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Abstract. High-Performance Reconfigurable Computers (HPRCs) are parallel
machines consisting of FPGAs and microprocessors, with the FPGAs used as
co-processors. The execution of parallel applications on such systems has
mainly followed the Single-Program Multiple-Data (SPMD) model; however,
overall system resources are often underutilized because of the asymmetric
distribution of the reconfigurable (co-)processors relative to the (main)
processors. Furthermore, with the introduction of HPRCs containing
multi/many-core technologies, underutilization of system resources becomes
more obvious especially for multi-tasking and multi-user usage. To address the
asymmetry problem, we propose a resource virtualization solution based on
Partial Run-Time Reconfiguration (PRTR). The proposed technique allows
space, time, and/or space-time sharing of the reconfigurable (co-)processors
among the (main) processors and thus increasing the overall system utilization.
We show the effectiveness of the proposed concepts through a stochastic
execution model verified with experimental implementations on the Cray XDI
platform. The results demonstrate favorable performance as well as scalability
characteristics.

Keywords: Dynamic Partial Reconfiguration, Hardware Virtualization, High
Performance Computing, Reconfigurable Computing

1 Introduction

Recent years have witnessed the introduction of stand-alone general purpose
Reconfigurable Computers (RCs) as well as parallel reconfigurable supercomputers
called High-Performance Reconfigurable Computers (HPRCs). Examples of such
supercomputers are the SRC-7 and SRC-6 [1], the SGI Altix/RASC [2] and the Cray
XTS5y, and Cray XD1 [3]. These systems are capable of delivering high performance as
well as maintaining flexibility, due to the use of FPGAs. The FPGAs are mainly used
as co-processing element(s) (CPE) to the main processing element(s) (MPE) in order
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to accelerate critical functions in hardware. Several efforts have proved the significant
performance speedups obtained by these systems for many different applications [4].
Applications for HPRCs are mainly developed using the Single-Program Multiple-
Data (SPMD) programming model, which is the most common style of parallel
programming used in HPC platforms. In SPMD [5], the participating processors
simultaneously execute the same program at independent points, operating on
different parts of the input data. Either shared memory or message passing techniques
such as MPI may be adopted in order to deploy tasks and execute them in parallel [5],
[6]. However, the use of SPMD programming paradigms for HPRCs can be
challenging, due to the heterogeneity of the processing elements. This is primarily due
to the fact that in HPRCs, the reconfigurable processors act as co-processing
element(s) (CPE) to the main host processing element(s) (MPE). In particular, when
the ratio of MPEs, CPEs, and their communication channels differs from unity,
SPMD programs, which generally assume a unity ratio, might underutilize some of
the system processing resources, for example microprocessors [4].

In this work, we propose to space, time, and/or space-time share the reconfigurable
resources among the underutilized MPEs, namely microprocessor(s) and/or processor-
cores by providing a virtual SPMD view and thus improving the overall system
utilization for multi-user environments. In other words, the pool of reconfigurable
resources will be virtually increased to maintain the symmetric view of SPMD, i.e.
unity ratio among the MPEs, CPEs, and their communication channels. The
implementation of these concepts is based on Partial Run-Time Reconfiguration
(PRTR) from a practical perspective. We will provide a formal stochastic analysis of
the execution model supported by experimental work. The execution model considers
multi-user HPRCs equipped with multi-processor/multi-core technology. Our work
utilizes PRTR on one of the current HPRC systems, Cray XD1. The results show
near-linear scalability behavior for compute intensive applications.

This paper is organized such that section 2 provides a discussion of related work in
context of run-time reconfiguration and hardware virtualization. Section 3 describes
the space, time, and space-time techniques for sharing reconfigurable resources.
Section 3 also includes our analytical model and explains the formulation steps of this
model. Section 4 shows both the theoretical and the experimental results. Finally,
Section 5 summarizes and concludes the paper with our findings.

2 Related Work

In this work, the primary objective is to share the reconfigurable resources (or
CPEs) in HPRCs among all system microprocessors and/or processor-cores (or
MPEs) in an SPMD view, irrespective of the system physical
limitations/configuration, thereby providing support for true multi-user environments.
In other words, regardless of the number of main processing elements (MPEs) and the
co-processing elements (CPEs) in the system, we will try to provide a virtual 1:1
correspondence between MPEs and CPEs. To achieve the desired objective, we will
leverage previous work and concepts that have been used for solving similar and
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Fig. 1. Architectural assumptions (SPMD view of reconfigurable resources on HPRCs)

related problems, namely hardware virtualization. For example, we use the concept
of virtual FPGA (VFPGA) proposed in [7].

Many of the proposed solutions in previous research [8], [9], are based on the
strategies used in Operating Systems to support virtual memory — dynamic loading,
partitioning, overlaying, segmentation, and paging, etc. All of these techniques strive
to provide applications with the view of a larger FPGA, by virtually increasing the
FPGA logic capacity. This concept of “virtual hardware” requires the use of special
capabilities of the FPGAs, namely, Full Run-Time Reconfiguration (FRTR) and/or
Partial Run-Time Reconfiguration (PRTR) [10],[11]. However, all of these proposed
techniques are targeted towards embedded systems, with typically a single main
processing element (MPE) and only one reconfigurable co-processing element (CPE).
The multiplicity and imbalanced heterogeneity of the processing elements, common
to HPRCs, is absent in embedded platforms. Furthermore, HPRC systems impose
architectural constraints such as a shared configuration interface for the CPEs, as well
as shared communication interfaces between the MPEs and CPEs. The unique nature
of HPRCs adds a significant complexity to the virtualization problem, and therefore
calls for a formal approach in order to solve it. Towards this end, we utilize and build
on the techniques and methodologies introduced in [10],[11] by providing a
virtualization infrastructure that allows space, time, and/or space-time sharing of the
reconfigurable processors. Furthermore, we generalize the execution model based on
stochastic Markov chains and queueing networks. The new model includes HPRCs
equipped with multi-processor/multi-core technology utilizing the proposed
virtualization infrastructure in a true multi-user environment.

3 Techniques for Sharing Reconfigurable Resources

Our methodology is based on the concept of “Computing in Time - Computing in
Space” [12] for space, time, and/or space-time sharing of the reconfigurable
resources. We first develop a formal analysis of the execution model based on our
methodology, following an approach similar to what has been proposed in [10],[11].
In our analysis, we assume a multi-processor/multi-core HPRC architecture with
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asymmetric heterogeneity at the node level [4]. All nodes are identical and in general
each node is assumed to include a number of main processing elements (MPEs), e.g.
microprocessors or processor cores, and a number of co-processing elements (CPEs),
e.g. FPGAs. The number of MPEs, Nz, is not necessarily equal to the number of
CPEs, Ncpe. In current HPRC systems Nypg is typically larger than Ncpg, namely
Nype > Ncpg. Additionally, each CPE is to be partitioned into a number of virtual
processing elements (VPEs), Nypg, such that each VPE is associated to a
corresponding MPE maintaining a One-to-One correspondence among MPEs and
their dedicated VPEs resulting in a balanced and symmetric distribution of system
resources. In other words, the physical reconfigurable resources (FPGAs) will be
virtualized and split into multiple virtual FPGAs (VFPGAS) such that Nygpgs = Nype
in order to accommodate for the symmetry requirement of the SPMD execution. Each
VFPGA will be located in a separate partially reconfigured region (PRR) on the
physical FPGA. Finally, the number of necessary VPEs, Nypg, for
providing/guaranteeing the SPMD behavior can be given by equation (1) as follows:

Nypg= {NMPE} xNcPE @
Ncpe
As the number of VPEs increases, the size of each VPE reduces; the task
granularity o, will determine the maximum number of VPEs, as seen below by
rewriting (1):

. cores jrtasks
Nyegions = NyrpGa = Nype = mln(N vpE NypE )X Ncpg » where @
ores N ks 1 - ogatic
eores El> MPE—‘ Ntaa S E{ statch a o<1 a <1
> Ny, > Xstatic > Qtask
VPE Ncpe PE Uask

Agqatic = Static region FPGA resource utilization

a5k = task  granularity (task FPGA resource utilization)

Based on equation (2), space-time scheduling of task execution on VPEs is needed
when  Nype®™F<Nype®  while space-only  scheduling is needed when
Nyp ™ >Nypec®. In other words the execution of tasks needs to be performed
through both space and time schedules when the task granularity is the governing
bound on the number of VPEs while only space schedules are needed when there is a
sufficient number of VPEs; at least equal to the number of MPEs. In later discussions,
we will refer to equation (2) as the SPMD condition.

The usage model is SPMD in which the system receives some applications as
input. These applications require on average a few independent hardware functions
(tasks) that need to be executed on dedicated reconfigurable resources. The execution
cycle for any task on an HPRC consists of the computation time, the total data input
time, output time and the configuration time [10],[11], represented by Teomp, Tins Touss
and T,y respectively. The I/O time T}, and T,, represent the time necessary to
transfer data between the microprocessor and the FPGA. The baseline for our analysis
is FRTR, where reconfigurable resources (CPEs) cannot be space shared among the
node microprocessors/processor-cores (MPEs). We will focus our discussions on
applications that are broken down into hardware tasks only. In addition, we assume
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Fig. 2. Typical task execution per node using FRTR on a multi-user HPRC system

that each task is fully characterized by its time requirement, T,g=Tin+ Teompt Tour-

The execution model of FRTR on each node, see Fig. 2, is sequential among tasks
and is independent from their owners (users). This is because the reconfigurable
resource (CPE), assuming one per node, is not space sharable among the node MPEs
rendering some MPEs unused. Considering different tasks to have similar average
execution characteristics albeit different in functionalities, total execution time for the
case of FRTR can be derived as follows:
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Fig. 3. Queueing execution model
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Queuing Analysis and Modeling

The execution model of our proposed virtualization technique and sharing mechanism
can be viewed as a combination of three traffic (queueing) processes, namely entry,
computation, and exit processes, see Fig. 3(a). The entry process is when tasks at the
beginning of their execution life-cycle request configuration and data transfer from
the MPEs into the VPEs/VFPGAs. The exit process is when tasks at the end of their
execution life-cycle request data transfer from the VFPGA back to the MPEs. The
computation process represents the actual processing performed by tasks on their
VFPGAs. In our model tasks can continue their computations in parallel while others
are entering into and/or exiting from the system. In other words, we are considering
that VFPGA reconfiguration, data transfers (in and out) and computations can be
overlapped, sharing the I/O channel among all the MPEs in the node.

We base our analysis of the execution model on Markov processes. In particular,
we will utilize the mathematical formulation of discrete-parameter (discrete-time)
Markov chains [13]. Markov chains are described in general using a state diagram in
which each state represents a case when the system contains a certain number of
customers (tasks in our case). The system transitions from one state S; to another state
S; with a probability p;; known as the one-step transition probability, see Fig. 3(b). The
probability distribution of a Markov chain is completely determined by the one-step
transition probability matrix, P=[p;], and the initial-state probability vector [13], see
equation (4). Equation (5) shows some important and useful properties of P.

- - N N 4
p(”)ZPT»p(n—l):(PT)"AP(O):S,A”,S‘LP(O) . where 4)
0 Lo Nk

;(n): po(n) ;(0): Po(0) P 0o oo o p(,]:,am

pi(n) P1(0) 0 j ! wasks

pa(n) p2(0) 1 P10 PlL - Plj - PlNggks
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Pi(n) Pk (0) i0 i i N rasks
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N
p(n) =state probability vector after n transitions

Pk (n) = probability of the system being in state Sy (having k tasks) after n time steps
N

p(0) =initial — state probability vector

P = Transition probability matrix

pr = Transposed Transition probability matrix

S = Matrix of Eigenvectors of pr

A = Matrix of Eigenvalues of pr
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The total execution time on node j can be determined/defined by the time step at
which the instantaneous state probability vector becomes very close, within a certain
error threshold ¢ to its final steady state value. In other words, we define the total
execution time as the minimum time step that is necessary for the system to reach as
close as possible its final steady state where behavior transients become insignificant
to a certain error threshold ¢. This argument can be described as follows by equation

(6):

PRTR . At = T min

node; ~ '“min
! v,
sampling

(6)

=|[p(©) = p(nu)| <€, where

ggng(n) = ()

= \/ 3 (p0) = pn)) <

i=0

PRTR
7o

= Total execution time of all tasks generated by all users on node #j for PRTR

N = Minimum number of time steps necessary for close — to — steady — state behavior

mi

p(©) = Steady state probability vector

& = Error threshold

Taking into consideration that the final execution time on the system is determined
by the longest execution time among all nodes, namely the slowest (critical) node, the
performance gain (speedup) of PRTR in reference to FRTR can be expressed as
follows by combining equations (3) and (6):
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Fig. 4. Simplified execution model

Due to the fact that typical HPRC architectures are designed with a single
configuration port and a single communication channel between MPEs and CPEs, we
will use a special class of Markov chains that is typically used to describe queueing
systems. More specifically, we will simplify our model as a birth-death process in
which transitions are allowed between only neighboring states. The simplified
execution model is shown in Fig. 4. Equation (8) describes the simplified model.
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In order to investigate how scalable our approach, we will introduce what we call
the scalability factor, 7. The scalability factor, 7, can be defined as the normalized
speedup. In other words, the speedup achieved by a multiple of MPE-VPE pairs
would be normalized with respect to the speedup achieved by one MPE-VPE pair.
More specifically, 7 is defined as the ratio between two values of the speedup, namely
S(Nypg) and S(1), as a function of Nypg. This expression can be written as shown in
equation (9). By taking the limit of equation (9) as the number of VPEs increases
indefinitely, namely Nypr—=> o0, the asymptotic scalability behavior can be obtained as
given by equation (10).

S(NypE)
n(Nypg) = 50)
Nfaskx,mdej (TFRTR +Tip + Tcomp + Taut) Ntasks,,odej (TFRTR + Ty + Tcamp + T
S(Nypg) = T PRIR (> - SM= T PRTR 1
nodej VPE nodej
PRTR
Tnodej ® (9)
= 1(NVPE) = —pprp=
T,mdej (Nypg)
TPRIR () (10)
. node j
>Nw= lim  n(Nypg)= “PRTR. where
NypE = T ode ; (@)
J

n(Nypg ) = Scalability factor as a function of the number of node VPEs, Nypg
N = Asymptotic Scalability factor as the number of VPEs increases indefinitely

4 Results

Our experiments have been performed on one of the current HPRC systems, Cray
XD1 [3]. The Cray XDl1 is a multi-chassis system. Each chassis contains up to six
nodes (blades). Each blade consists of two 64-bit AMD Opteron processors at 2.4
GHz, one Rapid Array Processor (RAP) that handles the communication, an optional
second RAP, and an optional Application Accelerator Processor (AAP). The AAP is a
Xilinx Virtex-II Pro XC2VP50-7 FPGA with a local memory of 16MB QDR-II
SRAM [3].

To verify the proposed virtualization techniques and the execution model, a set of
experiments were conducted, starting with an application that carries out image
feature extraction. In the chosen application, high frequency noise components were
first removed from the images using two different algorithms, followed by some
processing to extract the object edges of interest. Specifically, a sequence of image
processing functions were executed, namely median filtering followed by Sobel edge
detection, and smoothing filtering also followed by Sobel edge detection. The final
images were then transferred back to the microprocessor memory for some quality
checks.
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Table 1. Selected scenarios for Cray XD1

Case 1
Teomp<Tiu<Tou)

Case 2
Teomp=Tiu<Tou)

Case 3
Tir<Tcomp<Tou)

Case 4
Tir<Tcomp=Tou)

Case 5
Tir< Tour<T comp)

Toomp (mSEC)

0.299

2.991

64.109

641.092

6410.92

It may be noted that the SPMD condition as described by equation (2) suggests
that the maximum number of PRRs should at least equal the number of
microprocessors (MPEs) per node. For Cray XD1, the number of MPEs per node is
two. We therefore conducted an initial set of experiments using dual VFPGAs
(VPEs). In order to evaluate the proposed execution model for a larger number of
cases, we added some features to the virtual infrastructure on Cray XD1 to emulate
scenarios for a larger number of VFPGAs (PRRs). The emulation-based virtual
infrastructure accepts a minimum set of parameters for XD1 since it is running on the
machine itself. These parameters include the number of VFPGAs and different
computation times to emulate different tasks, etc. Five scenarios were emulated to
validate the model and the proposed infrastructure as shown in Table 1. These
scenarios were selected to investigate different classes of applications starting from
the least computational intensive, namely I/O intensive, in case 1 to the most
computational intensive applications in case 5, see Table 1. A large (infinite) amount
of task traffic was submitted to be executed on a variable number of VPEs from 1 to
10 VFPGAs.

Results for the described scenarios were obtained from actual runs on Cray XD1,
and compared against the proposed execution model presented in Section 3. The
measured results were found to be in good agreement with the mathematical model.
Fig. 5 shows some of these experimental findings for the scenarios listed in Table 1,
as a speedup over the conventional execution based on FRTR. The parameters
collected from our experiments are Trrrr= 1678.040 ms, Tprrr= 19.771 ms, T;,=2.991
ms, and T,,~= 641.092 ms. Equation (7) suggests that the speedup value should be
3.49, which is consistent with the value measured and shown in Fig. 5(a).

It is worth mentioning that for the measured parameters on Cray XD1 there is a
region in Fig. 5(a) where the measured speedup is not upper bounded by the total
number of processing elements, Nypz. The upper bound is rather dictated by the ratio
between Trrrr and Tprrr. This is true to a certain point, see Fig. 5(a), beyond which
the situation reverses and the speedup would be upper bounded by the total number of
processing elements, Nypg. This is due to the fact that for a small number of VPEs the
savings in the total execution time is not because of the parallel execution of tasks but
rather because of the savings in (re)configuration overhead. On the other hand, for a
large number of VPEs the savings in the total execution time because of the parallel
execution of tasks become more significant than the savings in (re)configuration
overhead.
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Fig. 5. Performance of applications using virtual resources

Finally, the scalability, as defined by equation (9), of our approach is shown in Fig.
5(b). In general, HPC applications with constant overhead show a similar scalability
behavior to the one shown in Fig. 5(b). Such behavior is typically due to
communication overhead between the system nodes. In our case, the overhead is due
to (re)configuration and data transfer back and forth between the MPEs and VPEs, see
equation (10). As shown in Fig. 5(b), when the task computation time, 7, becomes
much larger than the associated overhead, the execution speedup, using our
techniques, approaches linear behavior. In other words, the execution of highly
compute intensive applications using our virtualization techniques becomes linearly
scalable, which is a typical behavior on HPC supercomputers.

5 Conclusion

In this paper we presented an effort of virtualizing and space, time, and/or space-time
sharing of reconfigurable resources based on Partial Run-Time Reconfiguration
(PRTR) for High-Performance Reconfigurable Computing (HPRC) systems
configured with multi-processor/multi-core technologies. We investigated the
performance potential of our proposed virtualization techniques on HPRCs from both
theoretical and practical perspectives. In doing so, we derived a formal stochastic
model of multi-user SPMD execution on HPRC systems relative to the baseline of
Full Run-Time Reconfiguration (FRTR). The model provided us with theoretical
expectations which served as a frame of reference against which we projected our
experimental results. In addition, it helped us gain in-depth insight about the
boundaries and/or conditions for possibilities of performance gain using PRTR for
resource sharing and virtualization. In achieving this objective, our approach was
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based on leveraging previous work and concepts that were introduced for solving
similar and related problems.

In conducting the experimental work, we utilized one of the current HPRC
systems, Cray XD1. We also discussed the requirements and setups for PRTR-based
resource virtualization on Cray XDI1. The experimental results showed good
agreement with the analytical model expectations. Sharing reconfigurable resources
among the underutilized microprocessors/processor-cores by providing a virtual
SPMD view allows improving the overall system versatility, resources utilization, and
application performance in multi-user environments. The approach we followed for
Cray XD1 has been proven to be scalable and general to be applied to any of the
available HPRC systems.
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