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Abstract—Partitioned global address space (PGAS) 
programming model presents programmers with a globally 
shared address space with locality awareness and one-sided 
communication constructs. The shared address space and 
the one-sided communication constructs enhance ease-of-
use of PGAS based languages and the locality awareness 
enables programmers and the runtime systems to achieve 
higher performance. Thus PGAS programming model may 
help address the escalating software complexity issues 
resulting from the proliferation of many-core processor 
architectures in aerospace and computing systems in 
general. This paper presents our experiences with Unified 
parallel C (UPC), a PGAS language, on the Tile64™ 
processor, a 64-core processor from Tilera Corporation. We 
ported Berkeley UPC compiler and runtime system on the 
Tilera architecture and evaluated two separate runtime 
implementation conduits of the underlying GASNet 
communication library, a pThreads based conduit and an 
MPI based conduit. Each conduit uses different on-chip, 
inter-core communication networks providing different 
latencies and bandwidths for inter-process communications. 
The paper presents the implementation details and empirical 
analyses of both approaches by comparing and evaluating 
results from NAS Parallel Benchmark suite. The analyses 
reveal various optimization opportunities based on specific 
many-core architectural features which are also discussed in 
the paper12. 
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1. INTRODUCTION 

The performance trend of microprocessors exploiting faster 
clock speeds and instruction-level parallelism has subsided 
due to unsustainable thermal and power overheads. The 
continued quest for higher performance has initiated a new 
focus, emphasizing thread- and task-level parallelism, 
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leading to the emergence of homogeneous and 
heterogeneous multi- and many-core processors. But this 
trend lends the responsibility of achieving higher 
performance on the shoulders of the mainstream 
programmers. A programmer must now understand and 
exploit parallelism, in the past a specialized activity 
performed by a select few from the HPC community. To 
exploit the full potential of these new multi-core processors 
new design methodologies and languages are needed that 
can abstract low-level details, but at the same time enable 
the mainstream programmer to extract thread and task-level 
parallelism from the application. HPC community has over 
the last few decades extensively researched parallel design 
languages and methods, results and lessons from which 
form a strong foundation from which to develop new 
methodologies amenable to the mainstream programming 
community. A relatively newer design paradigm that has 
influenced many new HPC languages is the Partitioned 
global address space (PGAS) model. PGAS offers a global, 
logically shared memory space for all the threads, with 
locality awareness and one-sided communication constructs. 
It offers advantages on two fronts: (i) performance, and (ii) 
ease of use, significantly enhancing user productivity. Data-
locality awareness resulting from partitioned address space 
enables the programmer to exploit locality information for 
higher performance. Global, shared memory logical view 
and one-sided communication constructs lend higher 
programmability enabling ease-of-use. Further, PGAS 
languages are nearly ubiquitous enhancing code portability. 
Several existing and upcoming parallel programming 
languages such as the Unified Parallel C (UPC), Co-Array 
Fortran (CAF), Titanium, Chapel, and X10 support the 
PGAS programming paradigm. 

This paper presents our experiences on porting and 
evaluating UPC compiler and runtime system on the Tile 64 
processor, a 64-core processor from Tilera [1]. The paper 
presents the analyses of our implementation approaches 
based on a set of standard application benchmarks. The 
paper is organized as follows. Section 2 presents a brief 
overview of the UPC language. Section 3 discusses the 
architecture of the Tile64 processor. Section 4 presents 
related work. Section 5 describes the UPC compilation flow 
on the Tile64 processor. Section 6 discusses the benchmark 
results and their evaluation. Concluding remarks are 
presented in section 7. 



 

 2

2. OVERVIEW OF UNIFIED PARALLEL C 

UPC is an explicit parallel extension of the C language 
supporting the PGAS programming paradigm [4]. It offers 
common C language syntax familiar to the domain scientists 
that form the bulk of the HPC user community, thus easing 
the learning curve and providing a high productivity 
development environment [5]. The UPC execution model 
supports Single Program, Multiple Data (SPMD) styled 
parallel programming where a specified number of threads 
execute independently in parallel on multiple processors. It 
provides various synchronization mechanisms for the 
threads such as barriers, locks, and memory consistency 
control statements. UPC memory model supports and 
extends the PGAS memory model concepts. As in PGAS, 
the UPC memory model provides a global, shared memory 
space partitioned to provide affinity for portions of the 
shared address space resident locally on the host processor 
system. In addition, it also provides a private memory for 
each thread not accessible to other threads for local 
computations. Variable declarations can explicitly state 
shared versus private storage space. A pointer-to-shared 
variable declaration can reference all locations in the shared 
space. A private pointer can only reference the addresses in 
the thread private address space or its local portion of the 
shared space. Thus, syntactically both remote and private 
memory accesses are simple variable assignment statements, 
providing a standard logical abstraction for the one-sided 
remote communications. Both the static and dynamic 
memory allocations are supported for shared and private 
memory addresses. Figure 1 shows the UPC memory 
model. 

 

Figure 1. UPC memory model 

3. TILE64 PROCESSOR ARCHITECTURE 

The Tile64 processor features 64 identical processor cores 
(tiles) interconnected with Tilera's iMesh on-chip network 
[2,3]. Each tile consists of a complete, full-featured 3-way 
VLIW processor as well as L1/L2 caches and a non-
blocking switch that connect the tiles into the mesh. Four on 
chip memory controllers connect the tiles to on-board DDR 
memories. The iMesh interconnect offers multiple networks 
with different latencies and bandwidths for inter-tile, 
memory, and I/O communications. The iMesh interconnect 
offers five on-chip internal networks, each full duplex and 
32-bits wide. 

• Static Network (STN): Static, scalar network with 
low latency allowing static configuration of the 

routing decisions. It is mainly used for streaming 
data from one tile to another via pre-configured 
routes.  

• User Dynamic Network (UDN): Dynamic, low 
latency, user programmable, packet switched 
network used for communications between threads 
running in parallel on multiple tiles.  

• Tile Dynamic Network (TDN): Dynamic network, 
supports data transfer between tile caches. TDN 
works in concert with MDN. 

• Memory Dynamic Network (MDN): Dynamic 
network used for memory transfers such as loads, 
stores, and cache misses. 

• Input/Output Dynamic Network (IDN): Dynamic 
network accessible to operating system (OS)-level 
code not user applications. Used primarily for 
transfers between tiles and I/O devices, and I/O 
devices and memory. 

 

Figure 2. Tile64 architecture 

Figure 2 shows the architecture diagram of the Tile64 
processor. Each tile can independently run a full operating 
system, or, multiple tiles taken together can run a multi-
processor operating system like an SMP version of 
GNU/Linux. The Tile64 architecture exhibits many 
interesting features which can be taken advantage of via the 
PGAS programming model. The chip provides physically 
shared DDR2 memory across all the tiles. This can aid in 
significantly reducing the shared memory abstraction 
overhead of the PGAS languages which otherwise is a 
dominant factor on the distributed memory systems. The 
variety of on-chip mesh networks can facilitate optimizing 
the synchronization primitives and the collectives. They can 
also optimize implementations of remote memory accesses 
and active messages. Just as the architectural features of the 
Tile64 can facilitate the PGAS model, so can PGAS 
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features such as locality awareness exhibited by the UPC 
language aid in exploiting performance on the manycore 
architectures. The locality information can especially come 
in handy for the exploiting higher performance on Tile64 
architecture due to its small cache sizes. 

4. REVIEW OF RELATED WORK 

There have been few research efforts evaluating PGAS 
programming model for many-core architectures. To the 
best of our knowledge none have looked at targeting UPC 
on many-core processors, especially the Tile64 processor. 

Underwood et al. evaluated hardware support in existing 
NIC technologies for the PGAS programming model [6]. In 
their work, they focused on the communication between 
nodes rather than on-chip inter-core communications. 
Santhanaraman et al. used special communication primitives 
offered by InfiniBand networks to implement and evaluate 
one-sided communication constructs in parallel 
programming models [7]. They used MPI for their 
evaluation and took advantage of one-sided atomic 
operations on cache-coherent multi-core/multi-processor 
architectures while still exploiting the benefits of networks 
such as InfiniBand. 

For many years, message-passing interface MPI [8] has 
been considered the de-facto standard for high performance 
computing programs. MPI follows the message-passing 
programming model. But the added programming 
complexity with MPI makes it less suitable for mainstream 
computing on many-core architectures. In [9], Krawezik 
showed that OpenMP [10], which follows the shared 
memory programming model, is giving almost the same 
performance as MPI but without the need to pay the price of 
strong programming effort. 

In [11], a comparison is made between the performances of 
UPC, a PGAS language, to those of MPI. It is shown that 
UPC and MPI equally performed when the program 
communication patterns rely on large messages. At the same 
time it also showed that UPC out-performed MPI when 
relying on mid and small size messages. Performance and 
productivity analyses of PGAS languages have been 
presented in many paper [5, 12, 13, 14]. [5] shows that UPC 
has consistent improvement over MPI in terms of number of 
lines, number of characters and conceptual effort. The Tile 
64 processor interconnection architecture was presented in 
[2]. This paper also included some microbenchmarks results 
for bandwidth and latency of the Tile64 processor on-chip 
networks. 

5. UPC COMPILATION FLOW 

We ported the Berkeley UPC compiler and runtime system 
to the Tile64 processor. Figure 3 shows the UPC 

compilation flow. The compilation uses the Berkley UPC-
to-C translator [15] and the Tilera C compiler [1] to compile 
UPC source codes. The Berkley UPC-to-C translator 
performs a source-to-source translation from a UPC code to 
an ANSI C compliant code with shared memory operations 
transformed into calls to the UPC runtime system built over 
the Global Address Space Networking (GASNet) 
communication infrastructure. GASNet is a language 
independent, low-level networking layer that provides high-
performance communication primitives tailored for 
implementing PGAS languages such as UPC [16]. GASNet 
is partitioned into two layers to maximize portability 
without sacrificing performance. The GASNet core API is 
the low-level, network architecture dependent layer based 
heavily on active messages. The GASNet extended API is 
built on top of the core API and provides higher-level 
operations such as remote memory access and collective 
operations. 

Our design flow uses two separate GASNet 
implementations on the Tile64 processor. The first uses a 
pThreads based GASNet conduit built using the Linux’s 
pThread library and the second uses an MPI based GASNet 
conduit. The pThreads based GASNet conduit uses the 
memory dynamic network (MDN) on the Tile64 processor 
for implementing remote accesses whereas the MPI based 
conduit uses the user dynamic network (UDN). This is 
illustrated in Figure 4. The ported compiler and runtime 
implementations were thoroughly verified using the GWU 
Unified Testing Suite (GUTS) for UPC compilers [17]. 

 

Figure 3. UPC compilation flow 

 

 

Figure 4. Berkeley UPC system implementations 
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Figure 5. Latency over the pThread conduit 

 

Figure 6. Latency over the MPI conduit 

6. PERFORMANCE EVALUATION 

The performance evaluation of the two conduits was 
conducted using both micro-benchmarks and more classical 
full-featured benchmarks commonly used to benchmark 
supercomputers. 

6.1 Microbenchmarks 

A set of simple micro-benchmarks have been implemented 
to evaluate the implementations. The micro-benchmarks 
reveal the memory communication performance and 
bottlenecks of the two approaches. Memory access latencies 
are shown in figures 5 and 6. The bandwidth for local 
reads/writes (targeting the private memory of the thread) 
and remote reads/writes (targeting other threads shared 
memory) are shown for transfers of 4kB in figures 7 and 8, 
for 256 kB in figures 9 and 10, and for 512 kB in figures 11 
and 12. 

6.2 Application Benchmarks 

Kernels of the NAS parallel benchmarks (NPB) [18, 19], 

version 2.4 have been used to compare the performances of 
the two approaches. The NPB are commonly used to 
benchmark high-performance computer systems.  The UPC 
versions of those benchmarks were presented in [20]. They 
are chosen due to their wide variety of memory access 
patterns. The results shown here are for dataset size NPB 
class A. NPB MultiGrid (MG) solves a 3D Poisson equation 
using a V-cycle multigrid method; it exhibits structured, 
long range communications. NPB Conjugate Gradient (CG) 
computes the smallest eigenvalue of a matrix; it uses 
irregular, long range communications. NPB Embarrassingly 
Parallel (EP) generates pairs of Gaussian random deviates, 
nearly no communication is used. NPB Integer Sort (IS) 
performs a bucket sort on small integers. Finally, NPB 
Fourier Transform (FT) is a 3D fast Fourier transform 
benchmark stressing global communications. 
 
Analyses of the results reveal many optimization 
opportunities. Microbenchmark results show lower remote 
memory access latencies for the pThreads approach (refer 
figures 5 and 6), but the bandwidth cannot scale well 
beyond four threads impacting its performance on most 
benchmark applications (see figures 7 through 12). The MPI 
based approach exhibits good scalability on most of the 
application benchmarks, even though the latencies with the 
MPI approach are much higher as compared to the pThreads 
approach. 
 
The local bandwidth performances are also slightly better 
and less dependent of the number of threads with the MPI 
conduit. This is mostly due to the fact that MPI processes 
are not moved by the OS between tiles.  
 
The NAS Parallel Benchmark kernels provide good 
performance and scalability for both conduits (Figures 13 
through 22); the speedup figures represent the speedup over 
the best performing conduit with one thread. NPB IS is 
particularly suitable for the Tile64 for its exclusive usage of 
integer operations. The pthread conduit provides better 
results due to its lower latency, except for NAS EP which is 
not much sensible to the latency. It is also important to note 
that there are still many optimization opportunities on the 
Tile platform as the MPI conduit is built over many layers 
which all add overheads: GASNet, MPI, iLib, and Linux. 

Also under investigation are ways to fully utilize the on-
chip iMesh networks to optimize the GASNet 
implementation on Tile64 processor. A hybrid runtime 
using both the UDN and the memory management networks 
of the Tile64 would be able to provide both low-latency for 
small reads and writes but also high-bandwidth for bigger 
packets. The collective and the synchronization operations 
could also take advantages of the STatic Network (STN). 
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Figure 7. BW using the pThread conduit (4kB blocks) 

 
 

Figure 8. BW using the pThread conduit (256kB blocks) 

 

 
 

Figure 9. BW using pThread conduit (512kb blocks) 

 
 

Figure 10. BW using MPI conduit (4kB blocks) 

 
 

Figure 11. BW using MPI conduit (256kB blocks) 

 

 
 

Figure 12. BW using MPI conduit (512kB blocks) 
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Figure 13. NPB IS (Execution time) 

 

Figure 14. NPB IS (Speedup) 

 
 

 

Figure 15. NPB CG (Execution time) 

 

Figure 16. NPB CG (Speedup) 

 
 

 

Figure 17. NPB Multigrid (Execution Time) 

 

Figure 18. NPB MG (Speedup) 
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Figure 19. NPB FT (Execution time) 

 

 

Figure 20. NPB FT (Speedup) 

 

 

Figure 21. NPB EP (Execution time) 

 

 

Figure 22. NPB EP (Speedup) 

 

7. CONCLUSIONS 

PGAS languages are gaining prominence amongst the HPC 
user community. One-sided communication mechanisms, 
global shared memory abstraction with data locality 
awareness, and simple programming constructs in these 
languages provide increased programmability and 
performance. This paper presents UPC runtime system 
implementations on the Tile64 processor. The design flow 
uses the Berkley UPC-to-C translator and the Tilera C 
compiler to compile UPC code. The UPC runtime system is 
built on top of the GASNet networking infrastructure 
implemented using two approaches: (i) the pThreads based 
GASNet conduit, and (ii) the MPI based GASNet conduit. 
Analyses of the benchmark results reveal several 
optimization opportunities, especially targeted for manycore 
architectures. These include use of physically shared 
memory to reduce address translation overheads associated 
with PGAS languages, optimal use of iMesh interconnects 
for faster synchronization and collectives, and optimized 
thread placement strategies for efficient use of available 
resources. These are currently under study. The objective of 
this work is to design a highly optimized UPC runtime 
system implementation built over GASNet for the Tile64. 
The end goal of this project is to investigate PGAS 
programming model benefits on many-core architectures. 

This will enable us to identify future architectural 
improvements in many-core technology to better support 
PGAS languages and study PGAS model extensions to 
better exploit many-core architectural features. 
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