
A MULTI-LAYERED XML SCHEMA AND DESIGN TOOL FOR REUSING AND
INTEGRATING FPGA IP

Adam Arnesen, Nathaniel Rollins, and Michael Wirthlin

NSF Center for High-Performance Reconfigurable Computing (CHREC)
Dept. of Electrical and Computer Engineering

Brigham Young University
Provo, UT, 84602, USA

adamarnesen@ieee.org, nhrollins@gmail.com, wirthlin@byu.edu

ABSTRACT

Reconfigurable computing systems remain difficult to use
and program. One way to increase design productivity for
these systems is through reuse of previously developed and
verified intellectual property (IP) cores. This paper presents
CHREC XML, a XML schema that facilitates IP reuse by
encapsulating the details of reusable IP cores at multiple lev-
els of abstraction. This schema is independent from any de-
sign language or tool and can be used by any tool to under-
stand many details about the interface of a reusable circuit.
An IP integration tool was also created based on this schema
to demonstrate the ease of IP reuse when cores are described
in this meta-data description. This IP integration tool allows
a designer to easily select and integrate IP cores from a vari-
ety of languages/tools and automatically run the appropriate
tools to generate the cores in a form usable by downstream
implementation tools.

1. INTRODUCTION

There is growing interest in using reconfigurable platforms
such as FPGAs to perform application-specific computing.
Despite the interest in reconfigurable computing, low design
productivity is still a major limitation to its more widespread
adoption. Design productivity could be significantly im-
proved through proper reuse of previously developed highly
parameterized intellectual property (IP) Cores [1]. The suc-
cessful application of reuse within reconfigurable comput-
ing has the potential to significantly improve design produc-
tivity.

This paper presents the CHREC XML schema and IP
integration tool which facilitate the reuse of FPGA IP cores
from a variety of languages and environments. This tool pro-
vides a user interface to structurally interconnect IP cores,
automatically synthesize wrappers for several languages and

This work was supported by the I/UCRC Program of the National Sci-
ence Foundation under Grant No. 0801876.

tools, and automatically run the various tools needed to syn-
thesize and interconnect the IP into a single design. CHREC
XML and its IP integration tool simplify the process of reusing
IP from a variety of languages and tools.

2. IP REUSE

Reuse of IP can be difficult and time consuming. Reusing a
digital circuit requires the designer to: 1) Select the appro-
priate circuit core, 2) understand the details of the core, 3)
create interface circuitry to integrate the core into the sys-
tem, and 4) verify the core within the system. In order to
make reuse a viable solution, these needs must be overcome
and reuse costs must not exceed 30% of the cost of creating
the same core from scratch [2].

Another challenge to core reuse is the variety of lan-
guages and tools used to create high-performance cores.
Reusable cores are commonly written in VHDL, Verilog or
other languages. There are also a variety of tools for dis-
tributing IP cores (i.e., Xilinx coregen, Altera MegaCore,
JHDL, etc.). While these tools facilitate the delivery of IP
cores, it can be difficult to integrate cores from such a wide
variety of sources.

3. IP-XACT

An emerging IP reuse strategy is the IP-XACT standard from
The Spirit Consortium [3]. IP-XACT defines an XML schema
for describing reusable circuit cores in a vendor neutral man-
ner. Targeted primarily for System-on-Chip (SoC) design,
IP-XACT defines the busses, ports, configuration, and prop-
erties of a reusable core to facilitate core reuse at a high
level. IP-XACT enabled tools allow designers to drag-and-
drop complex IP into a design and automatically use third
party tools to generate and verify SoC designs.

The IP-XACT schema provides many basic XML ele-
ments that are useful for describing any reusable hardware

978-1-4244-3892-1/09/$25.00 ©2009 IEEE 472

Authorized licensed use limited to: Brigham Young University. Downloaded on September 23,2020 at 16:39:42 UTC from IEEE Xplore. Restrictions apply.

core. Several of these are as follows:
Component Naming: A component naming element

defines component names and is used to differentiate be-
tween cores. It enables the user to easily find the desired
core in a large library.

Port Information: The port element defines ports and
their parameters. It includes port naming, bitwidths and un-
derlying HDL types, e.g. std logic vector etc., and
port direction.

File Sets: File sets associate external files such as HDL
or software with the meta-data core description.

Component Generators: Generators are the interface
which allows IP-XACT enabled design environments to com-
municate with and use external tools and contain informa-
tion needed to access external tools.

These and other XML elements provide enough infor-
mation about a reusable core to enable higher level SoC de-
sign tools to identify, use, and integrate the core into a larger
SoC design.

4. UNIQUE DESCRIPTION REQUIREMENTS FOR
RECONFIGURABLE COMPUTING IP

While the IP-XACT schema appears to be well suited for
SoC design, the schema does not adequately address the
description needs of IP for reconfigurable computing. Re-
configurable IP tends to have many interrelated parameters
and therefore any meta-data description of this IP must have
strong support for parameters and parameter evaluation. Re-
configurable IP are also usually more fine grain than SoC IP
and they use ad-hoc, IP specific communication interfaces
rather than predefined bus interfaces. Any description for
RC IP needs to support arbitrary communication interfaces.
This section will address these unique description require-
ments of reconfigurable computing IP.

4.1. Parameterization

Parameters are an essential part of reusable IP cores. The
flexibility that comes with parameterization enables a single
core to represent many non-parameterizable (static) cores.
Therefore, a core with more parameters can be used in more
design situations than a core with fewer parameters. While
highly parameterizable cores are more difficult to create,
they are much more reusable that static cores.

An important part of an XML schema for reusable cores
is strong support for such parameterization. It should sup-
port a variety of ways of resolving core parameters. Param-
eter values can be resolved in one of five ways: 1) statically,
2) by another parameter, 3) by the result of a mathematical
expression, 4) by a third party tool, or 5) by a designer.

4.2. Interface Descriptions

RC cores often have fine-grain custom interface protocols
and do not usually rely on coarse grain bus interfaces for
communication. Several additional XML elements can im-
prove the description of interfaces used by RC cores.

Data Types: The data type of ports on a core is important
information for high level tools. This data type informa-
tion should include not only the low level types, such as
std logic vector for VHDL, but should also include
the high level type of the interface port. These high level
types should include types such as integer, floating point,
fixed point, character, and boolean. In addition to standard
types there may be custom types such as a custom floating
or fixed point format. High level types should also include
information that maps the understanding of the type to the
bit level representation. When interconnecting cores auto-
matically, the tool must be able to match compatible types
and convert between incompatible types to avoid data cor-
ruption.

Protocol Information: In order for a compiler or high level
synthesis tool to be able to compose designs, robust inter-
face behavior information is also required. This informa-
tion should include the relative timing and sequencing of
signals, the statefulness of the core, the latency of data, and
the function of core control signals. Several studies have in-
vestigated methods for describing interfaces including regu-
lar expressions[4] and finite automata or finite state machine
descriptions[5].

5. CHREC XML: A LAYERED XML SCHEMA FOR
RECONFIGURABLE COMPUTING IP CORES

Prior to the CHREC XML presented in this paper, another
XML schema was created for representing IP cores in a re-
configurable computing environment [6]. This initial schema
addresses some of the limitations of IP-XACT and better
supports FPGA IP used in reconfigurable computing. It also
provides extensive support for parameterization, mathemat-
ical expressions, high-level data types, and tool generators.
This initial schema, however, is very bulky and became too
difficult to manage and manipulate.

CHREC XML was created to simplify and refine the ini-
tial attempt. It organizes the core meta-data into several dis-
tinct layers of abstraction: the RTL level, the data type level,
and the interface level. Organizing IP meta-data in layers of
abstraction allows IP core providers to support the integra-
tion of IP at different levels of abstraction. For example, low
level tools such as a netlisting tool may require only low-
level information such as port naming and bitwidths. High
level synthesis tools, however, are better served with a more
abstract, higher level view of the interface. Datatypes and
timing information are also important to a high level tool.

473

Authorized licensed use limited to: Brigham Young University. Downloaded on September 23,2020 at 16:39:42 UTC from IEEE Xplore. Restrictions apply.

CHREC XML has three levels. The first level repre-
sents the RTL level of abstraction and describes the low-
level details of an IP core such as port naming, bitwidths,
and low-level parameterization. The second layer describes
the high level data types and their associated signals. The
third layer is a behavioral description currently under devel-
opment which describes the timing and high level operation
of the core’s interface.

5.1. Layer 1: RTL Layer

The RTL layer describes the low-level details of an IP core
and is very similar to the initial schema described in [6]. It
includes the naming of ports and a mapping of these ports
to the actual ports listed in HDL. It further includes a list
of parameters for the core and the mathematical expressions
and enumerated values that these parameters may depend
on. This layer also includes a list of files required to sim-
ulate or synthesize the core. This layer is especially useful
to the low-level synthesis and simulation tools whose pri-
mary activity is the structural interconnection of cores and
the mapping of them into the RC platform. The IP integra-
tion tool described in this paper relies heavily on this layer.

5.2. Layer 2: Data Type Descriptions

This layer adds additional information to the circuit ports
defined in Layer 1 by providing high level types. The low-
level bit-types used for ports are often actually interpreted
as a higher level type such as string, integer, floating point,
fixed point, character, and boolean. These types can be pa-
rameterizable at the bit-level (i.e., a user specific fixed-point
type). This level of CHREC XML at defines several param-
eterizable standard types and allows user definable custom
types.

This datatype is useful to a tool which reasons about the
details of actually wiring cores together. The data typing
of signals allows the tool to correctly match bits from one
signal to another as well as do any needed conversions of
data types.

5.3. Layer 3: Interface Operation Information

This layer will describe the high level operation of the in-
terface of the core. The selection of which type of repre-
sentation to use as well as the best way to implement it in
an XML description is yet to be developed but may be done
several ways including: regular expressions, FSM descrip-
tions, timing diagrams, or action-based interfaces.

This layer is removed from the details of the ports and
the actual implementation of the core and therefore allows
a tool to reason about the relative timing of signals, data
dependencies, latencies of signals, and other information re-
quired for high level interface synthesis.

Fig. 1. The GUI tool demonstrates the ability of CHREC
XML to standardize descriptions for cores from multiple en-
vironments and enable them to communicate.

6. IP INTEGRATION AND REUSE TOOL

A structural design tool was created which demonstrates the
ease of integrating and reusing IP with CHREC XML. This
tool allows cores from diverse environments and languages
to be instanced, parameterized, and interconnected in a graph-
ical user interface. The tool is not directly dependent on
any language or specific design environment. Any IP core
may be instanced and integrated as long as the core is com-
pletely described in CHREC XML. This tool generates cus-
tom wrappers for each core, integrates the cores in a top-
level design, calls the appropriate core-specific tools, and
finally calls the FPGA implementation tools to generate the
FPGA bitstream.

6.1. Design Composition GUI

The demonstration tool provides a simple graphical environ-
ment, shown in Figure 1, in which the designer can instance
and connect reusable cores. In this example, the library
consists of cores generated from several tools including the
Xilinx CoreGen tool [7], ImpulseC, JHDL[8], System Gen-
erator, System Verilog, Verilog, and VHDL. The designer,
however, does not need to be aware of any of the language
specific features of the core. The designer can use any core
and connect it to any other core in the library as long as the
core appropriately described in CHREC XML.

6.2. Core Parameter Manipulation

After an instance has been created for a core, the designer
can “open” an individual instantiated core and edit the pa-

474

Authorized licensed use limited to: Brigham Young University. Downloaded on September 23,2020 at 16:39:42 UTC from IEEE Xplore. Restrictions apply.

rameters that exist for the core as shown in Figure 2. This
example shows the interface and parameters of a “filter”
core. The component GUI and parameter input forms are
generated automatically from the underlying XML descrip-
tion of the core. As the designer manipulates the parameters,
the underlying CHREC XML parameter and mathematical
expression representation are used to ensure that the desired
combination of parameters is valid.

6.3. Wrapper Generation

Once the structure is defined in the GUI and the core pa-
rameters are correctly set, the integration tool can begin the
process of creating a top-level integrated design representa-
tion. In this demonstration tool the structural representation
of the top-level design is represented in VHDL (although
any structural netlist could be used). Because many of the
cores are not represented in VHDL, VHDL wrappers are
also generated to represent the structure of these cores in
the top-level design.

6.4. IP Integration

After the VHDL wrappers have been generated for each of
the cores, the design is ready for final generation and imple-
mentation. A top-level VHDL file is created for the design
which interconnects the cores and connects the appropriate
top-level ports. The XML meta-data is queried to determine
which external tools are needed to generate individual cores.
After the appropriate tools have been run, the overall design
is synthesized and a downloadable bitstream produced.

7. CONCLUSION

CHREC XML was created to represent important meta-data
of reusable cores to improve design reuse. It is similar to the
IP-XACT schema used for SoC design but it addresses some
of the unique needs of reconfigurable computing. CHREC
XML is organized in layers to facilitate the ability of tools
to reason about the IP at different layers of abstraction.

CHREC XML facilitated the creation of a structural IP
integration tool which simplifies the process of integrating
cores from a variety of tools/languages. Any core described
in this new XML can be instanced and integrated no matter
where the core was generated. The tool developed in con-
junction with CHREC XML can manipulate diverse cores in
a common environment, create simple designs and generate
downloadable bitstreams from these designs. A tool such as
this increases design productivity by removing the need for
the designer to understand the low level details of the core.

The ability of this tool to use, instance, and manipulate
cores in a language and vendor independent manner is ex-
tremely useful when promoting reuse. CHREC XML pro-
vides the necessary information to facilitate reuse of cores in

Fig. 2. Each core instance can be individually opened and
its parameters modified to fit it to a particular use.

high level synthesis as well as information needed to auto-
matically generate complex interfaces between cores. These
advances will lead to greater increases in productivity and
improve the ability of designers to rapidly develop and de-
ploy systems for reconfigurable computing.

8. REFERENCES

[1] International Technology Roadmap for Semiconductors 2005
Edition, International Semiconductor Industry Association,
2005.

[2] R. Passerone and J. A. Rowson, “Automatic synthesis of inter-
faces between incompatible protocols,” in Proceedings of the
35th Design Automation Conference (DAC 1998), June 1998,
pp. 8–13.

[3] IP-XACT v1.4: A specification for XML meta-data and tool
interfaces, SPIRIT consortium, 2008.

[4] A. Seawright and F. Brewer, “Clairvoyant: a synthesis
system for production-based specification,” Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on,
vol. 2, no. 2, pp. 172–185, 1994. [Online]. Available:
http://dx.doi.org/10.1109/92.285744

[5] V. D’Silva, A. Sowmya, and S. Ramesh, “Automated interface
synthesis,” University of New South Wales. School of Com-
puter Science and Engineering, Tech. Rep., September 2003.
[Online]. Available: http://www.worldcat.org/oclc/224267365

[6] N. Rollins, A. Arnesen, and M. Wirthlin, “An XML schema
for representing reuable IP cores for reconfigurable comput-
ing,” in Proceedings of the National Aerospace and Electron-
ics Conference (NAECON 2008), July 2008.

[7] CORE Generator Help, Xilinx, Inc., 2007.

[8] P. Bellows and B. Hutchings, “JHDL - An HDL for reconfig-
urable systems,” in IEEE Symposium on FPGAs for Custom
Computing Machines, 1998, p. 175.

475

Authorized licensed use limited to: Brigham Young University. Downloaded on September 23,2020 at 16:39:42 UTC from IEEE Xplore. Restrictions apply.

