

 1

Experiences with UPC on TILE-64 Processor
Olivier Serres, Ahmad Anbar, Saumil Merchant and Tarek El-Ghazawi

NSF Center for High-Performance Reconfigurable Computing (CHREC)
Dept. of Electrical and Computer Engineering

The George Washington University, 801 22nd St NW, Washington DC 20052, USA
{serres, anbar}@gwmail.gwu.edu, {smerchan, tarek}@gwu.edu

Abstract—Partitioned global address space (PGAS)
programming model presents programmers with a globally
shared address space with locality awareness and one-sided
communication constructs. The shared address space and
the one-sided communication constructs enhance ease-of-
use of PGAS based languages and the locality awareness
enables programmers and the runtime systems to achieve
higher performance. Thus PGAS programming model may
help address the escalating software complexity issues
resulting from the proliferation of many-core processor
architectures in aerospace and computing systems in
general. This paper presents our experiences with Unified
parallel C (UPC), a PGAS language, on the Tile64™
processor, a 64-core processor from Tilera Corporation. We
ported Berkeley UPC compiler and runtime system on the
Tilera architecture and evaluated two separate runtime
implementation conduits of the underlying GASNet
communication library, a pThreads based conduit and an
MPI based conduit. Each conduit uses different on-chip,
inter-core communication networks providing different
latencies and bandwidths for inter-process communications.
The paper presents the implementation details and empirical
analyses of both approaches by comparing and evaluating
results from NAS Parallel Benchmark suite. The analyses
reveal various optimization opportunities based on specific
many-core architectural features which are also discussed in
the paper12.

TABLE OF CONTENTS

1. INTRODUCTION ...1
2. OVERVIEW OF UNIFIED PARALLEL C2
3. TILE64 PROCESSOR ARCHITECTURE2
4. REVIEW OF RELATED WORK ..3
5. UPC COMPILATION FLOW ..3
6. PERFORMANCE EVALUATION ..4
7. CONCLUSIONS ..7
ACKNOWLEDGEMENT ..7
REFERENCES ..7
BIOGRAPHY ..8

1. INTRODUCTION

The performance trend of microprocessors exploiting faster
clock speeds and instruction-level parallelism has subsided
due to unsustainable thermal and power overheads. The
continued quest for higher performance has initiated a new
focus, emphasizing thread- and task-level parallelism,

1 978-1-4244-7351-9/11/$26.00 ©2011 IEEE
2 IEEEAC paper#1609, Version 4, Updated 2011:01:08

leading to the emergence of homogeneous and
heterogeneous multi- and many-core processors. But this
trend lends the responsibility of achieving higher
performance on the shoulders of the mainstream
programmers. A programmer must now understand and
exploit parallelism, in the past a specialized activity
performed by a select few from the HPC community. To
exploit the full potential of these new multi-core processors
new design methodologies and languages are needed that
can abstract low-level details, but at the same time enable
the mainstream programmer to extract thread and task-level
parallelism from the application. HPC community has over
the last few decades extensively researched parallel design
languages and methods, results and lessons from which
form a strong foundation from which to develop new
methodologies amenable to the mainstream programming
community. A relatively newer design paradigm that has
influenced many new HPC languages is the Partitioned
global address space (PGAS) model. PGAS offers a global,
logically shared memory space for all the threads, with
locality awareness and one-sided communication constructs.
It offers advantages on two fronts: (i) performance, and (ii)
ease of use, significantly enhancing user productivity. Data-
locality awareness resulting from partitioned address space
enables the programmer to exploit locality information for
higher performance. Global, shared memory logical view
and one-sided communication constructs lend higher
programmability enabling ease-of-use. Further, PGAS
languages are nearly ubiquitous enhancing code portability.
Several existing and upcoming parallel programming
languages such as the Unified Parallel C (UPC), Co-Array
Fortran (CAF), Titanium, Chapel, and X10 support the
PGAS programming paradigm.

This paper presents our experiences on porting and
evaluating UPC compiler and runtime system on the Tile 64
processor, a 64-core processor from Tilera [1]. The paper
presents the analyses of our implementation approaches
based on a set of standard application benchmarks. The
paper is organized as follows. Section 2 presents a brief
overview of the UPC language. Section 3 discusses the
architecture of the Tile64 processor. Section 4 presents
related work. Section 5 describes the UPC compilation flow
on the Tile64 processor. Section 6 discusses the benchmark
results and their evaluation. Concluding remarks are
presented in section 7.

 2

2. OVERVIEW OF UNIFIED PARALLEL C

UPC is an explicit parallel extension of the C language
supporting the PGAS programming paradigm [4]. It offers
common C language syntax familiar to the domain scientists
that form the bulk of the HPC user community, thus easing
the learning curve and providing a high productivity
development environment [5]. The UPC execution model
supports Single Program, Multiple Data (SPMD) styled
parallel programming where a specified number of threads
execute independently in parallel on multiple processors. It
provides various synchronization mechanisms for the
threads such as barriers, locks, and memory consistency
control statements. UPC memory model supports and
extends the PGAS memory model concepts. As in PGAS,
the UPC memory model provides a global, shared memory
space partitioned to provide affinity for portions of the
shared address space resident locally on the host processor
system. In addition, it also provides a private memory for
each thread not accessible to other threads for local
computations. Variable declarations can explicitly state
shared versus private storage space. A pointer-to-shared
variable declaration can reference all locations in the shared
space. A private pointer can only reference the addresses in
the thread private address space or its local portion of the
shared space. Thus, syntactically both remote and private
memory accesses are simple variable assignment statements,
providing a standard logical abstraction for the one-sided
remote communications. Both the static and dynamic
memory allocations are supported for shared and private
memory addresses. Figure 1 shows the UPC memory
model.

Figure 1. UPC memory model

3. TILE64 PROCESSOR ARCHITECTURE

The Tile64 processor features 64 identical processor cores
(tiles) interconnected with Tilera's iMesh on-chip network
[2,3]. Each tile consists of a complete, full-featured 3-way
VLIW processor as well as L1/L2 caches and a non-
blocking switch that connect the tiles into the mesh. Four on
chip memory controllers connect the tiles to on-board DDR
memories. The iMesh interconnect offers multiple networks
with different latencies and bandwidths for inter-tile,
memory, and I/O communications. The iMesh interconnect
offers five on-chip internal networks, each full duplex and
32-bits wide.

• Static Network (STN): Static, scalar network with
low latency allowing static configuration of the

routing decisions. It is mainly used for streaming
data from one tile to another via pre-configured
routes.

• User Dynamic Network (UDN): Dynamic, low
latency, user programmable, packet switched
network used for communications between threads
running in parallel on multiple tiles.

• Tile Dynamic Network (TDN): Dynamic network,
supports data transfer between tile caches. TDN
works in concert with MDN.

• Memory Dynamic Network (MDN): Dynamic
network used for memory transfers such as loads,
stores, and cache misses.

• Input/Output Dynamic Network (IDN): Dynamic
network accessible to operating system (OS)-level
code not user applications. Used primarily for
transfers between tiles and I/O devices, and I/O
devices and memory.

Figure 2. Tile64 architecture

Figure 2 shows the architecture diagram of the Tile64
processor. Each tile can independently run a full operating
system, or, multiple tiles taken together can run a multi-
processor operating system like an SMP version of
GNU/Linux. The Tile64 architecture exhibits many
interesting features which can be taken advantage of via the
PGAS programming model. The chip provides physically
shared DDR2 memory across all the tiles. This can aid in
significantly reducing the shared memory abstraction
overhead of the PGAS languages which otherwise is a
dominant factor on the distributed memory systems. The
variety of on-chip mesh networks can facilitate optimizing
the synchronization primitives and the collectives. They can
also optimize implementations of remote memory accesses
and active messages. Just as the architectural features of the
Tile64 can facilitate the PGAS model, so can PGAS

 3

features such as locality awareness exhibited by the UPC
language aid in exploiting performance on the manycore
architectures. The locality information can especially come
in handy for the exploiting higher performance on Tile64
architecture due to its small cache sizes.

4. REVIEW OF RELATED WORK

There have been few research efforts evaluating PGAS
programming model for many-core architectures. To the
best of our knowledge none have looked at targeting UPC
on many-core processors, especially the Tile64 processor.

Underwood et al. evaluated hardware support in existing
NIC technologies for the PGAS programming model [6]. In
their work, they focused on the communication between
nodes rather than on-chip inter-core communications.
Santhanaraman et al. used special communication primitives
offered by InfiniBand networks to implement and evaluate
one-sided communication constructs in parallel
programming models [7]. They used MPI for their
evaluation and took advantage of one-sided atomic
operations on cache-coherent multi-core/multi-processor
architectures while still exploiting the benefits of networks
such as InfiniBand.

For many years, message-passing interface MPI [8] has
been considered the de-facto standard for high performance
computing programs. MPI follows the message-passing
programming model. But the added programming
complexity with MPI makes it less suitable for mainstream
computing on many-core architectures. In [9], Krawezik
showed that OpenMP [10], which follows the shared
memory programming model, is giving almost the same
performance as MPI but without the need to pay the price of
strong programming effort.

In [11], a comparison is made between the performances of
UPC, a PGAS language, to those of MPI. It is shown that
UPC and MPI equally performed when the program
communication patterns rely on large messages. At the same
time it also showed that UPC out-performed MPI when
relying on mid and small size messages. Performance and
productivity analyses of PGAS languages have been
presented in many paper [5, 12, 13, 14]. [5] shows that UPC
has consistent improvement over MPI in terms of number of
lines, number of characters and conceptual effort. The Tile
64 processor interconnection architecture was presented in
[2]. This paper also included some microbenchmarks results
for bandwidth and latency of the Tile64 processor on-chip
networks.

5. UPC COMPILATION FLOW

We ported the Berkeley UPC compiler and runtime system
to the Tile64 processor. Figure 3 shows the UPC

compilation flow. The compilation uses the Berkley UPC-
to-C translator [15] and the Tilera C compiler [1] to compile
UPC source codes. The Berkley UPC-to-C translator
performs a source-to-source translation from a UPC code to
an ANSI C compliant code with shared memory operations
transformed into calls to the UPC runtime system built over
the Global Address Space Networking (GASNet)
communication infrastructure. GASNet is a language
independent, low-level networking layer that provides high-
performance communication primitives tailored for
implementing PGAS languages such as UPC [16]. GASNet
is partitioned into two layers to maximize portability
without sacrificing performance. The GASNet core API is
the low-level, network architecture dependent layer based
heavily on active messages. The GASNet extended API is
built on top of the core API and provides higher-level
operations such as remote memory access and collective
operations.

Our design flow uses two separate GASNet
implementations on the Tile64 processor. The first uses a
pThreads based GASNet conduit built using the Linux’s
pThread library and the second uses an MPI based GASNet
conduit. The pThreads based GASNet conduit uses the
memory dynamic network (MDN) on the Tile64 processor
for implementing remote accesses whereas the MPI based
conduit uses the user dynamic network (UDN). This is
illustrated in Figure 4. The ported compiler and runtime
implementations were thoroughly verified using the GWU
Unified Testing Suite (GUTS) for UPC compilers [17].

Figure 3. UPC compilation flow

Figure 4. Berkeley UPC system implementations

 4

Figure 5. Latency over the pThread conduit

Figure 6. Latency over the MPI conduit

6. PERFORMANCE EVALUATION

The performance evaluation of the two conduits was
conducted using both micro-benchmarks and more classical
full-featured benchmarks commonly used to benchmark
supercomputers.

6.1 Microbenchmarks

A set of simple micro-benchmarks have been implemented
to evaluate the implementations. The micro-benchmarks
reveal the memory communication performance and
bottlenecks of the two approaches. Memory access latencies
are shown in figures 5 and 6. The bandwidth for local
reads/writes (targeting the private memory of the thread)
and remote reads/writes (targeting other threads shared
memory) are shown for transfers of 4kB in figures 7 and 8,
for 256 kB in figures 9 and 10, and for 512 kB in figures 11
and 12.

6.2 Application Benchmarks

Kernels of the NAS parallel benchmarks (NPB) [18, 19],

version 2.4 have been used to compare the performances of
the two approaches. The NPB are commonly used to
benchmark high-performance computer systems. The UPC
versions of those benchmarks were presented in [20]. They
are chosen due to their wide variety of memory access
patterns. The results shown here are for dataset size NPB
class A. NPB MultiGrid (MG) solves a 3D Poisson equation
using a V-cycle multigrid method; it exhibits structured,
long range communications. NPB Conjugate Gradient (CG)
computes the smallest eigenvalue of a matrix; it uses
irregular, long range communications. NPB Embarrassingly
Parallel (EP) generates pairs of Gaussian random deviates,
nearly no communication is used. NPB Integer Sort (IS)
performs a bucket sort on small integers. Finally, NPB
Fourier Transform (FT) is a 3D fast Fourier transform
benchmark stressing global communications.

Analyses of the results reveal many optimization
opportunities. Microbenchmark results show lower remote
memory access latencies for the pThreads approach (refer
figures 5 and 6), but the bandwidth cannot scale well
beyond four threads impacting its performance on most
benchmark applications (see figures 7 through 12). The MPI
based approach exhibits good scalability on most of the
application benchmarks, even though the latencies with the
MPI approach are much higher as compared to the pThreads
approach.

The local bandwidth performances are also slightly better
and less dependent of the number of threads with the MPI
conduit. This is mostly due to the fact that MPI processes
are not moved by the OS between tiles.

The NAS Parallel Benchmark kernels provide good
performance and scalability for both conduits (Figures 13
through 22); the speedup figures represent the speedup over
the best performing conduit with one thread. NPB IS is
particularly suitable for the Tile64 for its exclusive usage of
integer operations. The pthread conduit provides better
results due to its lower latency, except for NAS EP which is
not much sensible to the latency. It is also important to note
that there are still many optimization opportunities on the
Tile platform as the MPI conduit is built over many layers
which all add overheads: GASNet, MPI, iLib, and Linux.

Also under investigation are ways to fully utilize the on-
chip iMesh networks to optimize the GASNet
implementation on Tile64 processor. A hybrid runtime
using both the UDN and the memory management networks
of the Tile64 would be able to provide both low-latency for
small reads and writes but also high-bandwidth for bigger
packets. The collective and the synchronization operations
could also take advantages of the STatic Network (STN).

 5

Figure 7. BW using the pThread conduit (4kB blocks)

Figure 8. BW using the pThread conduit (256kB blocks)

Figure 9. BW using pThread conduit (512kb blocks)

Figure 10. BW using MPI conduit (4kB blocks)

Figure 11. BW using MPI conduit (256kB blocks)

Figure 12. BW using MPI conduit (512kB blocks)

 6

Figure 13. NPB IS (Execution time)

Figure 14. NPB IS (Speedup)

Figure 15. NPB CG (Execution time)

Figure 16. NPB CG (Speedup)

Figure 17. NPB Multigrid (Execution Time)

Figure 18. NPB MG (Speedup)

 7

Figure 19. NPB FT (Execution time)

Figure 20. NPB FT (Speedup)

Figure 21. NPB EP (Execution time)

Figure 22. NPB EP (Speedup)

7. CONCLUSIONS

PGAS languages are gaining prominence amongst the HPC
user community. One-sided communication mechanisms,
global shared memory abstraction with data locality
awareness, and simple programming constructs in these
languages provide increased programmability and
performance. This paper presents UPC runtime system
implementations on the Tile64 processor. The design flow
uses the Berkley UPC-to-C translator and the Tilera C
compiler to compile UPC code. The UPC runtime system is
built on top of the GASNet networking infrastructure
implemented using two approaches: (i) the pThreads based
GASNet conduit, and (ii) the MPI based GASNet conduit.
Analyses of the benchmark results reveal several
optimization opportunities, especially targeted for manycore
architectures. These include use of physically shared
memory to reduce address translation overheads associated
with PGAS languages, optimal use of iMesh interconnects
for faster synchronization and collectives, and optimized
thread placement strategies for efficient use of available
resources. These are currently under study. The objective of
this work is to design a highly optimized UPC runtime
system implementation built over GASNet for the Tile64.
The end goal of this project is to investigate PGAS
programming model benefits on many-core architectures.

This will enable us to identify future architectural
improvements in many-core technology to better support
PGAS languages and study PGAS model extensions to
better exploit many-core architectural features.

ACKNOWLEDGEMENT

This work was supported in part by the I/UCRC Program of
the National Science Foundation under Grant No. IIP-
0706352.

REFERENCES

[1] Tilera Corporation, “www.tilera.com.”
[2] D.Wentzlaff, P. Griffin, H. Hoffman, L. Bao, B. Edwards,

C. Ramey, M. Mattina, C.-C. Miao, J. Brown, and A.
Agarwal, “On-chip interconnection architecture of the tile
processor,” Micro, IEEE, vol. 27, no. 5, pp. 15–31, Sept.-
Oct. 2007.

[3] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V.
Leung, J. MacKay, M. Reif, L. Bao, J. Brown, M.
Mattina, C. C. Miao, C. Ramey, D. Wentzlaff, W.
Anderson, E. Berger, N. Fairbanks, D. Khan, F.
Montenegro, J. Stickney, and J. Zook, “Tile64 -
processor: A 64-core soc with mesh interconnect,” Feb.
2008, pp. 88–598.

 8

[4] The UPC Consortium, “UPC language specifications v1.2
(www.gwu.edu/˜upc/docs/upc_specs_1.2.pdf),” 2005.

[5] F. Cantonnet, Y. Yao, M. Zahran, and T. El-Ghazawi,
“Productivity analysis of the UPC language,” April 2004,
pp. 254.

[6] K. D. Underwood, M. J. Levenhagen, and R. Brightwell,
“Evaluating NIC hardware requirements to achieve high
message rate PGAS support on multi-core processors,” in
SC ’07: Proceedings of the 2007 ACM/IEEE conference
on Supercomputing. New York, NY, USA: ACM, 2007,
pp. 1–10.

[7] G. Santhanaraman, P. Balaji, K. Gopalakrishnan, R.
Thakur, W. Gropp, and D. Panda, “Natively supporting
true one-sided communication in MPI on multi-core
systems with infiniband,” May 2009, pp. 380–387.

[8] MPI Forum, “MPI: A message-passing interface
standard,” Knoxville, TN, USA, Tech. Rep., 1994.

[9] G. Krawezik, “Performance comparison of MPI and three
OpenMP programming styles on shared memory
multiprocessors,” in SPAA ’03: Proceedings of the
fifteenth annual ACM symposium on Parallel algorithms
and architectures. New York, NY, USA: ACM, 2003, pp.
118–127.

[10] OpenMP Forum, “OpenMP C and C++ application
program interface, version 1.0. http://www.openmp.org,”
October 1998.

 [12] T. El-Ghazawi, F. Cantonnet, Y. Yao, S. Annareddy,
and A. S Mohamed, “Benchmarking parallel compilers: a
UPC case study,” Future Gener. Comput. Syst., vol. 22,
no. 7, pp. 764–775, 2006.

[13] C. Coarfa, Y. Dotsenko, J. Mellor-Crummey, F.
Cantonnet, T. El-Ghazawi, A. Mohanti, Y. Yao, and D.
Chavarría-Miranda, “An evaluation of global address
space languages co-array Fortran and Unified Parallel C,”
in PPoPP ’05: Proceedings of the tenth ACM SIGPLAN
symposium on Principles and practice of parallel
programming

[14] K. Yelick, D. Bonachea, W.-Y. Chen, P. Colella, K.
Datta, J. Duell, S. L. Graham, P. Hargrove, P. Hilfinger, P.
Husbands, C. Iancu, A. Kamil, R. Nishtala, J. Su, M.
Welcome and T. Wen, “Productivity and performance
using partitioned global address space languages,” in
PASCO ’07: Proceedings of the 2007 international
workshop on Parallel symbolic computation. New York,
NY, USA: ACM, 2007, pp. 24–32

[15] Berkeley UPC compiler, “upc.lbl.gov.”
[16] D. Bonachea, “GASNet specification v1.1,” Berkeley,

CA USA, Tech. Rep., 2002.
[17] The GWU Unified Testing Suite – GUTS

“threads.seas.gwu.edu/sites/guts.”
[18] D. Baily, E. Barscz, J. Barton, D. Browning, R. Carter L.

Dagum, R. Fatoohi, S. Fineberg, et al., “The NAS parallel
benchmarks”, NAS technical report rnr-94-007,”Moffett
Field CA, USA, Tech. Rep., 1994.

[19] D. Bailey, T. Harris,W. Saphir, R. van der Wijngaart,
A.Woo and M. Yarrow, “The NAS parallel benchmarks
2.0”, NAS technical report nas-95-020,” Moffett Field,
CA, USA, Tech Rep., 1995.

[20] T. El-Ghazawi and F. Cantonnet, “UPC performance and
potential: A NPB experimental study,” Nov. 2002, pp.
17–17.

BIOGRAPHY

Olivier SERRES obtained the
computer science engineering degree
from the University of Technology of
Belfort-Montbeliard. He is a doctoral
student at the School of Engineering
and Applied Science of the George
Washington University (GWU). He is a
research assistant at the High

Performance Computing Laboratory of the GWU.

Ahmad Anbar graduated from the
Faculty of Computer and Information
Sciences (FCIS), Ain Shams
University, Egypt in year 2000. He
worked in teaching in the university
since then. He also worked as a
information analyst in Electronic Data
Systems (EDS), Cairo branch for three

years. Ahmad got his masters degree from Ain Shams
University in 2006. His masters was about resources
management in Grid environments. Since Fall 2008, Ahmad
started his PhD in The George Washington University. He
joined the High Performance Computing Lab (HPCL) as a
research assistant. His main research in HPCL is targeting
the support of UPC on many-core architectures.

Saumil Merchant received the B.E.
degree in Electronics from Mumbai
University, India in 1999, and the M.S.
and PhD. degrees in Computer
Engineering from University of
Tennessee, Knoxville in 2003 and 2007
respectively. He is currently a research
scientist in the department of Electrical

and Computer Engineering at George Washington
University. His research interests include reconfigurable
computing, high-performance computing, embedded
computing, and machine intelligence. He is a member of
IEEE and ACM.

Tarek El-Ghazawi is a Professor in the
Department of Electrical and Computer
Engineering at The George Washington
University, where he leads the
university-wide Strategic Program in
High-Performance Computing. He is
the founding director of The GW
Institute for Massively Parallel

Applications and Computing Technologies (IMPACT) and
a founding Co-Director of the NSF Industry/University
Center for High-Performance Reconfigurable Computing
(CHREC). El-Ghazawi’s research interests include high-

 9

performance computing, computer architectures,
reconfigurable, embedded computing and computer vision.
He is one of the principal co-authors of the UPC parallel
programming language and the first author of the UPC book
from John Wiley and Sons. He has received his Ph.D.
degree in Electrical and Computer Engineering from New
Mexico State University in 1988. El-Ghazawi has published
about 200 refereed research publications in this area. Dr. El-
Ghazawi has served in many editorial roles and is currently
an Associate Editor for the IEEE Transactions on
Computers. He has chaired and co-chaired many
international conferences and symposia including the 2009
Conference on Partitioned Global Address Space (PGAS)
Programming Models and Languages (PGAS2009), The
10th IEEE International Conference on Scalable Computing
and Communications (ScalCom-10), 2010, and the 9th
ACS/IEEE Conference on Computer Systems and
Applications, AICCSA2011. Dr. El-Ghazawi’s research has
been frequently supported by Federal agencies and industry.
He serves or has served on many advisory boards including
the Science Advisory Panel of the Arctic Region
Supercomputing Center. Professor El-Ghazawi was elected
to a Fellow of the IEEE with the citation “for contributions
to reconfigurable computing and parallel programming”.

