity.

A. Core i7 Processor
The i7 implementation was mapped to a Intel Core i7 860

2.8 GHz desktop running the Windows 7 operating system.
The Microsoft Visual Studio 2010 compiler was used to
generate the the i7 executable. The Intel Thread Building
Blocks library was enabled to maximize performance by
spreading the feature tracking operation across all four i7
cores. The i7 implementation used hand-optimized SIMD
instructions to accelerate the application.

Using these optimizations, the Core i7 was able to achieve
a performance of 80 frames per second (FPS) on 720x480
images, using 15x15 integration windows, and tracking
between 350-400 features. This frame rate allows the optical
flow algorithm to process images in real time. The relative

execution time of the three major phases of the algorithm
are summarized in Table I. As expected, the feature tracking
portion of this algorithm requires the most execution time
(48.0%).

Although this implementation will run in real-time, it
requires a relatively large amount of power and a com-
plex system infrastructure. While we do not have power
measurements of the processor running the application, a
review [15] reported that the core i7 consumed 124 Watts
while running a full load on all four of its cores. With each
frame completed in 12.5 ms, the computation for each frame
requires 1.6 J of energy.

B. ARM Cortex A9
The OpenCV optical flow algorithm described above was

also ported to the ARM Cortex A9 embedded processor.
The ARM A9 implementation was mapped to one of the
embedded Cortex A9 cores within the Xilinx Zynq 7020
Extensible Processing Platform (EPP). The code was com-
piled using the Xilinx version of the Code Sourcery compiler
and verified on the Xilinx “ZedBoard” development board.
This single core implementation does not utilize the NEON
SIMD instructions or multi-threading.

Using the same algorithm parameters as the i7 implemen-
tation (i.e., 720x480 images, etc.), the ARM implementation
achieves a performance of 10.1 frames per second. As shown
in Table I, the relative execution times of each phase are
similar to those of the core i7.

As an embedded, low-power processor, the ARM imple-
mentation consumes far less power than the core i7. Using
actual measurements on the computing platform, the average
power consumed by the ZedBoard was measured at 6.5
Watts. This is 19× less power than the core i7. Although this
implementation is 8× slower than the core i7, it consumes
2.5× less energy to perform the computation as the core i7.

Table I
SUMMARY OF IMPLEMENTATION AND EXECUTION RESULTS.

ARM % core i7 %
pyramid 14.3 ms 14.4% 2.8 ms 22.4%
scharr 17.4 ms 17.6% 3.7 ms 29.6%
tracker 66.7 ms 67.3% 6.0 ms 48.0%
other .7 ms .7% 0.0 ms 0.0%
Total 99.1 ms 100% 12.5 ms 100%
FPS 10.1 80.0

Power 6.5W 124W
Energy .644J 1.6J

C. Optical Flow Acceleration with FPGA Resources
As discussed earlier, application circuits implemented

within FPGA resources have been used to accelerate the
Optical Flow algorithm and reduce the energy required to
perform the computation. Our goal is to achieve real-time

Get Next Window
Get Derivative

Window
Get Previous

Window

Interpolate Interpolate Interpolate

Multiply
Accumulate (3)

Difference

Calculate
Displacement

Magnitude Below
Threshold?

Done

Multiply
Accumulate (2)

Yes.

No.

365

performance of the algorithm within the low-power ARM
platform by exploiting the integrated FPGA resources of
the Zynq platform. This work seeks to identify portions
of the optical flow algorithm that can be moved from the
ARM processor and onto the FPGA resources such that the
combined hardware and software implement the algorithm
in real time.

To achieve the real-time performance of the core i7,
the ARM implementation must be sped up by a factor of
3×. According to Amdahl’s law, achieving a 3× speed-up
requires that at least 66.7% of the runtime of the sequential
implementation of the algorithm needs to be “infinitely”
accelerated. As shown in Table I, the runtime of the al-
gorithm is split between the three algorithm parts – all parts
of algorithm will be accelerated to achieve the 3× speedup.

Fortunately, each of the three algorithm parts are
amenable to FPGA acceleration. In particular, image filtering
is used in pyramid creation and in the Scharr derivative.
Image filtering accounts for 79.2% of pyramid creation and
nearly 100% of the Scharr derivative. We estimate that by
implementing image filtering in an FPGA, the runtime of
the pyramid can be improved from 14.3 ms to 3.7 ms
(3.9×). Additionally, we estimate that the runtime of the
Scharr derivative can be improved from 17.4 ms to 3.1
ms (5.6×). These improvements, however, are not sufficient
for achieving real-time performance and additional improve-
ments must come by accelerating the feature tracker.

Like the pyramid creation and Scharr derivative, the
feature tracking portion of optical flow is amenable to
acceleration with custom hardware. However, estimating the
performance improvements of an accelerator for the feature-
tracking portion is difficult because the algorithm is irregular
and alternates between sequential and parallel code. High-
level synthesis tools will be used to rapidly explore various
strategies for accelerating the feature tracking portion of the
algorithm. The C code used to define these functions can be
quickly synthesized into hardware and evaluated in terms of
hardware cost and potential performance improvement.

V. ZYNQ ARCHITECTURE

The target architecture for the optical flow algorithm is
the Xilinx ZYNQ-7000 Embedded Processor Platform. The
Zynq-7000 is a programmable device, fabricated at 28 nm
that includes both a programmable fabric and a dual-core
ARM processor. The ARM core runs up to 1 GHz and
includes level-1 and level-2 caches, supports single and
double-precision floating point, and provides a variety of
peripherals: DMA and memory controllers, 256 KB of dual-
ported on-chip RAM, along with an interrupt controller,
various timers, etc. Several other fixed-function peripherals
are also included: two Gigabit Ethernet ports, two USB
ports, two SPI ports, UARTs, etc. These fixed-functions are
connected to a conventional programmable fabric (FPGA).
The fabric contains 53,200 LUTs, 106,400 flip-flops, 220

DSPs and 280 block RAM (BRAM). Communication be-
tween the fabric and the ARM core is achieved via a bus-
oriented master-slave interface using the AMBA AXI bus
standard.

As shown in Fig. 3, Zynq provides fully-shared access to
the DDR between the ARM core and the programmable fab-
ric via a hardened DDR interface that provides one dedicated
64-bit port per ARM core (via the L2) and four dedicated 64-
bit high performance interfaces to the programmable fabric.
Shared, high-performance access to DDR from both the
ARM core and the programmable fabric is an extremely
important feature as it makes it feasible to build accelerators
that use both the ARM core and the programmable fabric for
computation. The application described in this paper makes
extensive use of the high-performance DDR interface.

Figure 3. A Block Diagram of the ZYNQ Architecture.

VI. OPTICAL FLOW ACCELERATOR USING HIGH-LEVEL
SYNTHESIS

A variety of optical flow accelerators were created using
the C-language and synthesized using the Vivado HDL syn-
thesis tool. The use of the C-language allowed us to quickly
explore a variety of accelerators and identify an accelerator
that provides real-time processing on the embedded Zynq
platform. Each of these accelerators was targeted to the
Zynq-7020 SoC FPGA and downloaded onto the Xilinx
ZedBoard reference board. Table II reports the following
for each accelerator: the size of the accelerator (in terms of
hardware resources), the execution time of the accelerator,
and the average power of the accelerator.

The resource results in Table II were obtained from the
FPGA vendor synthesis reports and include all surrounding
hardware (interconnect, measurement hardware, etc.). The
runtime measurements of the accelerator were taken by
actual measurements in the FPGA. The number of clock
cycles between the time the accelerator starts and the time
it finishes as it executed in the FPGA was measured with

Processor
System (PS)

Programmable
Logic (PL)

ARM Core 0

Memory
Controller

ARM Core 1

L2-Cache

Accelerator

AXI Int.

High Performance
Interfaces (64-bit)

366

a dedicated hardware monitor. The throughput of the accel-
erator, measured in frames per second (FPS), is estimated
by taking the reciprocal of the execution time. The power
consumption of the accelerator was obtained by measuring
the voltage across a shunt resister (and thus the current) for
the entire system, e.g., all components on the ZedBoard. The
reported power values are averages over the entire execution
of the accelerator. The energy consumed by the accelerator is
estimated by multiplying the average power by the execution
time.

A. Baseline

The first accelerator is the “baseline” accelerator and it
was created by taking the original C code specification and
modifying it so that it is synthesizable by the Vivado HLS
tool. Before any C code can be synthesized into hardware
using the Vivado HLS tool, the algorithm must be expressed
using a synthesizable subset of the C language. For the Vi-
vado HLS tool, this means that all memory must be statically
allocated, the code must be free of recursive functions, and
pointers and references are not used as class members. The
original OpenCV C code of the feature tracker was modified
to remove non-synthesizable code and to include support
for burst memory transactions. The memcpy function was
used to replace indirect image memory accesses. This allows
the use of burst transfers and avoids large overhead penal-
ties associated with handshaking for memory transfers. A
bus bridge was synthesized that performs aligned memory
transfers. Code was added to perform proper modulo pointer
arithmetic on aligned memory transfers to retrieve unaligned
data.

The baseline accelerator computed a single frame in 54.4
ms and can operate at 18.4 frames per second. Without any
architectural modifications or optimizations, this baseline ac-
celerator provides an improvement over the ARM software-
only version (1.2×). This implementation is a starting point
and suggests that additional speedup can be obtained by
implementing well-known code transformations or synthesis
directives. This baseline design uses less than half the
available FPGA resources suggesting that there are sufficient
resources to implement other optimization techniques.

B. Dataflow Directive

The processes in Fig. 2, can be split into two groups.
Group 1 is the first two columns of processes (derivative and
previous window columns) and Group 2 is the third column
(next column). In the baseline accelerator design, these two
groups of processes are executed sequentially as shown in
the schedule in Fig. 4. However, there is nothing to prevent
these two groups from operating in parallel. In Vivado HLS,
the dataflow directive can be used to specify that two (or
more) sequential groups of computation be implemented to
execute in parallel. When the dataflow directive is used,
Vivado HLS creates independent processes and connects the

first to the second using FIFOs or ping-pong buffers. This
allows Group 1 to start on the second feature while Group
2 finishes the first (see Fig. 5).

Group 1: Feature 1 Group 2: Feature 1 Group 1: Feature 2 Group 2: Feature 2

T=0 T=1 T=2 T=3

Figure 4. Schedule showing at a high-level how the baseline design is
scheduled.

Group 1: Feature 1 Group 2: Feature 1 Group 2: Feature 2 Group 2: Feature 3

T=0 T=1 T=2 T=3

Group 1: Feature 2 Group 1: Feature 3 Group 1: Feature 4

Figure 5. Schedule showing how the dataflow allowed the groups to be
scheduled in parallel.

To use the dataflow directive, the main loop of baseline
code had to be restructured to split the code for Group 1
& Group 2. This code transformation and code refactoring
resulted in an accelerator that required significantly more
resources (see Table II). The increase in DSPs, LUTs, and
FFs may largely be due to the fact that the code structure
of the primary data paths were modified to perform more
operations in parallel. FIFOs added as channels between the
Group 1 & Group 2 processes resulted in the large increase
in BRAMs. This increase in hardware, however, provides
more than 2× improvement in throughput over the baseline
accelerator.

C. Integrating the Scharr Derivative into the Feature
Tracker

Another way of accelerating the application is by reducing
the computational load and the required bandwidth. This
optimization does both by integrating the Scharr derivative
into the feature tracking accelerator as shown in Fig. 6. This
can be done because the feature tracking accelerator is the
only consumer of the Scharr derivative computation. The
computational load is reduced because the Scharr derivative
is only taken on those parts of the previous pyramid that are
used by the accelerator. The required memory bandwidth
is reduced because 1) the Scharr derivative is no longer
a separate step, this removes a read of the entire previous
pyramid and a write of the entire derivative pyramid (which
is 4x larger than the previous pyramid), and 2) it means that
the accelerator no longer has to read derivative integration
windows from memory. The fact that a constant border is
used (rather than a reflected border) helps the data flow of the
function. This allows the Scharr derivative function to output
a constant value if the integration window overlaps with the

367

Table II
SUMMARY OF IMPLEMENTATION AND EXECUTION RESULTS.

Version LUTS FF DSPs BRAMs Latency (cycles) Clock Rate Time FPS Avg. Power
baseline 22,647 (42.6%) 16,171(15.2%) 110(50.0%) 23 (8.2%) 5,171,563 95 MHz 54.4 ms 18.4 6.01 W
dataflow 34,007(63.9%) 32,844(30.9%) 196(89.1%) 201 (71.7%) 2,590,972 100 MHz 25.9 ms 38.6 6.86 W
scharr 37,266 (70.0%) 33,601 (31.6%) 194 (88.2%) 185(66.1%) 2,518,141 100 MHz 25.2 ms 39.7 6.92 W

max. clock 37,055 (69.7%) 33,626 (31.6%) 194 (88.2%) 185 (66.1%) 2,538,290 110 MHz 23.1 ms 41.8 7.08 W

border. Coding the Scharr derivative in C that accounted for
this border issue was simple.

This optimization actually increased the performance of
the feature tracker accelerator. This is due to the combination
of not having to read the derivative integration window and
improvements in read latency. We have now implemented
the Scharr derivative function for only the cost of a few
resources (3,189 LUTs and 757 flip flops). Additionally, we
estimate that including the Scharr derivative into the fea-
ture tracker reduced bandwidth requirements for the feature
tracker by 57.5% and reduced bandwidth requirements for
the entire system by 64.3%.

Figure 6. A Block Diagram showing the addition of the Scharr derivative.

D. Increasing the Clock Rate

Our final optimization is to increase the clock rate of
the feature tracking accelerator. The high performance DDR
interfaces used for the feature tracker can operate at clock
rates up to 150 MHz. The dataflow and Scharr optimizations
were clocked at 100 MHz; however, this was not necessarily
their maximum clock rate. By experimenting with clock
constraints in EDK we found that the feature tracker with
the Scharr optimization could operate at speeds up to 110
MHz. The performance of this accelerator is shown in Table
II under the name max. clock.

VII. PERFORMANCE ANALYSIS

Table III shows the estimated performance and average
energy usage of the application under each version of the
feature tracking accelerator. These runtimes were calculated
by summing the estimated runtimes of FPGA accelerated

Table III
PERFORMANCE OF OPTICAL FLOW

Accelerator Runtime FPS Avg. Energy
baseline 61.2 ms 16.3 .369 J
dataflow 32.7 ms 30.6 .224 J
scharr 28.9 ms 34.6 .200 J

max. clock 26.8 ms 37.3 .190 J

versions of pyramid, Scharr, and feature tracking (i.e.,
Test = Tpyramid + Tsharr + Tft). For example, the runtime
estimate of the application using the baseline feature tracking
accelerator is 3.7 ms + 3.1 ms + 54.4 ms = 61.2 ms (1/.0612
S = 16.3 FPS). The runtimes for pyramid (3.7 ms) and Scharr
(3.1 ms) were estimated in Section IV-C and the runtime
for the baseline (54.4 ms) is found in Table II. Since the
“Scharr” and “max clock” accelerators include the Scharr
derivative computation within the accelerator circuit, the
estimated Tscharr = 3.1ms is not used within the runtime
estimation of these accelerators. Energy usage was estimated
using the average power consumption of the feature tracking
accelerator from Table II. This seems to provide a reasonable
estimate given that most of the application is now executed
in the reconfigurable fabric.

Comparing the hardware accelerated optical flow and the
original software implementations must be done carefully.
The original software versions were written to create an
image pyramid for both of the input images each time the
function was called. On the other hand, the hardware version
reuses previous pyramid creation effort and only needs to
create 1 new pyramid over the same duration. In other words,
the software implementations are doing more work. This can
be accounted for by subtracting half of the pyramid creation
(reported in Table I) from the total runtimes reported (also
reported in Table I). After accounting for pyramid creation
time, the runtime of the ARM implementation is estimated as
92.0 ms (10.9 FPS). The reduction in execution time reduces
the energy consumption to .598 J (from .644 J). The runtime
of the core i7 improves from 12.5 ms (80 FPS) to 11.1
ms (89.7 FPS) while estimated energy is reduced from 1.6
J to 1.4 J. The hardware version out-performed the ARM
implementation by 3.6× while consuming 3.2× less energy.
We also see that the hardware version was competitive with
the Core i7 while consuming 7.4× less energy.

Get Next Window

Compute Scharr
Derivative

Get Previous
Window

Interpolate

Interpolate Interpolate

Multiply
Accumulate (3)

Difference

Calculate
Displacement

Magnitude Below
Threshold?

Done

Multiply
Accumulate (2)

Yes.

No.

368

VIII. CONCLUSION

HLS synthesis was used to develop an implementation
of the optical flow algorithm in C that has performance
competitive with desktop processor and operates at 1/7th
the energy. HLS significantly reduced the amount of effort
and time to develop this low-power implementation.

• You start immediately with the original C source code.
It was not necessary to convert the original C descrip-
tion into RTL as is typically done for FPGA implemen-
tations. The original C source code was easily modified
so that it was compatible with the HLS software.

• You can rapidly explore the design space to achieve
sufficient performance and low-power operation. Dif-
ferent versions of the algorithm were quickly created
and analyzed to determine their impact on performance
and energy consumption.

• You can quickly compare and verify different versions
of the algorithm in C. It is much easier to compare
different versions of the algorithm in C and determine
execution speeds and estimate power consumption. Ver-
ification is also simpler because it is much easier to co-
execute and compare different versions of the software
in a C development environment than is possible with
RTL simulation.

Some may argue that further energy reductions may
be possible if the accelerator were implemented in RTL,
because it may be possible to reduce energy consumption
and increase clock rate with RTL. Indeed, it may be possible
to achieve more efficient implementations in RTL. However,
it is unlikely, given the much longer development cycle of
RTL, that the developers would ever arrive at the same
optimizations discovered while rapidly exploring the design
space in C. As is often the case in real situations, it is usually
more important to quickly arrive at an implementation that
meets the requirements than it is to try to discover the most
efficient implementation of an application.

ACKNOWLEDGMENT

This work was supported by the I/UCRC Program of the
National Science Foundation under Grant No. 0801876.

REFERENCES

[1] Xilinx, Vivado Design Suite User Guide: High-Level Synthe-
sis (UG902 (v2012.4)), PDF File, Xilinx, San Jose, California,
December 2012.

[2] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona,
J. H. Anderson, S. Brown, and T. Czajkowski, “LegUp: high-
level synthesis for fpga-based processor/accelerator systems,”
in Proceedings of the 19th ACM/SIGDA international
symposium on Field programmable gate arrays, ser. FPGA
’11. New York, NY, USA: ACM, 2011, pp. 33–36. [Online].
Available: http://doi.acm.org/10.1145/1950413.1950423

[3] J. Bodily, B. Nelson, Z. Wei, D.-J. Lee, and J. Chase,
“A comparison study on implementing optical flow
and digital communications on FPGAs and GPUs,”
ACM Trans. Reconfigurable Technol. Syst., vol. 3,
no. 2, pp. 6:1–6:22, May 2010. [Online]. Available:
http://doi.acm.org/10.1145/1754386.1754387

[4] N. Roudel, F. Berry, J. Serot, L. Eck, and C. List, “Hardware
implementation of a real time Lucas and Kanade optical flow,”
in Conference on Design and Architectures for Signal and
Image Processing (DASIP), 2009.

[5] A. Browne, T. McGinnity, G. Prasad, and J. Condell, “FPGA
based high accuracy optical flow algorithm,” in Signals and
Systems Conference (ISSC 2010), IET Irish, june 2010, pp.
112 –117.

[6] D. Honegger, P. Greisen, L. Meier, P. Tanskanen, and
M. Pollefeys, “Real-time velocity estimation based on optical
flow and disparity matching,” To appear, Intelligent Robots
and Systems (IROS), 2012.

[7] X. Ren, “RTL Implementation of an Optical Flow Algorithm
(Lucas) Using the Catapult C High-Level Synthesis tool,”
Master’s thesis, Delft University of Technology, 2011.

[8] C. Feenstra, “A Memory Access and Operator Usage Profiler
Framework for HLS Optimization,” Master’s thesis, Delft
University of Technology, 2011.

[9] K. Denolf, S. Neuendorffer, and K. Vissers, “Using C-to-gates
to program streaming image processing kernels efficiently
on FPGAs,” in Field Programmable Logic and Applications,
2009. FPL 2009. International Conference on, 31 2009-sept.
2 2009, pp. 626 –630.

[10] G. Botella, A. Garcia, M. Rodriguez-Alvarez, E. Ros,
U. Meyer-Baese, and M. Molina, “Robust bioinspired ar-
chitecture for optical-flow computation,” Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, vol. 18,
no. 4, pp. 616 –629, april 2010.

[11] J. Diaz, E. Ros, F. Pelayo, E. Ortigosa, and S. Mota, “FPGA-
based real-time optical-flow system,” Circuits and Systems for
Video Technology, IEEE Transactions on, vol. 16, no. 2, pp.
274 – 279, feb. 2006.

[12] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of
Software Tools, 2000.

[13] J. Bouguet, “Pyramidal implementation of the affine lucas
kanade feature tracker description of the algorithm,” Intel
Corporation, 2001.

[14] B. D. Lucas and T. Kanade, “An iterative image registration
technique with an application to stereo vision,” 1981, pp. 674–
679.

[15] D. Graham-Smith. (2009, September) Intel
core i7-860 review. [Online]. Available:
http://www.pcpro.co.uk/reviews/processors/351388/intel-
core-i7-860

369

