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 Abstract Although highly reliable for fault mitigation, 
triple modular redundancy (TMR) in FPGAs comes with the 
price of increasing the circuit area (3-5x), decreasing the 
circuit clock rate (20+%), and increasing circuit power (3-
5x). Techniques may exist that trade off some of the 
reliability of TMR for reduced costs in terms of area, timing, 
and power. This paper proposes one such technique which 
uses duplicate with compare (DWC) with the addition of a 
smart detector to predict which of the duplicated circuits is 
in error to choose the fault free circuit as output. The smart 
detector proposed in this paper is a simple statistical model 
with low-resource costs. The model and testing methodology 
employed is discussed as well as results from fault injection 
testing, which indicate that the proposed statistical smart 
detector exhibits 87% to 93% prediction accuracy.1 2 3 
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1. IN T R O DU C T I O N 
TMR is the technique most often used for redundancy in 
FPGAs [1] [2] [3]. However, it comes with a significant cost 
in terms of area (3-5x), timing (20+%), and power (3-5x) 
[4]. This paper will describe ongoing work designed to 
answer the question: What reliability can be obtained using 

a statistical smart model predictor combined with 

duplication with compare (DWC), and what is the resulting 

hardware savings compared to TMR? A typical scenario 
where a reduced cost approach may be warranted might be 
running a science experiment on a space-based FPGA 
 
1 978-1-4244-3888-4/10/$25.00 ©2010 IEEE 
2 IEEEAC paper#1504, Version 4, Updated 2010:1:04 
3 This work was supported by the I/UCRC Program of the National 
Science Foundation under Grant No. 0801876. 

platform where the platform had insufficient FPGA 
resources for a full TMR implementation. Our hypothesis is 
that statistical models combined with DWC may provide 
sufficient reliability for such an application at an attractive 
cost and power point.  

Conventional DWC [5] consists of two copies of the circuit 
of interest (call the outputs of these two circuit copies A and 
B). One of either A or B is used as the main circuit output, 
but an additional single bit, Not_Equal, is also produced to 
indicate on which cycles A is not equal to B, thus signaling 
to the user that the output data may be in error. DWC does 
not mask errors, but merely indicates that an error has 
occurred. Smart detection, the subject of this work, consists 
of adding a smart model which monitors the A and B data 
streams and, when they differ, chooses which value it 
believes is most likely correct and gates it to the circuit
output. Candidates for this smart model include statistical 
techniques, neural networks, hidden Markov models, or 
application-specific smart models based on quantities such 
as SNR, frequency drift characteristics, etc. This paper 
focuses on the first of these techniques developed and 
tested: a histogram-based statistical method.  

2. ST A T IST I C A L SM A R T D E T E C T O R  
An example of a smart detector system is shown in Figure 1. 
The smart detector monitors the outputs from the duplicated 
circuit and switches the multiplexor according to its 
determination of which circuit is fault free. One specific 
instance of the smart detector is a histogram-based model. 

 

 
F igure 1- D W C with Smart Detector 

 
The histogram-based model relies on a two-step process. 
First, representative data is run through a fault free copy of 
the design and a histogram of output values is constructed 
for a preselected number of bins. Then, during actual 
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operation, the histogram is consulted to determine the most 
likely of the two values output from circuits A and B, where 
the likelihood is determined by which output maps to the 
highest value histogram bin. This technique relies on the 
output data having a non-uniform distribution which can be 
represented by a histogram. In particular, the data which was 
used in this study is the output of a QPSK modulator. In this 
case, the bits being transmitted were random and therefore 
have no such interesting distribution. However, as will be 
shown later in this paper, the QPSK modulation process 
imposes a non-uniform distribution on the data samples.    

There are three possible outcomes when consulting the 
histogram for detection: Correct detection, incorrect 
detection, and an ambiguous outcome. A simple example 
will illustrate these three possibilities. 

A Simple Example 

For this simple example the circuit to be protected is a 
voltmeter. The voltmeter is observed in fault free operation 
and the outputs and their counts are gathered into the 
histogram shown in Table 1. As can be seen, 3V is the most 
likely value and 2V is the least likely value. The voltmeter is 
then duplicated as shown in Figure 1 and the histogram is 
loaded for use in the smart model.  

!"#$%&'( )"*+$(
,!( 20 
-!( 11 
.!( 37 
/!( 20 

Table 1 - Simple Example H istogram 

Assuming only a single event upset (SEU);4 the possible 
outcomes are described below: 

 The faulty voltmeter reads 2V and the fault free 
voltmeter reads 3V. Since 3V has a higher count in 
the histogram, the smart detector will chose this 
voltmeter as the fault free circuit. This results in 
correct detection. 

 The faulty voltmeter reads 3V and the fault free 
voltmeter reads 2V. Once again, since 3V has the 
higher count in the histogram, the smart detector 
will mistaken fault 
free  circuit. This results in incorrect detection. 

 In the last example, one voltmeter reads 1V and the 
other voltmeter reads 4V. It does not matter which 
circuit is faulty. The histogram has the same values 
for both readings and therefore cannot make a 

 
4 This entire paper assumes single event upsets, meaning that the circuit 
only contains one fault at a time. 

determination as to which circuit may be right. This 
is an ambiguous detection. 

A more detailed look at ambiguous cases, as well as how to 
handle them, will be treated in Section 4. 

An Extension to the Statistical Smart Detector 

Figure 2 shows the smart detector as just described where 
the decision as to which output to choose is determined by a 
single measurement. Figure 3 shows an extension to the 
smart detector that was also implemented in this work where 
a history of decisions was buffered into a shift register and 
the aggregate decision was used to determine which circuit 
to choose as the correct circuit. The implementation shown 
has an 8 deep history implemented as a shift register of 
values. As can be seen, two of the decisions in the past were 
for circuit A, but six of the decisions are for circuit B. In this 
case, the smart model will choose to output circuit B 
because the majority of decisions were for circuit B. As will 
be seen later, this use of history has a significant effect on 
the accuracy of the detector. 

 

F igure 2 Single Sample Detector 

 
F igure 3 Detector with H istory 

3. IN I T I A L T ESTS 
The system used for testing the proposed statistical smart 
model described above was a downsampler that was 
constructed by cascading five halfband filters as shown in 
Figure 4. This subsystem was taken from a QPSK design. 

 

F igure 4 System used for tests 

The system was designed using Xilinx System Generator 
within Matlab. This allowed bit-level accurate simulation 
and manipulation before synthesis and hardware testing. The 
system takes in a 12-bit value and, because of bit growth 
through the multiplications that occur within the filters, 
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outputs a 20-bit filtered downsampled value. The original 
sample rate is 100 samples per symbol. The output sample 
rate is 6.25 samples per symbol. 

The initial tests used to evaluate the effectiveness of the 
histogram approach employed a simple stuck at fault model 
to mimic SEUs in the system under test. Both stuck at 0 and 
stuck at 1 tests were performed on each bit of the 20-bit 
output of the downsampler. In order to approximate an SEU 
occurring during execution of a running system, the stuck at 
fault was introduced halfway through the simulation run. 
The smart detector  
circuit as well as data from a clean circuit and prediction 
accuracy was calculated for each stuck at fault. Simulations 
were run for a model that only used 1 sample for predictions 
and for four different history depths. Figure 5 shows the 
correct detection percentages for the stuck at faults. Figure 6 
shows the incorrect detections for the same faults. Figure 7 
shows the ambiguous detections for the stuck at faults. 

As can be noticed universally, the higher order bits are at or 
near 100% correct detection for all models. The bit at which 
the correct detection percentage is below 90% steadily 
moves to the smaller order bits as the history size increases. 
For example, a stuck at fault on bit 4 or higher with a 1024 
deep history still results in over 90% prediction accuracy 
whereas the prediction accuracy for bit 4 using just one 
sample is below 10%. This supports the idea that using 
history substantially increases the percentage of correct 
detections. 

4. A M BI G U O US D E T E C T I O N A ND H IST O G R A M 
G E N E R A T I O N 

Figure 7 illustrates the issue of ambiguous detection using 
the histogram method. When using just one sample to make 
the determination, it can be seen from Figures 5 and 6 that 
for bits 0 to 4 the percentage of incorrect detections is below 
10%, but the percentage of correct detections is also below 

10%. The majority of detections in this range are 
ambiguous. Figure 7 shows that even when using history, the 
percentage of ambiguous detections for the low order bits is 
still high. 

Ambiguous detection occurs in one of three ways: 

1. When the values from circuit A and circuit B map 
to different bins that both contain the same value 
(as shown in the left side of Figure 8). 
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F igure 5 
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F igure 6 
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F igure 7 

 
F igure 8 Two possible ways of generating an ambiguous 

result from the histogram 
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2. When the values of circuit A and circuit B map to 
the same bin. This can occur if the values are equal, 
but also if the difference between the two values is 
not enough to map it to a different histogram bin 
(as shown in the right side of Figure 8). 

3. When using history, as in Figure 3, if the number of 
decisions for circuit A equal the number of 
decisions for circuit B.  

The first two issues have direct relation to the histogram 
used. The histogram is generated using representative output 
from the system in the absence of faults. The histogram is 
specified by how many bins are used to count the data. For 
the smart detector, the number of bins is constrained to 
powers of 2 to simplify the hardware design. Figure 9 shows 
histograms generated from the same data set with different 
bin sizes to illustrate the tradeoffs that have to be considered 
by the designer. As can be seen, all of the histograms have 
the same general shape. Figure 9(a) shows a histogram with 
only 32 bins. Although the histogram would fit into a very 
small ROM, many of the faults would map to the same bin, 
resulting in an ambiguous detection. This is case 2 described 
above. Figure 9(c) shows a histogram generated with 65536 
bins. Although the designer has significantly decreased the 
probability of both circuit outputs mapping to the same bin 
when they differ, two new concerns arise. First is the 
resource cost to store the larger histogram. The second 
concern deals with the values in the histogram. The larger 
histogram seems to have quantized the shape of the 
histogram. This arises from the fact that no given bin has 
many data values that map to it. For example, in this 
histogram many of the bins have the value of 2. This is case 
1 described above. By inspection, Figure 9(b) shows what 
may be an acceptable medium between the two extremes. 

Some level of ambiguity will always exist with this 
technique, because it is not possible to store a histogram that 
has a bin for every possible output value. As such, since an 
ambiguous decision can neither be verified as right or 
wrong, it is necessary to decide beforehand how to report 
them in our results of accuracy decisions. There are four 
possible ways to count ambiguous detections: 

1. Do not count them at all. Simply remove all 
ambiguous detections from the calculation. 

2. Record all as an incorrect detection. This would 
constitute a lower bound for the performance of the 
smart detector system. 

3. Record all as a correct detection. This would 
constitute an upper bound for the performance of 
the smart detector system. 

4. Recor  system, 
one should guess right half of the time. This is a 
reasonable metric for the performance of the smart 
detector system. 

In our results, we will report all of these numbers to give a 
 

 
 

F igure 9 Three histograms with different bin counts 

 
 
 

 
F igure 10 V irtex SE U Emulator (L A N L/B Y U) 

(a) (b) (c) 
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5. H A RD W A R E F A U L T INJE C T I O N T ESTS 
The hardware fault injection tests performed in this work use 
the BYU/LANL fault injection tool. It is based on the 
SLAAC-1V board, which is a PCI card populated with three 
Virtex 1000 FPGAs. The block diagram of the system is 
shown in Figure 10. This tool has been previously validated 
using radiation testing [6] [7]; that is, it has been shown to 
accurately emulate SEUs caused by high energy particle 
strikes. The design is loaded into the X1 and X2 chips. X2 
remains fault free and X1 has every bit of its configuration 
bitstream flipped, one at a time, to emulate a SEU. Every 
time a difference is noted between the output of X1 and X2, 

. There 
were 73146 sensitive bits recorded for the cascaded half 
band downsampler design shown in Figure 4. 

Test vectors were created for the design under test by 
feeding random numbers through a QPSK modulator in 
Matlab. This vector was then run through the design without 
injecting any faults to gather a golden output. From the 
golden output, histograms of various sizes were created for 

testing. The new input vector with a different random seed 
was then run through the design for each of the sensitive bits 
and the output was captured. To simulate real world 
conditions, the fault was inserted roughly halfway through 
the execution to give a certain amount of fault free 
operation. Matlab was then used to implement the smart 
detector and to analyze the results with varying sizes of 
history, as well as with varying sizes of histograms. 

6. R ESU L TS 
Tests were run using history depths of 1, 64, 256, 512, and 
1024, and with histogram sizes of 1024, 4096, and 16384 
bins. The results are tabulated in Tables 2, 3, and 4. The 
number of decisions with an ambiguous outcome is also 
shown so the impact of the different history and histogram 
sizes can be shown. In Table 2, the number of ambiguous 
decisions when only considering one sample is 34.16%. This 
can be attributed to the small number of bins and faults 
being mapped to the same bin as the golden output. When a 
history depth of 1024 is used, the number of ambiguous 
outcomes drops by almost a factor of six. Still, the lower 

Number of 
samples 

considered for 
decision 

Percent 
decisions with 

ambiguous 
outcome 

No ambiguous 
decisions 
counted 

All ambiguous 
counted as 

wrong 

Half ambiguous 
counted as 

right 

All ambiguous 
counted as 

right 

1 34.16% 85.03% 55.98% 73.06% 90.14% 
64 15.96% 84.78% 71.25% 79.23% 87.21% 
256 9.80% 84.75% 76.44% 81.34% 86.24% 
512 7.55% 84.65% 78.26% 82.04% 85.81% 
1024 6.03% 84.45% 79.35% 82.37% 85.38% 

Table 2 Cor rect Decisions for 1024 bins 

Number of 
samples 

considered for 
decision 

Percent 
decisions with 

ambiguous 
outcome 

No ambiguous 
decisions 
counted 

All ambiguous 
counted as 

wrong 

Half ambiguous 
counted as 

right 

All ambiguous 
counted as 

right 

1 28.58% 82.04% 58.59% 72.88% 87.17% 
64 10.69% 81.70% 72.97% 78.31% 83.66% 
256 5.98% 81.90% 77.00% 79.99% 82.98% 
512 4.35% 81.89% 78.33% 80.50% 82.67% 
1024 3.36% 82.35% 79.58% 81.26% 82.95% 

Table 3 Cor rect Decisions for 4096 Bins 

Number of 
samples 

considered for 
decision 

Percent 
decisions with 

ambiguous 
outcome 

No ambiguous 
decisions 
counted 

All ambiguous 
counted as 

wrong 

Half ambiguous 
counted as 

right 

All ambiguous 
counted as 

right 

1 25.59% 81.99% 61.01% 73.80% 86.60% 
64 5.98% 84.98% 79.90% 82.89% 85.88% 
256 2.47% 86.89% 84.74% 85.98% 87.21% 
512 1.63% 87.26% 85.84% 86.66% 87.47% 
1024 1.15% 87.34% 86.33% 86.91% 87.48% 

Table 4 Cor rect Decisions for 16384 bins 
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bound of performance using this histogram is only 79.34% 
and the upper bound is 85.38%. Table 3 shows the test runs 
using a histogram size of 4096, the histogram size we 
considered in Section 4 as a good design trade-off. The 
percentage of ambiguous decisions drops a factor of 8.5 
when moving from no history to a history buffer of 1024 
samples. Table 4 shows the results for a histogram size of 
16384. With four times the histogram size as the 4096 
example, this smart detector might start using too many 
resources depending on the application, but the reduction of 
ambiguous decisions from 1 sample to 1024 samples is a 
factor of 22, 
performance is a respectable 86.33%. Since the number of 
ambiguous decisions is so small, the performance 
improvement when taking the upper bound is small. 

7. F UR T H E R E XPE RI M E N TS 
Pratt, et al. [8] have shown that SEUs in a communications 
system can be characterized into 4 classes. Class 1 and class 
2 faults are characterized as non-catastrophic and have 
effects similar to adding noise to the system. Since 
communications systems are built to work in the presence of 
additive noise, these faults are not absolutely necessary to 
mitigate. Class 3 and class 4 faults cause extremely high bit 
error rates and are characterized as catastrophic. In the case 
of class 4 faults, the bit error rate is !, meaning every other 
bit is in error. These are the faults that need to be mitigated. 

Using the 16-bit filter with a roll-off factor of 1.0 described 
in [8], experiments were run to determine the performance 
of the histogram-based smart detector against catastrophic 

faults. This is a 25-tap FIR filter used in a BPSK 
demodulator system. As noted, the total number of sensitive 
bits in this design numbered 42978. The catastrophic bits 
were 5.9% of this total, or 2537. The experiments were run 
on a new hardware fault injection platform where the design 
under test was implemented in a Virtex 4 FPGA. Histograms 
of 16384 bins were generated for these experiments. As the 
signal through a real communications system will always 
have some degree of noise associated with it, histograms 
were generated from data with a signal to noise ratio (SNR) 
of 5dB and 10dB, respectively. The smart detector was then 
tested with these two histograms against class 3 and 4 faults 
using data that was statistically independent, but also had 
SNRs of 5dB and 10dB. For the class 3 faults, the 
histogram-based smart detector had an accuracy of 93%, 
which is a promising increase over the results in Section 6. 
However, for class 4 faults, the accuracy matched the results 
in Section 6 with accuracy in the 86th percentile. This is a 
curious result and deserves more attention to discover the 
reason that the accuracy does not meet or exceed the results 
seen with the class 3 faults. The aggregate accuracy when 
used against catastrophic faults is 90.9%. 

8. H A RD W A R E I MPL E M E N T A T I O N 
Figure 11 shows a block diagram of the hardware 
implementation for the smart detector. The smart detector 
consists of some logic, a small number of block RAMs, and 
an accumulator. Table 5 shows resource costs for an 
implementation of the smart detector on a Virtex 4 with a 
history depth of 1024 and a histogram size of 16384 bins 
with a word width of 8 bits. The left column numbers are for 

 
F igure 11 Block diagram of hardware implementation 

Logic Utilization Smart 
Detector 

Downsample 
Filter 

Duplicated 
Downsample Filter 

Triplicated 
Downsample Filter 

# of Slices          (24576 available) 48 1075 1598 2757 
# of Slice FFs    (49152 available) 43 630 1220 1810 
# of LUTs          (49152 available) 89 1310 2604 3898 
# of RAMB16s   (320 available) 9 0 0 0 

Table 5 Logic Utilization in V irtex I V 
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a non-triplicated version of the smart detector. A fully 
triplicated smart detector will be approximately three times 
as large; thus, the solution using a smart detector requires 
approximately 1750 slices, while a fully triplicated design is 
approximately 2750 slices. 

9. C O N C L USI O NS A ND F U T UR E W O R K 
In this paper, we have discussed smart detection using a 
simple histogram. As can be seen from the results presented, 
this technique offers a relatively high degree of accuracy 
with very low resource costs. Although the reliability is not 
as high as with TMR, it succeeds in its stated purpose of 
trading off a small amount of reliability for a large reduction 
in resource requirements. Specifically, a non-triplicated 
version of the smart detector paired with the duplicated 
circuit is 60% the size of the triplicated downsample filter. 
A conservative estimate of the triplicated smart detector at 6 
times the resource costs paired with the duplicated 
downsample filter is still 70% the size of the triplicated 
circuit. As would be expected, the resource efficiency of this 
technique increases as the size of the circuit it protects 
grows. If 100% fault mitigation is not needed, this is an 
attractive technique with high reliability for a very low 
resource cost particularly for catastrophic faults where the 
accuracy exceeds 90%. 

The filters used for testing in this work were extracted from 
larger demodulator systems and are the simplest blocks in 
that system. Future work will focus on applying smart 
detection methods to an entire demodulator system. An 
important question will be to determine the best locations 
within the design to probe with the smart model. Also, other 
possibilities exist besides the histogram method for the 
implementation of the smart model. Further research is 
investigating machine learning with neural networks and 
Bayesian networks as the smart model. 
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