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Abstract. High-Performance Reconfigurable Computers (HPRCs) are parallel 
machines consisting of FPGAs and microprocessors, with the FPGAs used as 
co-processors. The execution of parallel applications on such systems has 
mainly followed the Single-Program Multiple-Data (SPMD) model; however, 
overall system resources are often underutilized because of the asymmetric 
distribution of the reconfigurable (co-)processors relative to the (main) 
processors. Furthermore, with the introduction of HPRCs containing 
multi/many-core technologies, underutilization of system resources becomes 
more obvious especially for multi-tasking and multi-user usage. To address the 
asymmetry problem, we propose a resource virtualization solution based on 
Partial Run-Time Reconfiguration (PRTR). The proposed technique allows 
space, time, and/or space-time sharing of the reconfigurable (co-)processors 
among the (main) processors and thus increasing the overall system utilization. 
We show the effectiveness of the proposed concepts through a stochastic 
execution model verified with experimental implementations on the Cray XD1 
platform. The results demonstrate favorable performance as well as scalability 
characteristics. 
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1  Introduction 

Recent years have witnessed the introduction of stand-alone general purpose 
Reconfigurable Computers (RCs) as well as parallel reconfigurable supercomputers 
called High-Performance Reconfigurable Computers (HPRCs). Examples of such 
supercomputers are the SRC-7 and SRC-6 [1], the SGI Altix/RASC [2] and the Cray 
XT5h and Cray XD1 [3]. These systems are capable of delivering high performance as 
well as maintaining flexibility, due to the use of FPGAs. The FPGAs are mainly used 
as co-processing element(s) (CPE) to the main processing element(s) (MPE) in order 
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to accelerate critical functions in hardware. Several efforts have proved the significant 
performance speedups obtained by these systems for many different applications [4]. 
Applications for HPRCs are mainly developed using the Single-Program Multiple-
Data (SPMD) programming model, which is the most common style of parallel 
programming used in HPC platforms. In SPMD [5], the participating processors 
simultaneously execute the same program at independent points, operating on 
different parts of the input data. Either shared memory or message passing techniques 
such as MPI may be adopted in order to deploy tasks and execute them in parallel [5], 
[6]. However, the use of SPMD programming paradigms for HPRCs can be 
challenging, due to the heterogeneity of the processing elements. This is primarily due 
to the fact that in HPRCs, the reconfigurable processors act as co-processing 
element(s) (CPE) to the main host processing element(s) (MPE).  In particular, when 
the ratio of MPEs, CPEs, and their communication channels differs from unity, 
SPMD programs, which generally assume a unity ratio, might underutilize some of 
the system processing resources, for example microprocessors [4]. 

 
In this work, we propose to space, time, and/or space-time share the reconfigurable 

resources among the underutilized MPEs, namely microprocessor(s) and/or processor-
cores by providing a virtual SPMD view and thus improving the overall system 
utilization for multi-user environments. In other words, the pool of reconfigurable 
resources will be virtually increased to maintain the symmetric view of SPMD, i.e. 
unity ratio among the MPEs, CPEs, and their communication channels. The 
implementation of these concepts is based on Partial Run-Time Reconfiguration 
(PRTR) from a practical perspective. We will provide a formal stochastic analysis of 
the execution model supported by experimental work. The execution model considers 
multi-user HPRCs equipped with multi-processor/multi-core technology. Our work 
utilizes PRTR on one of the current HPRC systems, Cray XD1. The results show 
near-linear scalability behavior for compute intensive applications. 

 
This paper is organized such that section 2 provides a discussion of related work in 

context of run-time reconfiguration and hardware virtualization. Section 3 describes 
the space, time, and space-time techniques for sharing reconfigurable resources. 
Section 3 also includes our analytical model and explains the formulation steps of this 
model. Section 4 shows both the theoretical and the experimental results. Finally, 
Section 5 summarizes and concludes the paper with our findings. 

2  Related Work 

In this work, the primary objective is to share the reconfigurable resources (or 
CPEs) in HPRCs among all system microprocessors and/or processor-cores (or 
MPEs) in an SPMD view, irrespective of the system physical 
limitations/configuration, thereby providing support for true multi-user environments. 
In other words, regardless of the number of main processing elements (MPEs) and the 
co-processing elements (CPEs) in the system, we will try to provide a virtual 1:1 
correspondence between MPEs and CPEs. To achieve the desired objective, we will 
leverage previous work and concepts that have been used for solving similar and 
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Fig. 1. Architectural assumptions (SPMD view of reconfigurable resources on HPRCs) 

related problems, namely hardware virtualization.  For example, we use the concept 
of virtual FPGA (VFPGA) proposed in [7].  

Many of the proposed solutions in previous research [8], [9], are based on the 
strategies used in Operating Systems to support virtual memory – dynamic loading, 
partitioning, overlaying, segmentation, and paging, etc.  All of these techniques strive 
to provide applications with the view of a larger FPGA, by virtually increasing the 
FPGA logic capacity. This concept of “virtual hardware” requires the use of special 
capabilities of the FPGAs, namely, Full Run-Time Reconfiguration (FRTR) and/or 
Partial Run-Time Reconfiguration (PRTR) [10],[11]. However, all of these proposed 
techniques are targeted towards embedded systems, with typically a single main 
processing element (MPE) and only one reconfigurable co-processing element (CPE).  
The multiplicity and imbalanced heterogeneity of the processing elements, common 
to HPRCs, is absent in embedded platforms. Furthermore, HPRC systems impose 
architectural constraints such as a shared configuration interface for the CPEs, as well 
as shared communication interfaces between the MPEs and CPEs. The unique nature 
of HPRCs adds a significant complexity to the virtualization problem, and therefore 
calls for a formal approach in order to solve it. Towards this end, we utilize and build 
on the techniques and methodologies introduced in [10],[11] by providing a 
virtualization infrastructure that allows space, time, and/or space-time sharing of the 
reconfigurable processors. Furthermore, we generalize the execution model based on 
stochastic Markov chains and queueing networks. The new model includes HPRCs 
equipped with multi-processor/multi-core technology utilizing the proposed 
virtualization infrastructure in a true multi-user environment. 

3 Techniques for Sharing Reconfigurable Resources 

Our methodology is based on the concept of “Computing in Time - Computing in 
Space” [12] for space, time, and/or space-time sharing of the reconfigurable 
resources. We first develop a formal analysis of the execution model based on our 
methodology, following an approach similar to what has been proposed in [10],[11]. 
In our analysis, we assume a multi-processor/multi-core HPRC architecture with 
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asymmetric heterogeneity at the node level [4]. All nodes are identical and in general 
each node is assumed to include a number of main processing elements (MPEs), e.g. 
microprocessors or processor cores, and a number of co-processing elements (CPEs), 
e.g. FPGAs. The number of MPEs, NMPE, is not necessarily equal to the number of 
CPEs, NCPE. In current HPRC systems NMPE is typically larger than NCPE, namely 
NMPE > NCPE. Additionally, each CPE is to be partitioned into a number of virtual 
processing elements (VPEs), NVPE, such that each VPE is associated to a 
corresponding MPE maintaining a One-to-One correspondence among MPEs and 
their dedicated VPEs resulting in a balanced and symmetric distribution of system 
resources. In other words, the physical reconfigurable resources (FPGAs) will be 
virtualized and split into multiple virtual FPGAs (VFPGAs) such that NVFPGA = NVPE 
in order to accommodate for the symmetry requirement of the SPMD execution. Each 
VFPGA will be located in a separate partially reconfigured region (PRR) on the 
physical FPGA. Finally, the number of necessary VPEs, NVPE, for 
providing/guaranteeing the SPMD behavior can be given by equation (1) as follows: 

As the number of VPEs increases, the size of each VPE reduces; the task 
granularity task will determine the maximum number of VPEs, as seen below by 
rewriting (1): 

Based on equation (2), space-time scheduling of task execution on VPEs is needed 
when NVPE

tasks<NVPE
cores while space-only scheduling is needed when 

NVPE
tasksNVPE

cores. In other words the execution of tasks needs to be performed 
through both space and time schedules when the task granularity is the governing 
bound on the number of VPEs while only space schedules are needed when there is a 
sufficient number of VPEs; at least equal to the number of MPEs. In later discussions, 
we will refer to equation (2) as the SPMD condition. 
 

The usage model is SPMD in which the system receives some applications as 
input. These applications require on average a few independent hardware functions 
(tasks) that need to be executed on dedicated reconfigurable resources. The execution 
cycle for any task on an HPRC consists of the computation time, the total data input 
time, output time and the configuration time [10],[11], represented by Tcomp, Tin, Tout, 
and Tconfig respectively. The I/O time Tin and Tout represent the time necessary to 
transfer data between the microprocessor and the FPGA. The baseline for our analysis 
is FRTR, where reconfigurable resources (CPEs) cannot be space shared among the 
node microprocessors/processor-cores (MPEs). We will focus our discussions on 
applications that are broken down into hardware tasks only. In addition, we assume  
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Fig. 2. Typical task execution per node using FRTR on a multi-user HPRC system 

 
that each task is fully characterized by its time requirement, Ttask=Tin+Tcomp+Tout.  

 
The execution model of FRTR on each node, see Fig. 2, is sequential among tasks 

and is independent from their owners (users). This is because the reconfigurable 
resource (CPE), assuming one per node, is not space sharable among the node MPEs 
rendering some MPEs unused. Considering different tasks to have similar average 
execution characteristics albeit different in functionalities, total execution time for the 
case of FRTR can be derived as follows: 
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(3a) Traffic processes 

 
 

(3b) Discrete-time Markov chains 
state diagram 

 

Fig. 3. Queueing execution model 
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Queuing Analysis and Modeling  
 
The execution model of our proposed virtualization technique and sharing mechanism 
can be viewed as a combination of three traffic (queueing) processes, namely entry, 
computation, and exit processes, see Fig. 3(a). The entry process is when tasks at the 
beginning of their execution life-cycle request configuration and data transfer from 
the MPEs into the VPEs/VFPGAs. The exit process is when tasks at the end of their 
execution life-cycle request data transfer from the VFPGA back to the MPEs. The 
computation process represents the actual processing performed by tasks on their 
VFPGAs. In our model tasks can continue their computations in parallel while others 
are entering into and/or exiting from the system. In other words, we are considering 
that VFPGA reconfiguration, data transfers (in and out) and computations can be 
overlapped, sharing the I/O channel among all the MPEs in the node. 

 
We base our analysis of the execution model on Markov processes. In particular, 

we will utilize the mathematical formulation of discrete-parameter (discrete-time) 
Markov chains [13]. Markov chains are described in general using a state diagram in 
which each state represents a case when the system contains a certain number of 
customers (tasks in our case). The system transitions from one state Si to another state 
Sj with a probability pij known as the one-step transition probability, see Fig. 3(b). The 
probability distribution of a Markov chain is completely determined by the one-step 
transition probability matrix, P=[pij], and the initial-state probability vector [13], see 
equation (4). Equation (5) shows some important and useful properties of P. 
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The total execution time on node j can be determined/defined by the time step at 

which the instantaneous state probability vector becomes very close, within a certain 
error threshold , to its final steady state value. In other words, we define the total 
execution time as the minimum time step that is necessary for the system to reach as 
close as possible its final steady state where behavior transients become insignificant 
to a certain error threshold . This argument can be described as follows by equation 
(6): 
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Taking into consideration that the final execution time on the system is determined 

by the longest execution time among all nodes, namely the slowest (critical) node, the 
performance gain (speedup) of PRTR in reference to FRTR can be expressed as 
follows by combining equations (3) and (6): 
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(4a) Traffic processes 

 
 
 
 
 
 

(4b) Birth-Death state model 
 

Fig. 4. Simplified execution model 
 

Due to the fact that typical HPRC architectures are designed with a single 
configuration port and a single communication channel between MPEs and CPEs, we 
will use a special class of Markov chains that is typically used to describe queueing 
systems. More specifically, we will simplify our model as a birth-death process in 
which transitions are allowed between only neighboring states. The simplified 
execution model is shown in Fig. 4. Equation (8) describes the simplified model. 
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In order to investigate how scalable our approach, we will introduce what we call 
the scalability factor, . The scalability factor, , can be defined as the normalized 
speedup. In other words, the speedup achieved by a multiple of MPE-VPE pairs 
would be normalized with respect to the speedup achieved by one MPE-VPE pair. 
More specifically,  is defined as the ratio between two values of the speedup, namely 
S(NVPE) and S(1), as a function of NVPE. This expression can be written as shown in 
equation (9). By taking the limit of equation (9) as the number of VPEs increases 
indefinitely, namely NVPE, the asymptotic scalability behavior can be obtained as 
given by equation (10). 
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4 Results 

Our experiments have been performed on one of the current HPRC systems, Cray 
XD1 [3]. The Cray XD1 is a multi-chassis system. Each chassis contains up to six 
nodes (blades). Each blade consists of two 64-bit AMD Opteron processors at 2.4 
GHz, one Rapid Array Processor (RAP) that handles the communication, an optional 
second RAP, and an optional Application Accelerator Processor (AAP). The AAP is a 
Xilinx Virtex-II Pro XC2VP50-7 FPGA with a local memory of 16MB QDR-II 
SRAM [3]. 
 

To verify the proposed virtualization techniques and the execution model, a set of 
experiments were conducted, starting with an application that carries out image 
feature extraction. In the chosen application, high frequency noise components were 
first removed from the images using two different algorithms, followed by some 
processing to extract the object edges of interest. Specifically, a sequence of image 
processing functions were executed, namely median filtering followed by Sobel edge 
detection, and smoothing filtering also followed by Sobel edge detection. The final 
images were then transferred back to the microprocessor memory for some quality 
checks.  
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Table 1. Selected scenarios for Cray XD1 

 
Case 1 

(Tcomp<Tin<Tout) 

Case 2 

(Tcomp=Tin<Tout) 

Case 3 

(Tin<Tcomp<Tout) 

Case 4 

(Tin<Tcomp=Tout) 

Case 5 

(Tin< Tout<Tcomp) 

Tcomp (msec) 0.299 2.991 64.109 641.092 6410.92 

 
It may be noted that the SPMD condition as described by equation (2) suggests 

that the maximum number of PRRs should at least equal the number of 
microprocessors (MPEs) per node.  For Cray XD1, the number of MPEs per node is 
two. We therefore conducted an initial set of experiments using dual VFPGAs 
(VPEs). In order to evaluate the proposed execution model for a larger number of 
cases, we added some features to the virtual infrastructure on Cray XD1 to emulate 
scenarios for a larger number of VFPGAs (PRRs). The emulation-based virtual 
infrastructure accepts a minimum set of parameters for XD1 since it is running on the 
machine itself. These parameters include the number of VFPGAs and different 
computation times to emulate different tasks, etc. Five scenarios were emulated to 
validate the model and the proposed infrastructure as shown in Table 1. These 
scenarios were selected to investigate different classes of applications starting from 
the least computational intensive, namely I/O intensive, in case 1 to the most 
computational intensive applications in case 5, see Table 1. A large (infinite) amount 
of task traffic was submitted to be executed on a variable number of VPEs from 1 to 
10 VFPGAs. 
 

Results for the described scenarios were obtained from actual runs on Cray XD1, 
and compared against the proposed execution model presented in Section 3. The 
measured results were found to be in good agreement with the mathematical model. 
Fig. 5 shows some of these experimental findings for the scenarios listed in Table 1, 
as a speedup over the conventional execution based on FRTR. The parameters 
collected from our experiments are TFRTR= 1678.040 ms, TPRTR= 19.771 ms, Tin=2.991 
ms, and Tout= 641.092 ms. Equation (7) suggests that the speedup value should be 
3.49, which is consistent with the value measured and shown in Fig. 5(a). 
 

It is worth mentioning that for the measured parameters on Cray XD1 there is a 
region in Fig. 5(a) where the measured speedup is not upper bounded by the total 
number of processing elements, NMPE. The upper bound is rather dictated by the ratio 
between TFRTR and TPRTR. This is true to a certain point, see Fig. 5(a), beyond which 
the situation reverses and the speedup would be upper bounded by the total number of 
processing elements, NVPE. This is due to the fact that for a small number of VPEs the 
savings in the total execution time is not because of the parallel execution of tasks but 
rather because of the savings in (re)configuration overhead. On the other hand, for a 
large number of VPEs the savings in the total execution time because of the parallel 
execution of tasks become more significant than the savings in (re)configuration 
overhead.  
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(5a) Speedup achieved using multiple PRRs 
(VFPGAs) as a function of NVPE = Nregions 

(5b) Scalability factor,  

Fig. 5.  Performance of applications using virtual resources 
 

Finally, the scalability, as defined by equation (9), of our approach is shown in Fig. 
5(b). In general, HPC applications with constant overhead show a similar scalability 
behavior to the one shown in Fig. 5(b). Such behavior is typically due to 
communication overhead between the system nodes. In our case, the overhead is due 
to (re)configuration and data transfer back and forth between the MPEs and VPEs, see 
equation (10). As shown in Fig. 5(b), when the task computation time, Tcomp, becomes 
much larger than the associated overhead, the execution speedup, using our 
techniques, approaches linear behavior. In other words, the execution of highly 
compute intensive applications using our virtualization techniques becomes linearly 
scalable, which is a typical behavior on HPC supercomputers. 

5  Conclusion 

In this paper we presented an effort of virtualizing and space, time, and/or space-time 
sharing of reconfigurable resources based on Partial Run-Time Reconfiguration 
(PRTR) for High-Performance Reconfigurable Computing (HPRC) systems 
configured with multi-processor/multi-core technologies. We investigated the 
performance potential of our proposed virtualization techniques on HPRCs from both 
theoretical and practical perspectives. In doing so, we derived a formal stochastic 
model of multi-user SPMD execution on HPRC systems relative to the baseline of 
Full Run-Time Reconfiguration (FRTR). The model provided us with theoretical 
expectations which served as a frame of reference against which we projected our 
experimental results. In addition, it helped us gain in-depth insight about the 
boundaries and/or conditions for possibilities of performance gain using PRTR for 
resource sharing and virtualization. In achieving this objective, our approach was 
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based on leveraging previous work and concepts that were introduced for solving 
similar and related problems. 
 

In conducting the experimental work, we utilized one of the current HPRC 
systems, Cray XD1. We also discussed the requirements and setups for PRTR-based 
resource virtualization on Cray XD1. The experimental results showed good 
agreement with the analytical model expectations. Sharing reconfigurable resources 
among the underutilized microprocessors/processor-cores by providing a virtual 
SPMD view allows improving the overall system versatility, resources utilization, and 
application performance in multi-user environments. The approach we followed for 
Cray XD1 has been proven to be scalable and general to be applied to any of the 
available HPRC systems. 
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