A Comparison of Fault-Tolerant Memories in
SRAM-Based FPGAs

Nathaniel Rollins, Megan Fuller, and Michael J. Wirthlin
NSF Center for High-Performance Reconfigurable Computing (CHREC)
Department of Electrical and Computer Engineering
Brigham Young University, Provo, UT. 84602
nrollins @byu.edu, mfuller4 @byu.edu, wirthlin@ee.byu.edu

Abstract—This paper compares the effectiveness and cost
of different fault-tolerant techniques for FPGA memories
(BRAMs, LUTRAMs, and SRLs). TMR, parity with
duplication, compliment duplicate (CD) with duplication,
single-error correction/double-error detection (SEC/DED),
and SEC/DED with duplication are the techniques used in
this study to protect FPGA memories. Memory scrubbing is
also added to each of these techniques. The effectiveness of
each technique is measured by the number of sensitive bits
in each design as well as the number of critical failures. A
critical failure is defined as an upset whose effects can only
be repaired through device reconfiguration. Cost is measured
in terms of FPGA slices and BRAMs. This study finds that
for BRAMs and LUTRAMSs scrubbing with TMR provides
the best protection. For SRLs scrubbing is unnecessary, and
TMR provides the best protection. This study also provides
a variety of reliability-area trade-off points with fault-tolerant
techniques other than TMR.

TABLE OF CONTENTS

1 INTRODUCTION titvvueeneonssncssssssencescescnsns 1
2 FAULT MECHANISMS IN MEMORIESccveuenen 2
3 MEMORY FAULT-TOLERANT TECHNIQUES 3
4 MEMORY SCRUBBING ..ccveeteeteacaccascascnnans 5
5 MEMORY FAULT-TOLERANCE COMPARISONS ... 7
6 CONCLUSION .iieieterecsosacecessssncnsesossnsnns 10

REFERENCES ..viiuiietenteacencescsscescessnssnss 11

1. INTRODUCTION

SRAM-based field programmable gate arrays (FPGAs) are
a popular option for space-based applications because of
their flexibility, reprogramability, and low application devel-
opment costs. They can be reprogrammed while in-orbit
to adapt to changing mission needs or correct design er-
rors. However SRAM-based FPGAs are inherently sensi-
tive to the effects of faults caused by high-energy particles.
These upsets, also called single event upsets (SEUs), can oc-
cur in FPGA user memory bits or in FPGA configuration bits
(which control user logic and routing). A lot of research and
experimentation has identified techniques to make SRAM-

978-1-4244-3888-4/10/$25.00 ©2010 IEEE

This work was supported in part by the /UCRC Program of the National
Science Foundation under the NSF Center for High-Performance Reconfig-
urable Computing (CHREC).

based FPGA logic and routing reliable in the presence of
SEUs [1-4]. But there has been limited research into the reli-
ability of FPGA user memories.

Memory elements are an essential part of FPGA designs.
FPGA memory elements include block RAMs (BRAMs),
LUTRAMs, and SRLs. BRAMs provide single or dual-
ported, wide, deep memories. LUTRAMs are smaller, faster
memories built of FPGA LUTs that provides better access to
memory contents. SRLs are shift registers built efficiently out
of FPGA LUTs.

Each of these memories are useful in FPGA designs used for
space-based applications, and thus require protection from
SEUs. Previous memory reliability studies have focused only
on BRAM protection [5] using TMR [6] and scrubbing [7].
But in addition to protecting BRAMs, fault-tolerant tech-
niques must be used to protect LUTRAMs and SRLs.

There are a variety of techniques that could provide fault-
tolerance for each of the FPGA memory elements. Triple
modular redundancy (TMR) is a popular technique for FPGA
logic [1-4] and BRAMs [5]. TMR requires a triplication of
all resources and the addition of voting logic. Thus the area
and power costs of TMR are at least 3x [8]. Other reliability
techniques such as duplication with an error detection code
(EDC) which have been applied to FPGA logic [2,4, 9] may
provide adequate protection at a reduced cost. Application
specific integrated circuit (ASIC) memory protection tech-
niques such as error control coding (ECC) [9, 10] may also
provide less expensive protection.

This paper compares the effectiveness and cost of differ-
ent fault-tolerant techniques for SRAM-based FPGA mem-
ories (BRAMs, LUTRAMs, and SRLs). The following
fault-tolerant techniques are compared: TMR, interlaced par-
ity [11] with duplication, complement duplicate (CD) [11]
with duplication, single error correction/double error detec-
tion (SEC/DED) [11], and SEC/DED with duplication [9].
Additionally, each of these reliability techniques is aug-
mented with the application of scrubbing [7]. The reliability
of each of these techniques is measured in terms of single-bit
upset sensitivity and critical failures. The cost is measured in
terms of area. Despite the reduced significance of area as a
cost in ASIC design, the cost of area is still significant for de-
signs implemented in FPGAs. Performance is not considered

as a cost since the focus of this paper is on FPGA reliability
and not on high-speed fault-tolerant technique implementa-
tions.

This paper begins by identifying how upsets can affect FPGA
memories. Next the fault-tolerant techniques used in this
study are introduced. A discussion on scrubbing in each of
the different FPGA memory structures follows. Finally, the
study results show that although there are some cheaper al-
ternatives to TMR, the most reliable way to protect SRAM-
based FPGA memories is with TMR and scrubbing.

2. FAULT MECHANISMS IN MEMORIES

To motivate the need for memory protection techniques, this
section considers the types of problems that SEUs can cause
in FPGA memories. These problems are measured in terms
of sensitive bits and critical failures. Problems are reduced
with the application of memory reliability techniques, how-
ever they are rarely eliminated. This section also discusses
how sensitivity and critical failures affect each type of FPGA
memory (BRAMs, LUTRAMs, and SRLs) so that the effec-
tiveness of each fault-tolerant technique can be evaluated.

Both ASICs and FPGAs are susceptible to SEUs in their
user memories, but unlike ASICs, SRAM-based FPGAs are
also vulnerable to faults within their configuration memory.
FPGA configuration memory controls user logic and routing.
This means that, unlike ASICs [12], FPGAs are also subject
to faults in the logic and routing protecting the memory bits.
So the goal of FPGA memory protection techniques is to pre-
vent faults caused by upsets in either user memory content, or
upsets in the logic and routing protecting the memory.

The effectiveness of different fault-tolerant techniques is
measured, first in terms of sensitivity to single-bit upsets. A
sensitive bit refers to a user memory content bit or an FPGA
configuration memory bit that, when upset, causes erroneous
memory output. Clearly, in the absence of any memory pro-
tection technique, every memory bit is sensitive. Every fault-
tolerant technique used in this study eliminates sensitive bits
caused by single-bit upsets in user memory. But to protect
memory bits, added logic is required, which is itself sensitive.
Thus effective fault-tolerant techniques must remove sensitiv-
ity in both the memory content and memory-protecting logic
and routing.

In addition to sensitivity, the effectiveness of the memory re-
liability techniques is measured in terms of the number of
critical failures caused by upsets in the memory bits and
FPGA configuration memory bits. A critical failure is an up-
set whose effects are lasting, and can only be repaired through
device reconfiguration. An upset that causes a critical failure
is also considered sensitive, but not all sensitive bits cause a
critical failure.

Critical failures are very similar to persistent errors [13] in
FPGA logic. Persistent errors are SEU-induced errors that

cannot be repaired without a global system reset. But unlike
FPGA logic, FPGA memories are unaffected by reset signals.
Thus critical failures refer to upsets whose effects cannot be
repaired without FPGA reconfiguration.

It is possible for the effects of a critical failure to be overcome
in user memories when the memory acts as a RAM. So to de-
clare that an SEU-induced fault has caused a critical failure,
a window of time must be defined to observe that the effects
of the SEU have not been repaired. Corrupted memory lo-
cations can be naturally overwritten with new data, repairing
upsets caused by an upset. The likelihood of this happening
depends on the probability of writing to a given memory lo-
cation, as well as the size of the critical failure window of
observation. Thus it is more likely to observe critical failures
in larger memories like BRAMs, which have a smaller prob-
ability of writing to any given memory location than smaller
memories like LUTRAMs or SRLs.

Upsets in BRAMs

A critical failure will usually occur in an unprotected mem-
ory when the memory’s input port signals are upset. For ex-
ample, Figure 1 shows how upsetting the write enable port
on a BRAM can have disastrous consequences. Consider a
BRAM that is being used as an instruction memory for a soft-
core processor [14]. When acting as an instruction memory,
the BRAM behaves like a ROM. In other words, the write
enable port should never be active. Figure 1 shows that if
an SEU causes the write enable port to become active, the
memory contents pointed to by the address port will be over-
written with the value on the data input port. If the address
port steps through memory (as is common for an instruction
memory), the contents of the entire memory can be overwrit-
ten, destroying the entire program. When no reliability tech-
niques are present, the only way to recover from this kind of
upset is by taking the FPGA off-line and reconfiguring it.

Upsets in LUTRAMs

Like BRAMSs, critical failures can be caused in LUTRAMSs
when any of the input port signals are upset. However the
consequences of upsetting the LUTRAM write enable port
might not be as catastrophic as upsetting a BRAM write en-
able port. Figure 2 shows a 16 entry, 16-bit wide LUTRAM.
If each of the 16 LUTSs that make up the 16-bit wide LU-
TRAM has its own write enable signal, upsetting one of the
write enable ports causes only one bit in one of the 16 words
to be upset. Even if the LUTRAM address signal increments,
only one bit in each of the 16-bit words is upset. Memory reli-
ability techniques can detect and sometimes correct a single-
bit error in a memory word, so this scenario is less severe than
upsetting the BRAM write enable port.

However it is possible that the consequences of upsetting the
write enable port on a LUTRAM are just as severe as upset-
ting the write enable on a BRAM. If the write enable ports
of all 16 LUTRAMSs are tied to the same write enable signal,

DataIn
Addr
WE

Data Out AFO1E32D

39A13AA1
00305D10
210F3111
0498100F
64D1234D

OX0 7 s

O e—

=

0x0000 BRAM 0x3111

=

— BRAM 0x0000

00000000
00000000
00000000
00000000
00000000
00000000

AF01E32D
39A13AA1

00305D10
210F0000 1
0498100F
64D1234D

%— BRAM 0x0000
] e

=

Figure 1. Upsetting a BRAM write enable can cause entire contents to be overwritten - resulting in a critical failure.

DATA OUT
—
OxED9F

Qg000000000000000Q

.—.ac-n»ocooc m

0x0000 OxADSF

0100000000000000

4

Figure 2. Upsetting a LUTRAM write enable can cause
memory contents to be overwritten - resulting in a critical
failure.

upsetting that signal will cause every bit in the 16-bit word to
be upset. In this case, as the address signal increments, the
entire memory contents are wiped out. Thus it is usually de-
sirable to provide (if possible) separate write enable signals
to each LUTRAM bit within a LUTRAM memory. However
providing individual write enable signals will often require
additional design area.

Upsets in SRLs

Critical failures in SRLs are different than in BRAMSs and
LUTRAMs. SRLs have no true ROM behaviour. Even if
they continually cycle through the same memory contents,
they have to write their output value back to their input. Thus
an upset to any input signal (data input, address, or clock en-
able), will cause erroneous output in an unprotected SRL. If
the SRL feeds its output back to its input, upsetting input sig-
nals is likely to cause a critical error. But if the SRL does
not feed its output back to its input, a critical error can still

occur by upsetting the clock enable signal. In this study both
feedback and non-feedback scenarios are studied for each re-
liability technique.

In the absence of any memory protection, every FPGA mem-
ory bit is sensitive, and every upset to a memory content bit
can cause a critical failure. But every memory fault-tolerant
technique used in this study removes all critical failures and
all sensitive bits due to upsets in the memory content. How-
ever the logic and routing required to protect FPGA memories
is vulnerable to upsets. Thus, after protecting memory bits,
the goal of FPGA memory reliability techniques is to reduce
the sensitivity and critical failures in their own logic and rout-
ing.

3. MEMORY FAULT-TOLERANT TECHNIQUES

The fault-tolerant techniques that are compared in this study
fall under one of three general categories: TMR, ECC, or du-
plication with EDC/ECC. TMR is a tested and proven relia-
bility technique for FPGA logic [6, 15], and has even been
proposed for FPGA memory reliability [16]. Duplication
with EDC/ECC has been proposed for FPGA logic [17] as
well as for memories [2], but its effectiveness has not been
proven, nor have its practical costs been evaluated. ECC tech-
niques work well for ASICs [9, 10], but they may not be prac-
tical for FPGAs.

TMR

TMR is the most commonly used reliability technique used to
protect SRAM-based FPGAs [6]. This technique simply trip-
licates the design and votes on the outputs of each triplicated
version of the design (Figure 3(a)). If a fault occurs in one of
the triplicated versions of the design, its faulty output will be
out-voted by the other two correct designs. However since all
logic and routing in an SRAM-based FPGA are susceptible to
SEUs, the voter itself and all routing must also be triplicated
in order to prevent errors due to a fault in the voter (Figure

3(b)).

Although triplicated voters and inputs provide better reliabil-
ity, there are times when only single inputs and voters can be
used. For example, a triplicated memory might be part of a
non-triplicated system. In that case, the inputs and the outputs
cannot be triplicated (Figure 3(a)). But even in a triplicated

(a)TMR with a single voter.

(b)TMR with triplicated voters.

Figure 3. Triple modular redundancy (TMR) can be imple-
mented with either a single, or triplicated voters.

system there must be a reliable way to bring the triplicated
design back to a single design domain. This can be done on a
reliable ASIC or radiation hardened device [18], or by using
minority voters [6]. Also in a triplicated system, there must
be enough I/O for triplicated signals to come in and out of the
FPGA. When one or both of these criteria cannot be met, a
single voter must be used on the FPGA (Figure 3(a)). This
study investigates the reliability of both TMR with a single
voter as well as TMR with triplicated voters.

Duplication with EDC

Another proposed FPGA-based reliability technique (Fig-
ure 4) combines duplication with an error detection code
(EDC) [11]. Error detection codes encode memory words
with redundant bits. The redundancy allows faults to be de-
tected but not corrected (error correction codes can correct
and detect errors).

Figure 4. A memory protected by duplication and with an
error detection code (EDC).

This study investigates two different error detection code
techniques. First, a 2-bit interlaced parity detection scheme
is used [11]. 2-bit interlaced, odd parity has the advantage of
detecting any single-bit upset, a large percentage of adjacent-
bit upsets, an all-zeros upset, an all-ones upset, and all upsets
with an odd number of upsets in at least one of the two par-
ity groups. For a 16-bit memory word, 2-bit parity requires
only 12.5% more memory. Even after adding duplication,
parity with duplication has a 112.5% memory increase - sig-
nificantly less than the 200% required by TMR.

The second detection method uses a complement duplicate
(CD) scheme [11]. CD detects any single-bit upset, 66% of
double-bit upsets, and any multiple adjacent unidirectional
upset. CD detects more upsets than 2-bit interlaced odd par-
ity, but requires more code bits. Since CD adds an entirely
duplicated memory, it has a 100% increase in memory, which
when duplicated turns into a 200% increase. However CD

has the advantage that its encoder is simply an inverter, which
usually takes up no FPGA area. But its decoder requires more
than just an inverter; it also requires a comparator to compare
the original memory contents with the inverted contents of
the CD memory.

At first glance, it appears that duplication with EDC might
provide fault-tolerance at a lower cost than TMR since du-
plication is used instead of triplication. However, additional
logic is required for this technique which is not required for
TMR. Added logic is required for memory encoders, de-
coders, and comparators. This added additional logic is com-
parable in size to the logic required by TMR voters.

The memory encoder, decoder, comparator, and selection
logic of duplication with EDC acts as a single point of fail-
ure just as the single voter with TMR (Figure 3(a)) acts as a
single point of failure. Thus in order to eliminate this single
point of failure, this added logic must be triplicated.

Even with triplicated logic, all the input signals still act as
single points of failure with this technique (Figure 4). Also
since there is only one output signal, any upsets on that signal
will lead to a fault. But if the memory feeds in to a triplicated
domain, errors on the output can be removed by triplicating
the outputs and applying TMR voters to the outputs. Errors
on the input cannot be outvoted this way - even if the inputs
come from a triplicated domain. The triplicated domain will
have to merge to a duplicated or single domain before leading
to a memory protected by duplication with EDC.

There is no advantage to using duplicated input signals over
a single set of input signals. Suppose for example, a dupli-
cated address signal feed into the duplicated memories. If an
upset changes the value of one of the two address signals, the
memory word that is written into that memory will still be
correctly encoded (even though it’s written to the wrong ad-
dress), or the word that is read from memory will still be cor-
rectly decoded (even though the wrong word is read) without
any indication of an error. It is possible to defect differences
between the two address signals by comparing their values,
but it is not possible to tell which of the two is incorrect.
Thus, in this study, when duplication with EDC is used to
protect memories, input signals are not duplicated.

One study uses bitstream scrubbing to correct faults when
duplication detects them [19]. When a fault is detected
by duplication with compare, design execution pauses un-
til a bitstream scrubber [20] corrects the fault. But paus-
ing design execution can be costly and difficult, therefore
this study does not consider the use of duplication with bit-
stream scrubbing to protect the logic and routing of memory
encoders/decoders.

ECC

Error correcting codes (ECCs) are an effective way to protect
ASIC memories [9, 10] and may also be effective for pro-

tecting FPGA memories (Figure 5). ECCs protect memories
by encoding memory words with redundant bits. The redun-
dancy allows faults to be both detected and corrected. If there
are k data bits in the original memory word, and ¢ redundant
code bits are added to make the encoded word n bits wide
(n = ¢+ k), then an (n, k) code is used. The new n-bit en-
coded memory word is called a code word. This study uses
a SEC/DEC encoding to protect a 16-bit memory word. To
protect a 16-bit memory word, a (22, 6) SEC/DED code is
used, creating a 22-bit code word.

Decode &

Elee Correct

Figure 5. A memory protected by an error correction code
(ECC).

A single-error correction / double-error detection (SEC/DEC)
code is an efficient way to correct the effects of a single SEU
in a memory word, and detect when there are two errors in
the word. When there are more than two errors in a memory
word, one of three things happen. Either the erroneous word
is an incorrect but valid code word (thus no correction or de-
tection occurs and the output is incorrect), or a single error
is falsely corrected (and the output is incorrect), or a double
error is detected. If a double error is reported when there are
more than two upsets, the upsets will be caught, otherwise
SEC/DED fails.

An ASIC memory reliability study determined that SEC/DED
with duplication (i.e. duplication with ECC) is more effective
than SEC/DEC by itself, TMR, or duplication with EDC [9].
To see if this holds true for SRAM-based FPGAs, this paper
investigates both SEC/DED (Figure 5) and SEC/DED with
duplication (Figure 4).

Like duplication with EDC, single points of failure can be re-
moved by triplicating the outputs and logic of ECC encoders
and decoders. Also like duplication with EDC, single points
of failure on the input signals (leading to critical failures)
cannot be removed. This study investigates both triplicated
and non-triplicated versions of the SEC/DED and duplication
with SEC/DED designs.

4. MEMORY SCRUBBING

Memory scrubbing [7] is technique that can be used in con-
junction with a fault-tolerant technique to protect a memory
from critical failures. Scrubbing refers to the correction of
upsets within memories. Without scrubbing, upsets within
memories can only be masked with effective fault-tolerant
techniques, but the upsets remain in the memory. As upsets
within the memory accumulate, it is less and less likely that a
fault-tolerant technique will mask the error. Therefore scrub-
bing is essential to protect memories against SEUs over time.
Scrubbing is also the only way to repair the effects of critical
failures in memories.

Memory scrubbing is different than bitstream scrubbing [20].
Bitstream scrubbing is a reliability technique that uses read-
back [21] and partial reconfiguration to protect the logic and
routing (but not the user memory contents) of FPGA designs.
Bitstream scrubbing uses readback to compare portions of
the FPGA bitstream to a golden copy of the bitstream. If
there is ever a difference, that portion is reconfigured using
partial reconfiguration. Alternatively CRC values of a por-
tion of the bitstream are calculated and compared to a known
CRC value for that portion. When the CRC values differ,
that portion is reconfigured. Bitstream scrubbing is a great
tool to help protect against upsets in FPGA logic and rout-
ing, but it cannot protect FPGA memories. Since the contents
of memories change, there cannot be an a-priori known CRC
value or golden content value that can be used for compari-
son. Thus memory scrubbers must be implemented indepen-
dently of bitstream scrubbers.

Memory scrubbing refers to the deliberate repairing of mem-
ory words by a memory scrubbing module. A scrubber can
work either deterministically or non-deterministically. A
non-deterministic scrubber checks memory words only when
they are read. This method is only practical for small memo-
ries such as LUTRAMSs or SRLs, and requires less area than a
deterministic scrubber. But non-deterministic scrubbing does
not work well with BRAMs, since it would allow a large num-
ber of upsets to potentially accumulate if all memory loca-
tions are not read on a regular basis. BRAMs use determinis-
tic scrubbing which regularly checks all memory locations for
upsets. In this study BRAMs are deterministically scrubbed.

Scrubbing BRAMs

Adding scrubbing to TMR is a common fault-tolerant tech-
nique used to protect FPGA BRAMs [7]. Figure 6 shows
the TMR BRAM scrubber implemented in this study. Al-
though this subsection discusses how a TMR scrubber pro-
tects BRAMs, most of the concepts also apply to ECC BRAM
scrubbers and duplication with EDC/ECC BRAM scrubbers.
This study adds scrubbing to all three of these memory fault-
tolerant techniques.

In order to apply scrubbing to BRAMsS, an additional memory
port is required. Thus if a design uses single-ported mem-
ories, the addition of scrubbing turns them into dual-ported
memories. FPGA BRAMs can only be used as single or dual-
ported memories [21], thus if a memory is already being used
as a dual-ported memory, scrubbing may not be viable. This
study assumes the use of single-ported BRAMs. Thus scrub-
bing is easily provided with the use of the second port.

To properly apply scrubbing to FPGA memories, there are
implementation details that must be considered. First in or-
der for every BRAM address to be scrubbed in a determinis-
tic manner, a triplicated counter cycles through the entire ad-
dress space of all three BRAMS, continually scrubbing their
contents. It is essential that this counter be triplicated in a
reliable way [1] so that the memory location being scrubbed

INPUTS

i BRAM
Trlple d/a/w do

Figure 6. A BRAM protected by TMR with scrubbing.

receives the correct data. BRAM contents are only scrubbed
when there is an upset detected in one of the BRAM words.

For ECC BRAM scrubbers and duplication with EDC/ECC
scrubbers, when an error is detected at a memory address
pointed to by the triplicated scrub address counter, instead
of only scrubbing that memory location, the entire BRAM
contents are scrubbed. Unlike the TMR BRAM scrubber, the
entire BRAM contents are scrubbed because not all upsets
are detectable by these other fault-tolerant techniques. Al-
though these fault-tolerant techniques are guaranteed to de-
tect all single-bit errors, they are not guaranteed to detect all
multi-bit errors (except for duplication with CD). Thus if an
all zeros, or all ones error occurs at a memory location (which
can occur if the write enable signal is upset) it may not be
caught. But if an upset is detected at some other memory
address, the all zeros or all ones error will be scrubbed out
since the entire BRAM contents are scrubbed when any error
is detected.

The next implementation detail concerns the triplication of
BRAM write enable signals. The logic controlling the asser-
tion of each of the triplicated (or duplicated) BRAM write
enable signals must be completely separate from each other.
This detail provides protection against SEUs causing critical
failures (Figure 1). If the same logic controls the write enable
signals of two BRAMs, then a single SEU could overwrite
the contents of both BRAMs. Scrubbing would then over-
write the third BRAM with the invalid contents in the other
two BRAMs. On the other hand, when the write enable logic
of each BRAM is kept separate, if an SEU causes a critical
failure in one of the BRAMs, the effects of the critical failure
will be corrected with scrubbing, and the effects of the critical
failure are never felt.

Finally, BRAM Scrubbers must also consider address con-
flicts. An address conflict arises when the BRAM scrubber
attempts to scrub the memory contents at an address that
is already being accessed by the other BRAM port. Some

FPGA architectures will allow the scrubber to scrub the mem-
ory contents if the other port is simply performing a read at
that address [21]. But an address conflict always occurs if
the other port is performing a write at the same address as
the scrubber. When this happens, the write takes precedence
since it will repair that memory location.

Scrubbing LUTRAMs

In this study LUTRAMs are non-deterministically scrubbed.
Figure 7 shows an example of a duplication with EDC/ECC
LUTRAM scrubber. Although only the duplication with
EDC/ECC scrubber is shown, the design details of this non-
deterministic scrubber also apply to TMR LUTRAM scrub-
bers and ECC LUTRAM scrubbers.

ng;t:ide 1 | Decode /
WE S Pari
= i =
ADDR et
DATA ——
| Decode /]
Pari
Encode /.
Pari
Figure 7. A LUTRAM protected by duplication with

EDC/ECC and scrubbing.

LUTRAM memory locations are only scrubbed when they
are read during normal design execution (non-deterministic
scrubbing). Unlike BRAM deterministic scrubbers, all LU-
TRAM locations are not regularly scrubbed. This means that
the scrubbing logic is smaller, but it also means that upsets
could accumulate in memory. But non-deterministic scrub-
bing is realistic for LUTRAMS since there are only a small
number of memory locations. In other words there is little
chance that upsets will collect in memory locations before
they are either read and scrubbed, or repaired by a memory
write.

Just like BRAM scrubbers, in order for LUTRAMs to be
scrubbed an additional memory port is required. In order to
simplify this study, only single-ported LUTRAMs are consid-
ered. Thus the second port is available for a scrubbing mod-
ule. Although scrubbing may be possible without the need of
the second port, it facilitates the logic required for scrubbing.

Also like BRAM scrubbers, the logic controlling the LU-
TRAM write enable signal must be properly designed in order
to prevent critical failures. The write enable signals leading
to each duplicated domain (or triplicated domain in the case
of TMR LUTRAM scrubbers) must be completely indepen-
dent. Further, within a domain it is possible to have either a
single write enable signal for the entire LUTRAM memory,

or a write enable signal for each single-bit LUT of the mem-
ory (Figure 2). Some fault-tolerant techniques such as TMR
and CD with duplication do not need more than just a sin-
gle write enable signal. Other techniques such as parity with
duplication have no way of determining which write enable
signals to assert, and therefore use a single write enable sig-
nal. Finally some techniques such as SEC/DED or SED/DED
with duplication can take full advantage of multiple write en-
able signals. In this study all LUTRAM scrubbers use a sin-
gle write enable signal except for the SEC/DED scrubbers.
SEC/DED with duplication works well enough with a single
write enable signal that it is not worth the extra area to have
multiple signals.

Unlike BRAM scrubbers, there is no need to check for ad-
dress conflicts. Although LUTRAMs are dual-ported, one
port is used for reading and one is used for writing. Thus
there can never be a write conflict. Also, LUTRAMSs do not
suffer from the same problem that BRAMs do in some FPGA
architectures when a read and a write are requested from the
same port. This means that there is less logic required to build
a LUTRAM scrubber.

Scrubbing SRLs

At first glance, scrubbing SRLs seems difficult since, unlike
LUTRAMSs and BRAMs, there are no dual-ported SRLs. This
means that deterministic, scrubbing cannot be performed the
way it can be for BRAMs or LUTRAMSs. Also, to access any
SRL value other than the one available on the output, the SRL
contents must be cycled through. Despite these difficulties,
it is possible to build a relatively simple non-deterministic
scrubber (Figure 8).

Figure 8 shows an example of an EDC with duplication SRL
scrubber. When the EDC in one of the two SRLs detects
an error, the contents of the other SRL are used to scrub the
faulty SRL using a clock that is n 4 1 times faster than the
normal clock (when n is the length of the SRL). The first n
cycles scrub the SRL contents, and the extra cycle is used to
perform a write when the clock enable signal is high. The du-
plicated SRL also feeds its own data back into itself in order
to preserve its contents. A TMR or ECC SRL scrubber can
be similarly implemented.

Although the ability of the scrubber shown in Figure 8 (as
well as a TMR and ECC version) have been verified, this
study finds that there is no need to scrub SRLs. The natu-
ral operation of SRLs which causes new values to be written
to the SRL is good enough to protect SRLs from critical er-
rors. Even when not written to on every clock cycle, SRL
scrubbing is unnecessary.

5. MEMORY FAULT-TOLERANCE
COMPARISONS

This section compares the fault-tolerance of FPGA memo-
ries protected with different reliability techniques, and eval-

CE N
) v
DATA |Eg¢;oride/ l di :I: SRL do
[S
Slow
CLK i}
Fast
CLK Encode /' m
Pari .
n 1
1]
q’

Figure 8. An SRL protected by duplication with EDC and
scrubbing.

uates each of their costs. The fault-tolerant techniques ap-
plied include TMR, duplication with EDC (parity and CD),
ECC (SEC/DED) and ECC with duplication. Fault-tolerance
is measured in terms of the number sensitive bits, and the
number of critical failures. The cost of each fault-tolerant
technique is measured in terms of FPGA slices, and BRAMs
(where applicable).

Fault-injection tests are run on SEAKR’s XRTC board. The
XRTC board contains 3 FPGAs: the configmon, the funcmon,
and the DUT (Figure 9). The DUT (design under test) holds
the mitigated FPGA memory design that will injected with
faults. The DUT is a Xilinx Virtex4 FPGA. The funcmon
(functional monitor) holds a golden copy of the memory de-
sign and compares the outputs of the golden and DUT mem-
ories. The configmon (configuration monitor) is responsible
for injecting the faults into the DUT bitstream, and communi-
cating with a host through a USB bus. The configmon config-
ures both the funcmon and DUT FPGAs and reports sensitive
bits and critical failures back to the host.

Figure 9.
XRTC board.

Fault-injection is performed using SEAKR’s

In order to determine the sensitivity of each design, the con-
figmon design upsets each bit of the DUT bitstream. After a
bit is upset, the configmon allows the DUT to cycle = times
(where z is a variable). During the x cycles, the memory
on the DUT and the golden memory on the funcmon are fed
pseudo-random inputs. If the output of the memory on the
DUT ever differs from the output of the golden memory, an

error signal is sent back to the host, indicating which bit-
stream bit is sensitive. Every memory address is compared
in order to ensure that all errors are caught. After = cycles,
the bitstream bit is repaired, and the next bit is upset. For
all BRAM reliability tests, z = 5000. For all LUTRAM and
SRL tests, x = 200.

Critical failures are observed by allowing the DUT to cycle
an extra z cycles after repairing a bit, and before upsetting
the next bit. Before these second z cycles, the funcmon al-
lows the DUT to first cycle y times (where y is a fraction of
x) before comparing the DUT and golden memories. These
y cycles provide a window of opportunity for upsets in the
memory to be repaired. If, after the y cycles, any differences
between the DUT and golden memories are observed, a crit-
ical failure is indicated to the host. After a critical failure is
observed, the DUT is reconfigured, and the golden memory
is reinitialized. For all BRAM tests y = 2000, and for all
LUTRAM and SRL tests y = 50.

When comparing reliability techniques it is important to have
a baseline to compare effectiveness and cost. For each FPGA
memory type (BRAM, LUTRAM, and SRL) the sensitivity,
number of critical failures, and area cost of an unprotected
memory is provided to compare the values of each fault-
tolerant technique against.

To test the effectiveness of each of the fault-tolerant tech-
niques on each of the FPGA memory types, different sets of
tests are defined. First, all of the reliability techniques are
applied to BRAMs and LUTRAMs while acting as a ROM,
and then again while acting as a RAM. For SRLs, all of the
fault-tolerant techniques are applied, first when the SRL out-
puts are fed to its inputs, and then when random inputs are
fed to the SRL. For all three memory types, comparisons are
done first among non-triplicated, non-scrubbing techniques,
and then among triplicated, non-scrubbing techniques. For
BRAMs and LUTRAMSs, comparisons are also done among
triplicated scrubbing techniques.

BRAM Fault-Tolerant Technique Comparisons

For each BRAM reliability design, 16-bit wide memory
words are used. With 16-bit memory words, a Xilinx Vir-
tex4 BRAM can hold 1024 words. The Virtex4 BRAM will
actually hold 1024 18-bit words, but only 16 bits of the 18
are used in the baseline design. The extra two bits per word
allow parity to be added for no additional area cost. However
other error coding techniques such as CD and SEC/DED will
require additional BRAM area.

The cost for each BRAM protection technique (with and
without scrubbing) is shown in Table 1 in terms of BRAM
area. The table shows the number of memory bits that each
technique requires, and compares that cost to the original
baseline design. Unfortunately, since BRAMs contain a fixed
number of memory words, very few reliability techniques
can make efficient use of the BRAM area. For example, the

SEC/DED encoding technique causes a 16-bit memory word
to grow to 22-bits. Since there is no natural way to store 22-
bit words in a Xilinx BRAM, that 22 bits is broken into two
11-bits halfs, and each half is stored in a separate BRAM.
Since only 11-bits are being used in each word of the BRAM,
the other 7 bits per word are wasted. Only the parity, CD, and
TMR techniques use BRAMs efficiently.

No Scrubbing Scrubbing

Design BRAM Bits ‘ BRAMs BRAM Bits BRAMs
Original 16384 1 16384 1
Parity Dup 34816 2.1x 2 36864 2.3x 2
CD Dup 49152 3x 3 65536 4x 4
SEC/DED 22528 | 1.4x 2 N/A N/A N/A
SEC/DED Dup 38912 | 2.4x 3 45056 | 2.8x 4
TMR 49152 3x 3 49152 3x 3
Xilinx ECC 23552 | 1.4x 2 N/A N/A N/A

Table 1. The cost of fault-tolerance in terms of BRAM bits.

Table 2 compares the fault-tolerant techniques for the case
when no triplication is performed in the ECC or duplication
with EDC/ECC techniques, and when the TMR design has
only a single voter (Figure 3(a)). In addition to these tech-
niques, Xilinx’s ECC-protected BRAM block [21] is included
for comparison. None of the designs in Table 2 implement
scrubbing. The table includes the area cost in slices, as well
as the number of sensitive bits and critical failures for each
technique.

BRAM Non-Triplicated, Non-Scrubbing
ROM RAM

Design Sens. Crit. Sens. Crit.

Slices Bits Fail Slices Bits Fail
Original 0 16725 17 0 17103 306
Parity Dup 12 674 9 16 1184 787
CD Dup 12 329 17 28 817 306
SEC/DED 21 949 34 29 1463 829
SEC/DED Dup 34 1073 23 42 1128 527
TMR (1 Voter) 16 484 10 16 900 288
*Xilinx ECC 0 340 20 0 3673 1544

*Virtex4 ECC BRAM contents cannot be initialized and is therefore not useful as a
ROM

Table 2. Non-triplicated, non-scrubbing reliability and cost
comparisons for BRAMs.

Since each technique prevents all single-bit upsets within
the memory content, all of the techniques have significantly
fewer sensitive bits than the original unprotected BRAM.
When treated as a ROM, most of the critical failures are due
to upsets in the signals leading to the write enable signals of
the BRAMs. When treated as a RAM, most of the critical
failures are due to upsets in logic and signals leading to in-
put ports. Table 2 shows that when treated as a ROM, the

parity with duplication, and CD with duplication techniques
provide the best protection for the lowest cost. Although the
Xilinx ECC BRAM provides the lowest cost (no added slices
needed), the Virtex4 version of the primitive cannot be ini-
tialized, which makes it useless as a ROM. When a BRAM is
treated as a RAM, TMR with a single voter provides the best
protection at the lowest cost.

In general, triplicating the logic in the duplication with
EDC/ECC and ECC techniques, and triplicating the TMR
voters (Figure 3(b)) improves the reliability of memory pro-
tection. Table 3 compares the techniques when triplication
is added to the designs from Table 2. This table shows that
when no scrubbing is used TMR provides the best protection
at the lowest cost. The sensitivity in all of these designs is
due, mainly, to upsets in the input logic and signals.

BRAM Triplicated, Non-Scrubbing
ROM RAM

Design Sens. Crit. Sens. Crit.

Slices Bits Fail Slices Bits Fail
Original 0 16725 17 0 17103 | 306
Parity Dup 37 611 9 41 655 495
CD Dup 40 503 5 56 1050 824
SEC/DED 66 548 34 100 845 736
SEC/DED Dup 102 544 23 136 1001 900
TMR (3 Voters) 34 135 10 34 494 110

Table 3. Triplicated, non-scrubbing reliability and cost
comparisons for BRAMs.

Table 3 shows that even with TMR and triplicated voters and
inputs, not every sensitive bit is eliminated. Some of the sen-
sitivities in each fault-tolerant technique design in all of the
tables correspond to single FPGA configuration bits that af-
fect multiple routes [4]. Although this study does not focus
on eliminating these kinds of sensitivities, in order to reduce
them the memory elements in each design are hand placed.
Even though hand placing the memories reduces sensitive bits
which affect multiple routes, the sensitivities reported in ev-
ery table will include these kind of sensitive bits.

In order to reduce, or even eliminate critical errors, scrubbing
is required. Table 4 compares different reliability techniques
that implement scrubbing. The logic and voters of all of these
designs are also triplicated. There is no SEC/DED scrubber in
this table since SEC/DED on its own cannot overcome critical
failures due to upsets on the write enable port (Figure 1). This
table leaves not doubt that TMR with scrubbing provides the
best protection for BRAMs.

LUTRAM Fault-Tolerant Technique Comparisons

Like BRAMs, each fault-tolerant LUTRAM technique design
uses 16-bit memory words. But instead of 1024 memory loca-
tions, each design uses a 16 entry LUTRAM. Unlike BRAMs,

BRAM Triplicated, Scrubbing
ROM RAM

Design Sens. Crit. Sens. Crit.

Slices Bits Fail Slices Bits Fail
Original 0 16725 17 0 17103 306
Parity Dup 106 568 15 113 1895 1630
CD Dup 112 393 10 127 1253 856
SEC/DED Dup 181 525 180 297 735 616
TMR (3 Voters) 103 1 0 102 6 0

Table 4. Triplicated, scrubbing reliability and cost
comparisons for BRAMs.

LUTRAMs do not suffer from inefficient memory use, and all
area costs are determined by slice count.

The reliability and cost for the non-triplicated, non-scrubbing
fault-tolerant LUTRAM techniques are shown in Table 5.
The TMR technique used in these comparisons does not trip-
licate voters (Figure 3(a)). When treated as a RAM, all criti-
cal failures are repaired through natural memory writes. But
these critical failures cannot be repaired when treated as a
ROM. When treated as a ROM or a RAM, CD with duplica-
tion provides the best reliability at a reasonable cost.

LUTRAM Non-Triplicated, Non-Scrubbing

ROM RAM

Design Sens. | Crit. Sens. Crit.

Slices Bits Fail Slices Bits Fail
Original 8 1113 55 8 1430 0
Parity Dup 28 341 24 32 420 0
CD Dup 36 308 2 36 387 0
SEC/DED 32 617 61 40 1056 0
SEC/DED Dup 53 553 34 60 617 0
TMR (1 Voter) 40 448 12 40 384 0

Table 5. Non-triplicated, non-scrubbing reliability and cost
comparisons for LUTRAMs.

Triplicating logic and voters (Figure 3(b)) generally improves
the sensitivity of these designs. Table 6 compares the fault-
tolerant techniques when triplication is added to the designs
in Table 5. Again, CD with duplication provides the best re-
liability at a reasonable cost.

In order to eliminate critical failures, scrubbing and triplica-
tion are combined. Triplicated scrubbing designs are com-
pared in Table 7. Like BRAMs, this table shows that com-
bining TMR and scrubbing provides the best protection with
arelatively low cost.

When treated as a ROM, Table 7 shows that sometimes criti-
cal failures are not eliminated. In the case of the TMR scrub-
ber, the one critical failure occurs at a location where two

LUTRAM Triplicated, Non-Scrubbing
ROM RAM

Design Sens. Crit. Sens. Crit.

Slices Bits Fail Slices Bits Fail
Original 8 1113 55 8 1430 0
Parity Dup 64 472 26 78 310 0
CD Dup 76 323 2 78 241 0
SEC/DED 102 267 60 139 834 0
SEC/DED Dup 119 495 18 156 181 0
TMR (3 Voters) 56 409 7 58 1 0

Table 6. Triplicated, non-scrubbing reliability and cost
comparisons for LUTRAMs.

LUTRAM Triplicated, Scrubbing
ROM RAM

Design Sens. Crit. Sens. Crit.

Slices Bits Fail Slices Bits Fail
Original 8 1113 55 8 1430 0
Parity Dup 106 126 8 140 367 0
CD Dup 136 278 0 173 595 0
SEC/DED 110 95 1 158 284 0
SEC/DED Dup 255 42 2 338 207 0
TMR (3 Voters) 124 2 1 145 25 0

Table 7. Triplicated, scrubbing reliability and cost
comparisons for LUTRAMs.

of the triplicated clock signals run very close to each other.
It is likely that upsetting this bit affects both of these clock
routes [4]. The other scrubbing designs that have only one or
two critical failures might also be caused by a single bit af-
fecting multiple domains. These failures can be removed by
constraining the placement and routing of the designs more
carefully.

SRL Fault-Tolerant Technique Comparisons

Unlike BRAMs and LUTRAMSs, SRLs cannot operate as a
ROM. Thus instead of including ROM and RAM modes for
each fault-tolerant test, SRLs operate in feedback mode and
non-feedback mode. In feedback mode, the SRL outputs are
fed back to its inputs. In non-feedback mode random inputs
feed into to the SRL. Also unlike BRAMs and LUTRAMs,
the address of an SRL determines the length of the SRL. In
this study only static addressing is considered. Like the LU-
TRAM reliability designs, the SRL designs use a 16 entry,
16-bit wide SRL. Thus the address value is fixed for a length
of 16 bits.

The non-triplicated, non-scrubbing SRL memory protection
comparisons are shown in Table 8. In feedback mode, all
of the designs are susceptible to critical failures caused by
upsets to either the input or output logic and routing. In this
mode, Table 8 shows that some techniques actually reduce

10

reliability. In this mode TMR provides the best protection. In
non-feedback mode, TMR provides the best protection, but
parity with duplications provides relatively good protection
for the lowest cost.

SRL Non-Triplicated, Non-Scrubbing
Feedback Non-Feedback
Design Sens. | Crit. Sens. | Crit.
Slices Bits Fail Slices Bits Fail
Original 16 1002 | 584 16 617 0
Parity Dup 48 1023 578 49 319 0
CD Dup 68 1080 | 626 76 336 0
SEC/DED 51 677 412 51 483 0
SEC/DED Dup 76 637 458 79 493 0
TMR (1 Voter) 64 325 113 64 207 0

Table 8. Non-triplicated, non-scrubbing reliability and cost
comparisons for SRLs.

When triplication is added to the non-scrubbing designs, Ta-
ble 9 shows that all critical failures are eliminated when the
SRL is in non-feedback mode. In feedback mode, all critical
failures are eliminated when TMR is used. This is true even
though the clock enable port is not always asserted (the clock
enable port value is pseudo-randomly determined). Since
all critical failures are eliminated, no SRL scrubbing designs
are provided in this study. With triplication in feedback and
non-feedback modes, TMR provides the cheapest protection,
TMR provides complete protection at the lowest cost.

SRL Triplicated, Non-Scrubbing
Feedback Non-Feedback

Design Sens. Crit. Sens. | Crit.

Slices Bits Fail Slices Bits Fail
Original 16 1002 584 16 617 0
Parity Dup 89 963 796 87 307 0
CD Dup 102 887 708 116 245 0
SEC/DED 144 196 195 144 74 0
SEC/DED Dup 178 199 188 159 159 0
TMR (3 Voters) 80 0 0 80 0 0

Table 9. Triplicated, non-scrubbing reliability and cost
comparisons for SRLs.

6. CONCLUSION

This study compares the reliability and cost of different
FPGA memory fault-tolerant techniques. TMR, parity with
duplication, CD with duplication, SEC/DED, and SEC/DED
with duplication are the techniques used to protect BRAMs,
LUTRAMs, and SRLs. Memory scrubbing is also added to
each reliability technique. Reliability is measured in terms
of the number of sensitive bits in a design, and the number
of critical failures. This study defines a critical failure as
an upset whose effects can only be repaired by reconfigur-

ing the FPGA. The cost of a reliability technique is measured
in terms of area (slices and BRAMs).

This study finds that the best way to protect BRAMs and LU-
TRAMs is with a TMR scrubber. Despite the potential cost
advantages that ECC and duplication with EDC/ECC some-
times have, they have a major weakness that TMR doesn’t
suffer from - they all have single points of failure on their in-
put and output port signals. Also this study finds that scrub-
bing is unnecessary to protect SRLs. When an SRL is used
in feedback or non-feedback mode, TMR provides complete
protection.

Although TMR or TMR with scrubbing seems to provide the
best protection, there are often cheaper alternatives whose re-
liability is almost as good. This study reveals these reliability-
area trade-offs points provided by the different memory pro-
tection techniques. For example, a LUTRAM protected with
CD and duplication, whose logic is not triplicated, provides
good protection at a low cost. A SEC/DED scrubber with
triplicated logic provides better protection at a greater cost,
while a TMR scrubber provides the best protection, but at an
even greater cost. The trade-off points provided by this study
will be valuable when designing for space-based applications,
where area and reliability are of concern.

REFERENCES

[1] N. Rollins, M. Wirthlin, M. Caffrey, and P. Graham,
“Evaluating TMR techniques in the presence of single
event upsets,” in Proceedings of the 6th Annual Inter-
national Conference on Military and Aerospace Pro-
grammable Logic Devices (MAPLD), September 2003.

[2] A. Tiwari and K. Tomko, “Enhanced reliability of finite-
state machines in FPGA through efficient fault detec-
tion and correction,” Reliability, IEEE Transactions on,
vol. 54, no. 3, pp. 459-467, Sept. 2005.

[3] F. Kastensmidt, C. Filho, and L. Carro, “Improving re-
liability of SRAM-based FPGAs by inserting redun-
dant routing,” Nuclear Science, IEEE Transactions on,
vol. 53, no. 4, pp. 2060-2068, Aug. 2006.

[4] L. Sterpone, M. S. Reorda, M. Violante, F. L. Kas-
tensmidt, and L. Carro, “Evaluating different solutions
to design fault tolerant systems with SRAM-based FP-
GAs,” Journal of Electronic Testing: Theory and Appli-
cations, vol. 23, pp. 47-54, 2007.

[51 C. Carmichael and C. W. Tseng, “Correcting single-
event upsets in virtex-4 platform FPGA configuration
memory,” Xilinx Corporation, Tech. Rep., March 13,
2008, xAPP988 (v1.0).

[6] C. Carmichael, “Triple module redundancy design tech-
niques for Virtex FPGAs,” Xilinx Corporation, Tech.
Rep., November 1, 2001, xAPP197 (v1.0).

[71 D. McMurtrey, K. Morgan, B. Pratt, and M. Wirthlin,
“Estimating TMR reliability on FPGAs using markov

models,” Brigham Young University Department of
Electrical and Computer Engineering, Tech. Rep., 2007.
[Online]. Available: http://hdl.handle.net/1877/644

[8] N. Rollins, M. Wirthlin, M. Caffrey, and P. Graham,
“Evaluatiion of power costs in applying TMR to FPGA
designs,” in Proceedings of the 7th Annual International
Conference on Military and Aerospace Programmable
Logic Devices (MAPLD), September 2004.

[9] L. Schiano, M. Ottavi, and F. Lombardi, “Markov mod-
els of fault-tolerant memory systems under SEU,” in
Memory Technology, Design and Testing, 2004. Records
of the 2004 International Workshop on, Aug. 2004, pp.
38-43.

[10] J. Gaisler, “A portable and fault-tolerant microproces-
sor based on the SPARC v8 architecture,” Dependable
Systems and Networks, 2002. DSN 2002. Proceedings.
International Conference on, pp. 409—415, 2002.

[11] D.P. Siewiorek and R. S. Swarz, Reliable computer sys-
tems (3rd ed.): design and evaluation. Natick, MA,
USA: A. K. Peters, Ltd., 1998.

[12] T. Ganesh, V. Subramanian, and A. Somani, “SEU mit-
igation techniques for microprocessor control logic,” in
Dependable Computing Conference, 2006. EDCC ’06.
Sixth European, Oct. 2006, pp. 77-86.

[13] K. Morgan, M. Caffrey, P. Graham, E. Johnson, B. Pratt,
and M. Wirthlin, “SEU-induced persistent error propa-
gation in FPGAs,” Nuclear Science, IEEE Transactions
on, vol. 52, no. 6, pp. 2438-2445, Dec. 2005.

[14] K. Chapman, “Picoblaze 8-bit microcontroller for
virtex-e and spartan-ii/iie devices,” Xilinx Corporation,
Tech. Rep., February 4, 2003, xAPP213 (v2.1).

[15] M. Wirthlin, E. Johnson, N. Rollins, M. Caffrey, and
P. Graham, “The reliability of FPGA circuit designs in
the presence of radiation induced configuration upsets,”
in Proceedings of the 2003 IEEE Symposium on Field-
Programmable Custom Computing Machines, K. Pocek
and J. Armnold, Eds., IEEE Computer Society. Napa,
CA: IEEE Computer Society Press, April 2003.

[16] Single-Event Upset Mitigation for Xilinx FPGA Block
Memories, Xilinx Application Notes 962, vi.1, Xilinx,
Inc., March 2008.

[17] F. Lima, L. Carro, and R. Reis, “Designing fault tolerant
systems into SRAM-based FPGAs,” in Proceedings of
the 41nd Design Automation Conference (DAC 2003),
June 2003, pp. 650-655.

[18] L. Rockett, D. Patel, S. Danziger, B. Cronquist, and
J. Wang, “Radiation hardened FPGA technology for

space applications,” Aerospace Conference, 2007 IEEE,
pp- 1-7, March 2007.

[19] E.Heiko, “Development of a fault tolerant softcore CPU
for SRAM base FPGAs,” Master’s thesis, Heidelberg
University, June 2009.

[20] “Correcting single-event upsets through virtex parital

configuration,” Xilinx Corporation, Tech. Rep., June 1,
2000, xAPP216 (v1.0).

[21] “Virtex-4 FGPA user guide,” Xilinx Corporation, Tech.
Rep., December 1, 2008, uG070 (v2.6).

Nathaniel Rollins is currently an Elec-
trical Engineering Ph.D. candidate at
Brigham Young University. He received
both his B.S. degree in Computer Engi-
neering with a minor Mathematics, and
his M.S. degree in Electrical Engineer-
ing from Brigham Young University in

2004 and 2007 respectively. He has
worked in the reconfigurable computing lab of the Electrical
Engineering department at BYU since 2001, and has taught
a number of Electrical Engineering undergraduate classes at
BYU. He has authored or coauthored a number of papers in

the field of FPGA design reliability.

(’ 4 active in the FPGA design, architecture,

e i and tool research communities. He is
currently a leading researcher in FPGA reliability modeling
and fault tolerant design techniques. He and his students
have developed tools for automatically inserting fault toler-
ant structures into FPGA designs and have tested these tech-
niques on the orbiting Cibola Flight Experiment (CFE) satel-
lite launched by Los Alamos National Laboratory. His re-
search interests include FPGA reliability modeling, FPGA
fault tolerant design techniques, Configurable Computing
Systems, high-level synthesis, and computer-aided design for
application-specific computing.

Megan Fuller graduated from Cibola
High School in December 2007. She
spent two summers as an intern at Los
Alamos National Laboratories and is
currently a junior majoring in electrical
engineering at Brigham Young Univer-
sity, where she now works as a research
assistant.

Michael Wirthlin is currently an As-
sociate Professor in the Department of
Electrical and Computer Engineering at
Brigham Young University in Provo,
Utah. He has been actively involved in
FPGA design for over 20 years and is

12

