

 1

Using Statistical Models with Duplication and Compare
for Reduced Cost FPG A Reliability

Jon-Paul Anderson, Brent Nelson, Mike Wirthlin
NSF Center for High-Performance Reconfigurable Computing (CHREC)

Department of Electrical and Computer Engineering
Brigham Young University

Provo, UT 84602
jonpaul, brent_nelson, wirthlin@byu.edu

 Abstract Although highly reliable for fault mitigation,
triple modular redundancy (TMR) in FPGAs comes with the
price of increasing the circuit area (3-5x), decreasing the
circuit clock rate (20+%), and increasing circuit power (3-
5x). Techniques may exist that trade off some of the
reliability of TMR for reduced costs in terms of area, timing,
and power. This paper proposes one such technique which
uses duplicate with compare (DWC) with the addition of a
smart detector to predict which of the duplicated circuits is
in error to choose the fault free circuit as output. The smart
detector proposed in this paper is a simple statistical model
with low-resource costs. The model and testing methodology
employed is discussed as well as results from fault injection
testing, which indicate that the proposed statistical smart
detector exhibits 87% to 93% prediction accuracy.1 2 3

T A B L E O F C O N T E N TS

1. IN T R O DU C T I O N ...1!
2. ST A T IST I C A L SM A R T D E T E C T O R1!
3. INI T I A L T ESTS ..2!
4. A M BI G U O US D E T E C T I O N A ND H IST O G R A M
G E N E R A T I O N ..3!
5. H A RD W A R E F A U L T INJE C T I O N T ESTS5!
6. R ESU L TS ...5!
7. F UR T H E R E XPE RI M E N TS ..6!
8. H A RD W A R E I MPL E M E N T A T I O N6!
9. C O N C L USI O NS A ND F U T UR E W O R K7!
R E F E R E N C ES ..7!
BI O G R APH Y ..7!

1. IN T R O DU C T I O N
TMR is the technique most often used for redundancy in
FPGAs [1] [2] [3]. However, it comes with a significant cost
in terms of area (3-5x), timing (20+%), and power (3-5x)
[4]. This paper will describe ongoing work designed to
answer the question: What reliability can be obtained using

a statistical smart model predictor combined with

duplication with compare (DWC), and what is the resulting

hardware savings compared to TMR? A typical scenario
where a reduced cost approach may be warranted might be
running a science experiment on a space-based FPGA

1 978-1-4244-3888-4/10/$25.00 ©2010 IEEE
2 IEEEAC paper#1504, Version 4, Updated 2010:1:04
3 This work was supported by the I/UCRC Program of the National
Science Foundation under Grant No. 0801876.

platform where the platform had insufficient FPGA
resources for a full TMR implementation. Our hypothesis is
that statistical models combined with DWC may provide
sufficient reliability for such an application at an attractive
cost and power point.

Conventional DWC [5] consists of two copies of the circuit
of interest (call the outputs of these two circuit copies A and
B). One of either A or B is used as the main circuit output,
but an additional single bit, Not_Equal, is also produced to
indicate on which cycles A is not equal to B, thus signaling
to the user that the output data may be in error. DWC does
not mask errors, but merely indicates that an error has
occurred. Smart detection, the subject of this work, consists
of adding a smart model which monitors the A and B data
streams and, when they differ, chooses which value it
believes is most likely correct and gates it to the circuit
output. Candidates for this smart model include statistical
techniques, neural networks, hidden Markov models, or
application-specific smart models based on quantities such
as SNR, frequency drift characteristics, etc. This paper
focuses on the first of these techniques developed and
tested: a histogram-based statistical method.

2. ST A T IST I C A L SM A R T D E T E C T O R
An example of a smart detector system is shown in Figure 1.
The smart detector monitors the outputs from the duplicated
circuit and switches the multiplexor according to its
determination of which circuit is fault free. One specific
instance of the smart detector is a histogram-based model.

F igure 1- D W C with Smart Detector

The histogram-based model relies on a two-step process.
First, representative data is run through a fault free copy of
the design and a histogram of output values is constructed
for a preselected number of bins. Then, during actual

 2

operation, the histogram is consulted to determine the most
likely of the two values output from circuits A and B, where
the likelihood is determined by which output maps to the
highest value histogram bin. This technique relies on the
output data having a non-uniform distribution which can be
represented by a histogram. In particular, the data which was
used in this study is the output of a QPSK modulator. In this
case, the bits being transmitted were random and therefore
have no such interesting distribution. However, as will be
shown later in this paper, the QPSK modulation process
imposes a non-uniform distribution on the data samples.

There are three possible outcomes when consulting the
histogram for detection: Correct detection, incorrect
detection, and an ambiguous outcome. A simple example
will illustrate these three possibilities.

A Simple Example

For this simple example the circuit to be protected is a
voltmeter. The voltmeter is observed in fault free operation
and the outputs and their counts are gathered into the
histogram shown in Table 1. As can be seen, 3V is the most
likely value and 2V is the least likely value. The voltmeter is
then duplicated as shown in Figure 1 and the histogram is
loaded for use in the smart model.

!"#$%&'()"*+$(
,!(20
-!(11
.!(37
/!(20

Table 1 - Simple Example H istogram

Assuming only a single event upset (SEU);4 the possible
outcomes are described below:

 The faulty voltmeter reads 2V and the fault free
voltmeter reads 3V. Since 3V has a higher count in
the histogram, the smart detector will chose this
voltmeter as the fault free circuit. This results in
correct detection.

 The faulty voltmeter reads 3V and the fault free
voltmeter reads 2V. Once again, since 3V has the
higher count in the histogram, the smart detector
will mistaken fault
free circuit. This results in incorrect detection.

 In the last example, one voltmeter reads 1V and the
other voltmeter reads 4V. It does not matter which
circuit is faulty. The histogram has the same values
for both readings and therefore cannot make a

4 This entire paper assumes single event upsets, meaning that the circuit
only contains one fault at a time.

determination as to which circuit may be right. This
is an ambiguous detection.

A more detailed look at ambiguous cases, as well as how to
handle them, will be treated in Section 4.

An Extension to the Statistical Smart Detector

Figure 2 shows the smart detector as just described where
the decision as to which output to choose is determined by a
single measurement. Figure 3 shows an extension to the
smart detector that was also implemented in this work where
a history of decisions was buffered into a shift register and
the aggregate decision was used to determine which circuit
to choose as the correct circuit. The implementation shown
has an 8 deep history implemented as a shift register of
values. As can be seen, two of the decisions in the past were
for circuit A, but six of the decisions are for circuit B. In this
case, the smart model will choose to output circuit B
because the majority of decisions were for circuit B. As will
be seen later, this use of history has a significant effect on
the accuracy of the detector.

F igure 2 Single Sample Detector

F igure 3 Detector with H istory

3. IN I T I A L T ESTS
The system used for testing the proposed statistical smart
model described above was a downsampler that was
constructed by cascading five halfband filters as shown in
Figure 4. This subsystem was taken from a QPSK design.

F igure 4 System used for tests

The system was designed using Xilinx System Generator
within Matlab. This allowed bit-level accurate simulation
and manipulation before synthesis and hardware testing. The
system takes in a 12-bit value and, because of bit growth
through the multiplications that occur within the filters,

 3

outputs a 20-bit filtered downsampled value. The original
sample rate is 100 samples per symbol. The output sample
rate is 6.25 samples per symbol.

The initial tests used to evaluate the effectiveness of the
histogram approach employed a simple stuck at fault model
to mimic SEUs in the system under test. Both stuck at 0 and
stuck at 1 tests were performed on each bit of the 20-bit
output of the downsampler. In order to approximate an SEU
occurring during execution of a running system, the stuck at
fault was introduced halfway through the simulation run.
The smart detector
circuit as well as data from a clean circuit and prediction
accuracy was calculated for each stuck at fault. Simulations
were run for a model that only used 1 sample for predictions
and for four different history depths. Figure 5 shows the
correct detection percentages for the stuck at faults. Figure 6
shows the incorrect detections for the same faults. Figure 7
shows the ambiguous detections for the stuck at faults.

As can be noticed universally, the higher order bits are at or
near 100% correct detection for all models. The bit at which
the correct detection percentage is below 90% steadily
moves to the smaller order bits as the history size increases.
For example, a stuck at fault on bit 4 or higher with a 1024
deep history still results in over 90% prediction accuracy
whereas the prediction accuracy for bit 4 using just one
sample is below 10%. This supports the idea that using
history substantially increases the percentage of correct
detections.

4. A M BI G U O US D E T E C T I O N A ND H IST O G R A M
G E N E R A T I O N

Figure 7 illustrates the issue of ambiguous detection using
the histogram method. When using just one sample to make
the determination, it can be seen from Figures 5 and 6 that
for bits 0 to 4 the percentage of incorrect detections is below
10%, but the percentage of correct detections is also below

10%. The majority of detections in this range are
ambiguous. Figure 7 shows that even when using history, the
percentage of ambiguous detections for the low order bits is
still high.

Ambiguous detection occurs in one of three ways:

1. When the values from circuit A and circuit B map
to different bins that both contain the same value
(as shown in the left side of Figure 8).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

10

20

30

40

50

60

70

80

90

100

Bit Position (MSB to right)

Percentage Right Stuck at Faults

1 deep history
64 deep history
256 deep history
512 deep history
1024 deep history

F igure 5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

10

20

30

40

50

60

70

80

90

100

Bit Position (MSB to right)

Percentage Wrong Stuck at Faults

1 deep history
64 deep history
256 deep history
512 deep history
1024 deep history

F igure 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

10

20

30

40

50

60

70

80

90

100

Bit Position (MSB to right)

Percentage Ambiguous Stuck at Faults

1 deep history
64 deep history
256 deep history
512 deep history
1024 deep history

F igure 7

F igure 8 Two possible ways of generating an ambiguous

result from the histogram

 4

2. When the values of circuit A and circuit B map to
the same bin. This can occur if the values are equal,
but also if the difference between the two values is
not enough to map it to a different histogram bin
(as shown in the right side of Figure 8).

3. When using history, as in Figure 3, if the number of
decisions for circuit A equal the number of
decisions for circuit B.

The first two issues have direct relation to the histogram
used. The histogram is generated using representative output
from the system in the absence of faults. The histogram is
specified by how many bins are used to count the data. For
the smart detector, the number of bins is constrained to
powers of 2 to simplify the hardware design. Figure 9 shows
histograms generated from the same data set with different
bin sizes to illustrate the tradeoffs that have to be considered
by the designer. As can be seen, all of the histograms have
the same general shape. Figure 9(a) shows a histogram with
only 32 bins. Although the histogram would fit into a very
small ROM, many of the faults would map to the same bin,
resulting in an ambiguous detection. This is case 2 described
above. Figure 9(c) shows a histogram generated with 65536
bins. Although the designer has significantly decreased the
probability of both circuit outputs mapping to the same bin
when they differ, two new concerns arise. First is the
resource cost to store the larger histogram. The second
concern deals with the values in the histogram. The larger
histogram seems to have quantized the shape of the
histogram. This arises from the fact that no given bin has
many data values that map to it. For example, in this
histogram many of the bins have the value of 2. This is case
1 described above. By inspection, Figure 9(b) shows what
may be an acceptable medium between the two extremes.

Some level of ambiguity will always exist with this
technique, because it is not possible to store a histogram that
has a bin for every possible output value. As such, since an
ambiguous decision can neither be verified as right or
wrong, it is necessary to decide beforehand how to report
them in our results of accuracy decisions. There are four
possible ways to count ambiguous detections:

1. Do not count them at all. Simply remove all
ambiguous detections from the calculation.

2. Record all as an incorrect detection. This would
constitute a lower bound for the performance of the
smart detector system.

3. Record all as a correct detection. This would
constitute an upper bound for the performance of
the smart detector system.

4. Recor system,
one should guess right half of the time. This is a
reasonable metric for the performance of the smart
detector system.

In our results, we will report all of these numbers to give a

F igure 9 Three histograms with different bin counts

F igure 10 V irtex SE U Emulator (L A N L/B Y U)

(a) (b) (c)

 5

5. H A RD W A R E F A U L T INJE C T I O N T ESTS
The hardware fault injection tests performed in this work use
the BYU/LANL fault injection tool. It is based on the
SLAAC-1V board, which is a PCI card populated with three
Virtex 1000 FPGAs. The block diagram of the system is
shown in Figure 10. This tool has been previously validated
using radiation testing [6] [7]; that is, it has been shown to
accurately emulate SEUs caused by high energy particle
strikes. The design is loaded into the X1 and X2 chips. X2
remains fault free and X1 has every bit of its configuration
bitstream flipped, one at a time, to emulate a SEU. Every
time a difference is noted between the output of X1 and X2,

. There
were 73146 sensitive bits recorded for the cascaded half
band downsampler design shown in Figure 4.

Test vectors were created for the design under test by
feeding random numbers through a QPSK modulator in
Matlab. This vector was then run through the design without
injecting any faults to gather a golden output. From the
golden output, histograms of various sizes were created for

testing. The new input vector with a different random seed
was then run through the design for each of the sensitive bits
and the output was captured. To simulate real world
conditions, the fault was inserted roughly halfway through
the execution to give a certain amount of fault free
operation. Matlab was then used to implement the smart
detector and to analyze the results with varying sizes of
history, as well as with varying sizes of histograms.

6. R ESU L TS
Tests were run using history depths of 1, 64, 256, 512, and
1024, and with histogram sizes of 1024, 4096, and 16384
bins. The results are tabulated in Tables 2, 3, and 4. The
number of decisions with an ambiguous outcome is also
shown so the impact of the different history and histogram
sizes can be shown. In Table 2, the number of ambiguous
decisions when only considering one sample is 34.16%. This
can be attributed to the small number of bins and faults
being mapped to the same bin as the golden output. When a
history depth of 1024 is used, the number of ambiguous
outcomes drops by almost a factor of six. Still, the lower

Number of
samples

considered for
decision

Percent
decisions with

ambiguous
outcome

No ambiguous
decisions
counted

All ambiguous
counted as

wrong

Half ambiguous
counted as

right

All ambiguous
counted as

right

1 34.16% 85.03% 55.98% 73.06% 90.14%
64 15.96% 84.78% 71.25% 79.23% 87.21%
256 9.80% 84.75% 76.44% 81.34% 86.24%
512 7.55% 84.65% 78.26% 82.04% 85.81%
1024 6.03% 84.45% 79.35% 82.37% 85.38%

Table 2 Cor rect Decisions for 1024 bins

Number of
samples

considered for
decision

Percent
decisions with

ambiguous
outcome

No ambiguous
decisions
counted

All ambiguous
counted as

wrong

Half ambiguous
counted as

right

All ambiguous
counted as

right

1 28.58% 82.04% 58.59% 72.88% 87.17%
64 10.69% 81.70% 72.97% 78.31% 83.66%
256 5.98% 81.90% 77.00% 79.99% 82.98%
512 4.35% 81.89% 78.33% 80.50% 82.67%
1024 3.36% 82.35% 79.58% 81.26% 82.95%

Table 3 Cor rect Decisions for 4096 Bins

Number of
samples

considered for
decision

Percent
decisions with

ambiguous
outcome

No ambiguous
decisions
counted

All ambiguous
counted as

wrong

Half ambiguous
counted as

right

All ambiguous
counted as

right

1 25.59% 81.99% 61.01% 73.80% 86.60%
64 5.98% 84.98% 79.90% 82.89% 85.88%
256 2.47% 86.89% 84.74% 85.98% 87.21%
512 1.63% 87.26% 85.84% 86.66% 87.47%
1024 1.15% 87.34% 86.33% 86.91% 87.48%

Table 4 Cor rect Decisions for 16384 bins

 6

bound of performance using this histogram is only 79.34%
and the upper bound is 85.38%. Table 3 shows the test runs
using a histogram size of 4096, the histogram size we
considered in Section 4 as a good design trade-off. The
percentage of ambiguous decisions drops a factor of 8.5
when moving from no history to a history buffer of 1024
samples. Table 4 shows the results for a histogram size of
16384. With four times the histogram size as the 4096
example, this smart detector might start using too many
resources depending on the application, but the reduction of
ambiguous decisions from 1 sample to 1024 samples is a
factor of 22,
performance is a respectable 86.33%. Since the number of
ambiguous decisions is so small, the performance
improvement when taking the upper bound is small.

7. F UR T H E R E XPE RI M E N TS
Pratt, et al. [8] have shown that SEUs in a communications
system can be characterized into 4 classes. Class 1 and class
2 faults are characterized as non-catastrophic and have
effects similar to adding noise to the system. Since
communications systems are built to work in the presence of
additive noise, these faults are not absolutely necessary to
mitigate. Class 3 and class 4 faults cause extremely high bit
error rates and are characterized as catastrophic. In the case
of class 4 faults, the bit error rate is !, meaning every other
bit is in error. These are the faults that need to be mitigated.

Using the 16-bit filter with a roll-off factor of 1.0 described
in [8], experiments were run to determine the performance
of the histogram-based smart detector against catastrophic

faults. This is a 25-tap FIR filter used in a BPSK
demodulator system. As noted, the total number of sensitive
bits in this design numbered 42978. The catastrophic bits
were 5.9% of this total, or 2537. The experiments were run
on a new hardware fault injection platform where the design
under test was implemented in a Virtex 4 FPGA. Histograms
of 16384 bins were generated for these experiments. As the
signal through a real communications system will always
have some degree of noise associated with it, histograms
were generated from data with a signal to noise ratio (SNR)
of 5dB and 10dB, respectively. The smart detector was then
tested with these two histograms against class 3 and 4 faults
using data that was statistically independent, but also had
SNRs of 5dB and 10dB. For the class 3 faults, the
histogram-based smart detector had an accuracy of 93%,
which is a promising increase over the results in Section 6.
However, for class 4 faults, the accuracy matched the results
in Section 6 with accuracy in the 86th percentile. This is a
curious result and deserves more attention to discover the
reason that the accuracy does not meet or exceed the results
seen with the class 3 faults. The aggregate accuracy when
used against catastrophic faults is 90.9%.

8. H A RD W A R E I MPL E M E N T A T I O N
Figure 11 shows a block diagram of the hardware
implementation for the smart detector. The smart detector
consists of some logic, a small number of block RAMs, and
an accumulator. Table 5 shows resource costs for an
implementation of the smart detector on a Virtex 4 with a
history depth of 1024 and a histogram size of 16384 bins
with a word width of 8 bits. The left column numbers are for

F igure 11 Block diagram of hardware implementation

Logic Utilization Smart
Detector

Downsample
Filter

Duplicated
Downsample Filter

Triplicated
Downsample Filter

of Slices (24576 available) 48 1075 1598 2757
of Slice FFs (49152 available) 43 630 1220 1810
of LUTs (49152 available) 89 1310 2604 3898
of RAMB16s (320 available) 9 0 0 0

Table 5 Logic Utilization in V irtex I V

 7

a non-triplicated version of the smart detector. A fully
triplicated smart detector will be approximately three times
as large; thus, the solution using a smart detector requires
approximately 1750 slices, while a fully triplicated design is
approximately 2750 slices.

9. C O N C L USI O NS A ND F U T UR E W O R K
In this paper, we have discussed smart detection using a
simple histogram. As can be seen from the results presented,
this technique offers a relatively high degree of accuracy
with very low resource costs. Although the reliability is not
as high as with TMR, it succeeds in its stated purpose of
trading off a small amount of reliability for a large reduction
in resource requirements. Specifically, a non-triplicated
version of the smart detector paired with the duplicated
circuit is 60% the size of the triplicated downsample filter.
A conservative estimate of the triplicated smart detector at 6
times the resource costs paired with the duplicated
downsample filter is still 70% the size of the triplicated
circuit. As would be expected, the resource efficiency of this
technique increases as the size of the circuit it protects
grows. If 100% fault mitigation is not needed, this is an
attractive technique with high reliability for a very low
resource cost particularly for catastrophic faults where the
accuracy exceeds 90%.

The filters used for testing in this work were extracted from
larger demodulator systems and are the simplest blocks in
that system. Future work will focus on applying smart
detection methods to an entire demodulator system. An
important question will be to determine the best locations
within the design to probe with the smart model. Also, other
possibilities exist besides the histogram method for the
implementation of the smart model. Further research is
investigating machine learning with neural networks and
Bayesian networks as the smart model.

R E F E R E N C ES
[1]

Rep., November 1, 2001, xAPP197 (v1.0).

[2] Kastensmidt, F.L.; Sterpone, L.; Carro, L.; Reorda, M.S.,
On the optimal design of triple modular redundancy logic

for SRAM- Design, Automation and Test
in Europe, 2005. Proceedings, pp. 1290-1295 Vol. 2, 7-11
March 2005.

[3] Morgan, K.S.; McMurtrey, D.L.; Pratt, B.H.; Wirthlin,
A Comparison of TMR With Alternative Fault-

Tolera Nuclear

Science, IEEE Transactions on , vol. 54, no. 6, pp. 2065-
2072, Dec. 2007.

[4]
of power costs in triplicated FPGA
Proceedings of the Military and Aerospace

Programmable Logic Devices International Conference

(MAPLD), Washington, D.C., September 2004.

[5] Johnson, J.; Howes, W.; Wirthlin, M.; McMurtrey, D.L.;
Caffrey, M.; Graham, P.; Morga Using Duplication
with Compare for On-line Error Detection in FPGA-based

 Aerospace Conference, 2008 IEEE, pp. 1-11, 1-
8 March 2008

[6] Wirthlin, M.; Johnson, E.; Rollins, N.; Caffrey, M.;
The reliability of FPGA circuit designs in the

presence of radiatio F ield-

Programmable Custom Computing Machines, 2003.
F CCM 2003. 11th Annual IEEE Symposium on, pp. 133-
142, 9-11 April 2003

[7] Johnson, E.; Caffrey, M.; Graham, P.; Rollins, N.;
Wirthlin, M., Accelerator validation of an FPGA SEU

 Nuclear Science, IEEE Transactions on, vol.
50, no. 6, pp. 2147-2157, Dec. 2003

communications using FPGAs in high radiation
environments Part
ICC 2010

BI O G R APH Y
Jon-Paul Anderson received the B.S.
degree in electrical engineering from

Brigham Young University, Provo, UT in

2000. After completing the B.S. degree,
he was a System Engineer at Northrop

Grumman Electromagnetic Systems

 8

Laboratory in San Jose, CA. He is currently pursuing the

Ph.D . degree in electrical engineering from Brigham Young

University.

Brent Nelson is a professor in the

Department of Electrical and Computer

Engineering at Brigham Young

University and program head for the

Computer Engineering program there.
He received his Ph.D . in computer

science in 1984 from the University of
U tah in the area of VLSI CAD . His current research

interests focus on two main areas: high-end computing

applications of reconfigurable computing and CAD for the

design of FPGA-based applications. He currently serves as

co-director for the NSF Center for Reconfigurable High

Performance Computing (known as CHREC) and as

director of the BYU site within that center.

Michael J. Wirthlin received the B.S. and

Ph.D . degrees from Brigham Young

University, Provo, UT in 1992 and 1997,
respectively. After completing the Ph.D .
degree, he was Staff Research Engineer

with the Systems Architecture Laboratory,
National Semiconductor Corporation in

Santa Clara, CA. He is currently an

Associate Professor with the Department of Electrical and

Computer Engineering at Brigham Young University. His

research interests include configurable computing systems,
FPGA reliability, fault-tolerant computing, high-level

synthesis, and computer-aided design for application

specific computing.

