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On-board processing systems are often deployed in harsh aerospace environments and must therefore adhere
to stringent constraints such as low power, small size, and high dependability in the presence of faults.
Field-programmable gate arrays (FPGAs) are often an attractive option for designers seeking low-power,
high-performance devices. However, unlike nonreconfigurable devices, radiation effects can alter an FPGA’s
functionality instead of just the device’s data, requiring designers to consider fault-tolerant strategies to
mitigate these effects. In this article, we present a framework to ease these system design challenges and
aid designers in considering a broad range of devices and fault-tolerant strategies for on-board processing,
highlighting the most promising options and tradeoffs early in the design process. This article focuses on
the power, dependability, and lifetime evaluation metrics, which our framework calculates and leverages to
evaluate the effectiveness of varying system-on-chip (SoC) designs. Finally, we use our framework to evaluate
SoC designs for a case study on a hyperspectral-imaging (HSI) mission to demonstrate our framework’s ability
to identify efficient and effective SoC designs.
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1. INTRODUCTION

Unmanned, remote-sensing systems are commonly used in air and space environments
to sense and collect raw data from the surrounding environment. The system typically
then transmits the collected data to a central ground station where high-performance
computers process and analyze the data. However, rapidly improving sensor tech-
nology has significantly increased the amount of collected data, which may exceed
the remote system’s transmission bandwidth. Additionally, because remote systems
are continually exploring farther-reaching areas, transmission latencies can be on the
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order of tens of minutes or more, which hinders remote systems that rely on real-time
operating decisions from a ground station.

In order to address increasing bandwidth pressure and transmission latencies, re-
mote systems include on-board processing capabilities to process the raw data in situ
and transmit only the smaller, processed data. Additionally, on-board processing em-
powers remote systems to perform the necessary calculations for making intelligent
autonomous operating decisions in real time, thereby reducing the need for high-latency
instructions from a distant ground station.

However, incorporating on-board processing into an aerospace mission is challenging
when considering stringent size, weight, and power (SWaP) constraints. Power is often
the most limiting of these constraints because energy is difficult to collect and store, and
increasing the processing performance increases the power consumption. Challenges
in aerospace also include radiation effects, which cause unexpected and erroneous be-
haviors in processing systems and may be exacerbated by decreasing feature sizes
and an increasing number of processing elements. Field-programmable gate arrays
(FPGAs) are often an attractive option for designers seeking low-power, high-
performance devices, but additional considerations are required to mitigate radiation
effects. Unlike nonreconfigurable devices, radiation effects can alter the device’s func-
tionality instead of just the device’s data. Therefore, once a designer has defined an
aerospace mission’s system platform, environment, and applications (e.g., hyperspec-
tral imaging (HSI), real-time landing, obstacle avoidance), the primary design chal-
lenge is device and fault-tolerant (FT) strategy selection. The device must perform well
with the mission’s applications and be capable of operating effectively in the mission’s
environment. An appropriate FT strategy is also necessary for most missions in order
to guarantee correct operation without excessive resource overhead.

A successful design of an on-board processing system meets or exceeds all mission
constraints (maximum power usage, maximum fault rate, minimal processing through-
put, etc.). Since these mission constraints have different, and often competing, trade-
offs, the set of successful designs contains many Pareto-optimal designs [Branke et al.
2008]. The designer must choose the best design based on the mission constraints and
acceptable tradeoffs. For example, because mission failure may be catastrophic (e.g.,
loss of life), a designer may increase the system’s power consumption in order to lower
fault rates. Alternatively, for a sensor-based mission, faults may cause superficial dam-
age to the mission’s data (e.g., a few discolored pixels), so sacrificing fault tolerance
for increased processing performance might be advantageous. Not only is determining
the best design a complex task, but also the designer’s reliance on familiar devices, FT
strategies, and development-time constraints often limits the design exploration space,
which may preclude time to explore new devices and FT strategies. These limitations
narrow the design space’s scope, possibly resulting in successful yet non-Pareto-optimal
designs.

Designers evaluate system designs using evaluation metrics, such as performance,
power, dependability, device utilization, mission lifetime, and design cost. Once perfor-
mance constraints have been met, power, dependability, and lifetime are often the most
critical evaluation metrics for on-board processing systems in constrained and harsh
environments. Therefore, our work focuses on these three metrics; however, additional
metrics could be incorporated. The power metric measures how much power the pro-
cessing device will consume during the mission. The dependability metric quantifies
a system’s ability to correctly operate within the mission environment, which design-
ers often represent as the mean time to failure (MTTF), mean time between failures
(MTBF), or data-loss rate. The lifetime metric estimates the expected duration of time
for which the design will remain functional.
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To aid designers in addressing the challenges of designing on-board processing sys-
tems, we present a novel framework that determines a set of Pareto-optimal system
designs in terms of device and FT strategy based on a mission’s constraints. Although
we designed our framework to consider a wide range of processing devices, this article
focuses on our framework’s methodology and analysis with respect to FPGA devices.
Furthermore, while this article focuses on system-on-chip (SoC)-level design, the scope
of our framework is easily expandable to include other board- and platform-design fac-
tors. Our framework considers four system properties: mission, application, device, and
FT strategy. The designer specifies the mission and application properties. The mission
property defines information about the mission environment and dictates the resources
and constraints of the on-board processing system based on design constraints and
available platform resources (e.g., sensors, power generation, memory capacity). The
application property defines the on-board processing tasks, which are typically sen-
sor data processing and autonomous-operation decisions (i.e., autonomous processing).
Once these system properties have been defined within, our framework analyzes these
properties with respect to all device and FT strategy combinations stored a priori in
our framework’s database. From this analysis, our framework produces metric data for
power, dependability, and lifetime to determine the Pareto-optimal system designs.

Since the necessary radiation data can be difficult to obtain and/or may not be pub-
licly available for some devices, in these situations our framework’s predications may
not be Pareto optimal. When radiation data is missing, designers can make educated
estimates about this data based on attainable data for similar parts, enabling our
framework to determine Pareto-optimal system designs based on these interim esti-
mates. Obviously, results based on these estimates would only be as accurate as the
estimates themselves, so any recommended devices would still need to eventually un-
dergo radiation testing before being used in a final design. Furthermore, if and when
new data is obtained or made publicly available, the designer can then update the data,
enabling our framework to predict more accurate Pareto-optimal system designs. We
identify and explain our proposed estimation process in Section 5, where we discuss
the article’s case studies.

Although our framework uses a resource optimization methodology to estimate the
maximum performance of the FPGAs under study, this article does not focus on finding
the optimal FPGA designs for a particular application. Instead, our framework uses
the maximum performance estimate to prune the design space and focuses instead
on finding the optimal set of devices and FT strategies for a particular mission and
application.

This article extends upon our previous work [Wulf et al. 2012] in several ways. Pre-
vious work focused on power and dependability metrics, with dependability referring
to a design’s MTBF due to soft-error upsets. Once detected, these soft-error upsets can
be repaired through resetting or reconfiguring the device. Conversely, other radiation
effects such as total ionizing dose (TID) build up over time in a device, eventually lead-
ing to catastrophic failure. Therefore, we added the lifetime metric to our framework
to measure a design’s response to environmental TID levels and predict a mission’s
operational lifetime. We also improved the power evaluation metric to account for tem-
perature in calculating a device’s static power consumption. This article also extends
the previous case study on the EO-1 Hyperion mission by including the lifetime metric
in the analysis and greatly expanding the set of devices under study. The previous
case study focused on six device families of interest, but due to the effort of manually
evaluating every studied device, only one device from each family was studied (for con-
sistency, we used the largest device in each family). However, by automating our device
evaluation process, we are able to include every device from each family in our case
study, a 60-fold improvement. This larger dataset more accurately represents these six
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families and provides a greater range of device capabilities, ensuring our framework’s
accuracy in selecting the optimal designs.

The remainder of this article is organized as follows. Section 2 discusses the back-
ground and related work that provides the foundation for our framework. Section 3
presents an overview of our framework, and Section 4 discusses our framework’s eval-
uation metrics. In Section 5, we present a hypothetical case study based on an HSI
mission to demonstrate our framework’s basic methodology and show our framework’s
full, design-enhancing potential.

2. BACKGROUND AND RELATED WORK

Our framework leverages previous work related to each of the four system properties
and introduces a novel evaluation methodology that combines these properties, produc-
ing evaluation-metric results to identify and compare Pareto-optimal system designs.
This section discusses important background and research related to each of the four
system properties.

Pease et al. [1988] discuss appropriate device selection based on an environment’s
varying radiation levels. A device database stores radiation data for a set of known
devices and allows designers to quickly eliminate inappropriate devices. For the device
property, our framework leverages a similar device database to store radiation data,
with additional data on the device’s processing capabilities and power consumption.

Other works have demonstrated methodologies for predicting the optimal perfor-
mance of an application design on an FPGA device. The RC Amenability Test (RAT)
[Holland et al. 2009] is an analytical methodology that uses three tests for throughput
performance, numerical precision, and resource utilization to determine the viabil-
ity of an algorithm design on an FPGA prior to the use of a hardware description
language. RAT measures throughput performance with both communication time for
transferring data on and off the FPGA and computation time for processing the data ac-
cording to an application design, which relies on a user-supplied frequency estimation
for the FPGA. Enzler et al. [2000] describe a similar high-level estimation methodol-
ogy for characterizing the area and performance of an application on an FPGA. Using
a priori information about the FPGA’s architecture, the methodology creates a set of
equations to describe area, frequency, throughput, latency, and input/output (I/O) pin
count, enabling the user to quickly test the tradeoffs involved in decomposing parts of
the design, replicating those parts, or adding registers for pipelining. Meswani et al.
[2013] show how to model and predict the performance of high-performance computing
applications on systems that use graphics processing unit (GPU) or FPGA hardware
accelerators. Their model evaluates the application’s code to find sections that could be
easily accelerated and uses simple benchmarks to predict accelerator speedup.

Finally, Williams et al. [2010] define a general methodology for determining the max-
imum processing capabilities of a given device, referred to as computational density
(CD). The CD methodology uses the results of single-instantiated operations to pre-
dict the frequency and performance of an application on an FPGA without requiring
detailed a priori information about the FPGA supplied by the user. Although these
single-instantiated operations are highly optimized and/or vendor provided, the com-
bining of these operations into a full application may be complex and result in different
overheads and performances depending on the application, specific design, and method
of place and routing. Therefore, the FPGA-based CD methodology represents a theoret-
ical upper-bound estimate of the performance of a given FPGA device and application.
Furthermore, the full scope of the CD methodology includes a wide range of device ar-
chitectures (e.g., central processing unit (CPU), digital signal processor (DSP), FPGA,
and GPU) and considers operation types as well as precision when calculating the
devices’ CDs. Our framework leverages this CD methodology to quickly calculate an
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upper bound for the optimal performance of a device running a particular application.
Although there are numerous designs for a particular FPGA that may satisfy the de-
mands of a mission’s application (e.g., DSP or logic centric, short or long pipeline length,
speed or area optimized), the CD methodology narrows the framework’s analysis to a
scaled version of the single design that produces the maximum performance. This
analysis of a single design prunes the huge design space associated with SoC-design
optimization and enables our framework to focus solely on identifying the optimal de-
vice and FT strategy combinations. Additionally, the applicability of CD to a wide range
of architectures enables extensions to our framework to widen the scope of analysis
beyond comparing only FGPA devices.

For Earth-orbiting missions, our framework requires designers to input the mission
property’s data into CREME96 [Tylka et al. 1997] to predict the average radiation flux
experienced by a processing system. Using user-provided radiation data for specific
devices, CREME96 also predicts device upset rates based on the radiation flux effects.
For other environments, simpler models based on environmental radiation literature
can predict the average radiation flux according to the mission property’s data.

FT strategies increase software and hardware fault tolerance using redundant cal-
culations and/or data storage, which allows processing systems to operate correctly
despite effects caused by upset-inducing radiation. However, this redundancy incurs
processing and/or area overheads, which increase as the FT strategy’s fault-mitigating
capabilities increase. For example, triple-modular redundancy (TMR) [Neumann 1956;
Lyons and W. 1962] is capable of detecting and correcting errors and incurs ∼200%
area overhead. Application-dependent FT strategies can offer fault-mitigating capabil-
ities with lower overheads, such as algorithm-based FT (ABFT) [Huang and Abraham
1984], which leverages the linear properties of common matrix operations to produce
checksums that detect errors in the final calculated matrices. Device-dependent FT
strategies, such as reconfigurable FT (RFT) [Jacobs et al. 2012b], use an FPGA’s partial
reconfiguration capabilities and the time-varying nature of orbital radiation to dynam-
ically increase/decrease the fault-mitigating capabilities. FPGAs can also use partial
reconfiguration after detecting an upset to repair transient faults in real time with par-
tial scrubbing or repair permanent faults by reprogramming only the damaged areas to
avoid the damaged resources. Furthermore, reduced-precision redundancy [Pratt et al.
2013] is an application- and device-dependent FT strategy that may enable an FPGA
to have a significant reduction in overhead compared to TMR with only a small loss in
dependability. Our framework considers a wide range of FT strategies, which allows
designers to evaluate FT strategies with respect to the specific application and de-
vice and view tradeoffs between the fault-mitigating capability and performance/area
overhead.

Understanding how the application property impacts a device’s performance is
paramount in selecting the Pareto-optimal designs. For example, FPGAs are effective
for bit-level and fixed-point operations, but potentially less effective than fixed-logic
devices for double-precision, floating-point operations due to these operations’ much
higher reconfigurable resource utilization. Asanovic et al. [2006] address this issue for
high-performance computing (HPC) systems by identifying 13 common kernels that
represent the essential operations of the vast majority of all HPC applications. By
subsetting HPC applications based on the applications’ constituent kernels, system
designers can quickly and effectively study a broad range of applications and appli-
cation behaviors with little loss of accuracy by focusing on understanding only these
13 kernels. Our framework leverages this subsetting methodology to identify the most
common kernels that represent the majority of all on-board processing applications,
which allows our framework to analyze a broad range of on-board processing applica-
tions without requiring research into each specific application.
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Research institutions with a significant history in designing aerospace systems usu-
ally have stringent guidelines in place for the part selection process; however, even
these established processes can benefit from our framework’s analysis. For exam-
ple, NASA’s state-of-the-art part selection process for a new mission begins from the
reference-board design of a previously flown mission, which is compared to the nec-
essary capabilities and requirements of the new mission to identify any parts that
need to be upgraded or modified. Then, based on the available technology, the designer
tries to determine which new parts would best suit the needs of the new mission. Any
new electrical parts are rigorously tested and screened as outlined in NASA’s EEE-
INST-002 document [Sahu et al. 2003]. In this process, our framework would serve as
a preliminary analysis tool, enabling the designer to quickly narrow down his or her
device choice scope to the most promising processing devices during the new part selec-
tion step without relying on ad hoc selection methodologies or only choosing familiar
devices.

3. FRAMEWORK

Our framework determines the Pareto-optimal system designs based on the four sys-
tem properties (device, mission, FT strategy, and application), allowing a designer to
select the best design based on his or her desired tradeoffs, regardless of the designer’s
familiarity with the devices and FT strategies. Although this article focuses on FPGA
devices for aerospace environments, our framework can support a wide range of de-
vices (e.g., CPUs, DSPs, FPGAs, GPUs) as well as a diverse set of environments (e.g.,
outer space, aerospace, underwater) and is easily extendable to additional devices and
environments. Furthermore, while this article focuses on SoC-level design, the scope of
our framework is easily expandable to include other board and platform design factors
(e.g., recent work shows how external memory devices can be included in our framework
[Wulf et al. 2015]). The remainder of this section is organized as follows. Section 3.1
presents an overview of our framework, focusing on overall scope, general concepts, and
our framework’s components; Section 3.2 details the four system-property components;
and Section 3.3 discuses the analysis component.

3.1. Overview

Figure 1 depicts an overview of our framework, which is composed of five components.
The first four components are the system-property components, which include the de-
vice set, the mission characteristics, the FT strategy set, and the application kernel set
components and correspond respectively to the device, mission, FT strategy, and appli-
cation system properties. The fifth component, the analysis component, corresponds to
the power and dependability evaluation metrics.

The system-property components consist of both designer-specified data and research
data obtained from the literature. Since our framework does not have a priori knowl-
edge of the system platform, environment, and constraints, the designer provides the
mission characteristics, and our framework predefines the device set, FT strategy set,
and application kernel set based on literature research data (Section 3.2).

The analysis component combines the data of the system-property components and
produces evaluation-metric results, which the designer evaluates to select the best
design. Each evaluation metric combines the data from the system-property compo-
nents in a unique method based on the specific evaluation metric’s dependency on the
interactions of the system-property components. For example, the power metric eval-
uates device performance with respect to an application, whereas the dependability
metric evaluates device radiation-response data with respect to the mission environ-
ment. Alternatively, the dependability metric evaluates the fault mitigation capabilities
of the FT strategies, whereas the power metric evaluates the performance and area
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Fig. 1. Framework overview consisting of the four system-property components (corners) and analysis
component (center).

overheads of the FT strategies. Finally, evaluation metrics only evaluate valid designs
that use device- or application-dependent FT strategies with the corresponding devices
and applications.

3.2. System-Property Components

The device set contains a priori data from our framework’s database on a broad range
of device architectures as well as any available radiation-hardened versions of these
devices. The device set’s data records three characteristics for each device: power mea-
surements, processing capability, and radiation response. Power measurements include
the maximum dynamic power consumption of the device for a given application, the
thermal resistance between the inside of the device and the surrounding environment,
and information on how the device’s temperature affects the device’s static power con-
sumption. Our framework represents processing capability using the CD methodology,
which depends on the type and precision of the application’s operations. The radiation
response involves determining the areas of the device that are sensitive to a single
radiation particle (proton or heavy ion for space missions) of a given energy. Literature
research data provides the radiation-response data, because this data is sufficient for
our framework’s analysis, and obtaining this data via experimental analysis is difficult
and time-consuming.

The mission characteristics define the mission environment, available resources, and
computational constraints. Designers must specify this data before our framework can
begin mission analysis. The mission environment includes data on the mission’s specific
path (e.g., an orbit in space or a route along the ocean floor), the mission’s duration (e.g.,
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months or years), the mission start date for considering time-dependent environments,
and any other harsh conditions that must be considered (e.g., extreme temperatures or
excessive vibration). The available resources include the SWaP restrictions and may
also include a monetary budget for designing and building the system. Our framework
uses the constraints defined in the resource data to test the successfulness of various
designs. The computational constraints dictate the acceptable fault rates, required
processing throughput based on the incoming sensor data’s throughput, and maximum
allowable memory usage based on the on-board memory constraints.

The FT strategy set is stored a priori in our framework’s database and contains
literature research data on the most effective and/or common FT strategies, which
includes a wide variety of FT detection and/or correction strategies, some of which are
device or application dependent. The FT strategy set records three characteristics for
each FT strategy: effectiveness, overhead, and dependencies. The effectiveness is the FT
strategy’s fault mitigation capability (e.g., detection only, or detection and correction).
For example, if a non-fault-tolerant (NFT) system has a 1% chance of experiencing
a fault during a certain time interval, adding a TMR FT strategy to the system will
correct 97% of these faults over the same time interval. The overhead refers to the extra
processing that all FT strategies require due to redundant calculations (e.g., ∼200%
overhead for TMR). Finally, the dependencies define which devices or applications
correspond to a given FT strategy, ensuring that our framework only evaluates valid
designs. Adding new FT strategies to our framework only requires the specification of
the new methods for calculating the FT strategies’ effectiveness and overhead based
on the application as well as any application or device dependencies.

The application kernel set is also stored a priori in our framework’s database and
contains the subset of common kernels (e.g., matrix multiplication and fast Fourier
transform) representing the essential operations of the vast majority of on-board pro-
cessing applications. Identifying the common kernels is a key challenge and important
area of research for our framework, which involves analyzing a comprehensive survey
of aerospace applications with the goal of identifying the smallest subset of common
kernels that encompasses the largest amount of the applications’ constituent kernels.
If future analysis determines that emerging aerospace applications are not necessar-
ily covered under the current subset of kernels, the subset can easily be expanded to
include these new kernels.

In addition to mapping applications to one or more of these kernels, our framework
categorizes applications as either sensor processing or autonomous processing. Sen-
sor processing is the processing of the raw data collected from on-board sensors with
the purpose of compressing and/or extracting important information before transmis-
sion. Autonomous processing is the ability of the on-board processing system to make
intelligent decisions and take effective action based solely on in situ analysis of the
environment, such as circumnavigating obstacles and locating landing zones. Sensor
processing typically focuses on meeting transmission throughput constraints, while
autonomous processing focuses on reliably meeting real-time deadlines.

3.3. Analysis Component

Figure 2 shows the analysis component, which uses data from all four of the system-
property components to create and output the final Pareto-optimal design set. The
designer is responsible for supplying the mission characteristic data to our framework
as well as identifying applications and other relevant application parameters (e.g., size
of input matrices or arrays), which our framework compares against the application
kernel set to understand the application’s operations. All data from the device set and
FT strategy set exist a priori in our framework’s database.
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Fig. 2. Flowchart for the analysis component showing inputs from the four system-property components
and an output consisting of the final Pareto-optimal design set.

The analysis component considers every unique and valid device and FT strat-
egy combination as an analyzable design. The analysis component runs each design
through all M evaluation metrics, producing M evaluation-metric results for each de-
sign. Although the bulk of the analysis occurs automatically within our framework,
external tools (e.g., CREME96 and SPENVIS for radiation modeling) may need to be
invoked by the designer if automatic controls for these tools have not been integrated
into our framework. Although this article focuses on the power, dependability, and
lifetime evaluation metrics, these metrics do not represent the entire scope of our
framework’s capabilities. Any number of evaluation metrics can be added to and used
in our framework’s analysis if researchers/designers find these metrics relevant to the
mission. Furthermore, methods we present for analyzing each evaluation metric are
not meant to be final, so future researchers/designers can improve an evaluation met-
ric by using more accurate data sources or replacing the metric’s methods with more
advanced analysis methods.

A design is successful if the design’s evaluation-metric results meet or outperform the
mission constraints. After removing all unsuccessful designs that fail the constraints,
a Pareto-optimal search selects a small subset of the designs that are Pareto optimal,
meaning that these designs are the most preferred designs in some aspect based solely
on the design’s evaluation-metric results. Finally, the analysis component outputs these
designs and the associated evaluation-metric results as the final Pareto-optimal design
set, which the designer can use to identify optimal designs and available tradeoffs.

To better understand how the Pareto-optimal search selects Pareto-optimal designs,
let the set of all N designs be represented as {D1, D2, . . . , DN}, where any particular
design Dx in this set is represented by the set of that design’s M evaluation-metric
results {Dx,1, Dx,2, . . . , Dx,M}. Then Dx is a Pareto-optimal design if and only if there is
no design that is preferred or equal to Dx for every evaluation metric and is preferred to
Dx in at least one evaluation metric (this is known as strongly Pareto optimal [Branke
et al. 2008]). More formally, Dx is a Pareto-optimal design if and only if

� ∃i ∈ {1...N} :
{∀ j ∈ {1...M} : Di, j � Dx, j

} ∧ {∃ j ∈ {1...M} : Di, j 
 Dx, j
}
. (1)

For certain evaluation metrics (e.g., power), a minimal value is preferred, so rather
than using a standard inequality sign, the Pareto-optimal definition uses the 
 symbol
meaning “is preferred to.”
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Fig. 3. Flowchart for the power-metric calculation.

4. EVALUATION METRICS

Our framework focuses on power, dependability, and lifetime, which are critical eval-
uation metrics for aerospace missions. The remainder of this section is organized as
follows. Section 4.1, Section 4.2, and Section 4.3 present the design’s device power
consumption, dependability, and lifetime calculations, respectively.

4.1. Power

Figure 3 depicts the power-metric calculation. Our framework calculates the system’s
required processing in terms of type and rate of operations performed based on the
designer-specified application processing and sensor input data rate. For example,
consider a simple on-board image-processing system that uses a camera to capture
Earth images from space with a sensor data rate of three images per second, four
megapixels per image, and three 8-bit color channels (i.e., red, green, blue) per pixel.
The system sums each pixel’s three color values to determine if the average brightness
of the image exceeds a certain threshold. Since adding multiple 8-bit values produces
a result larger than 8 bits, the system processing can be summarized as three 16-
bit addition operations per pixel, which is a required processing of 36 million 16-bit
addition operations per second.

Our framework uses the required processing result and device CD to calculate the de-
vice utilization (Udevice), which is the amount of device resources a system uses relative
to the total amount of device resources available. A device utilization of 100% means
that the system is using the device at the device’s maximum potential. Our framework
calculates the device utilization as the ratio of the required processing to the device’s
CD. This CD value must correspond to the type and precision of operations used in the
required processing. For the image-processing example and a simple, representative,
sample device with a 16-bit integer addition CD of 100 million operations per second,
the device utilization is 36%.

Updating the device utilization to include the FT strategy’s area overhead VFT pro-
duces the device-FT utilization UdFT:

UdFT = Udevice(1 + VFT). (2)

For the image-processing example and a TMR FT strategy, TMR introduces a ∼200%
overhead, which results in a device-FT utilization of 108%. Since the exact details of the
device configuration dictate TMR’s overhead, which could be more or less [Jacobs et al.
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2012a] than 200%, and considering that our framework does not evaluate postsynthesis
results for specific designs, our framework assumes an average 200% TMR overhead.
Since the device-FT utilization is greater than 100%, the system requires either more
than one device or a different device with greater resources.

The final result of the power metric calculation is the device’s total power consump-
tion Ptotal, which our framework calculates as the sum of the dynamic power consump-
tion Pdynamic and static power consumption Pstatic. Our framework calculates Pdynamic as
the product of the device’s maximum dynamic power consumption Pmax-dyn (determined
as the device’s dynamic power consumption during 100% device utilization) and the
device-FT utilization value. Therefore, total power consumption is calculated as

Ptotal = Pstatic + Pdynamic = Pstatic + (Pmax-dyn × UdFT). (3)

To calculate the static power, which is temperature dependent, our framework re-
quires data on the ambient temperature of the platform Tambient, the thermal resis-
tance from the device to the platform Rthermal, and the device’s static-power function
fsp(Tdevice), which records how the device’s static power varies with respect to the
device’s temperature. Our framework stores the device’s static-power function and
nominal thermal resistance a priori in our framework’s device database, while the de-
signer supplies the ambient temperature and any special adjustments to the thermal
resistance in the mission characteristics data. After calculating dynamic power con-
sumption, our framework calculates the static power by first determining the device
temperature needed to ensure that the total power used by the device is equal to the
power dissipated as heat. This state of equilibrium is represented as

Ptotal = Tdevice − Tambient

Rthermal
. (4)

Combining Equations (3) and (4), substituting fsp(Tdevice) for Pstatic, and setting the
equation to equal zero produces

Rthermal
(

fsp(Tdevice) + Pdynamic
) + Tambient − Tdevice = 0. (5)

Our framework finds the Tdevice that solves Equation (5) using the Newton-Raphson
method, finds static power consumption by evaluating the device’s static-power function
at Tdevice, and finally computes the total power consumption according to Equation (3).

If the device-FT utilization is greater than 100%, the number of required devices n
is

n = �UdFT�. (6)

Assuming that the total computation is distributed evenly across the n devices, our
framework calculates the utilization for a single device as UdFT/n, calculates the total
power consumption for a single device as described earlier, and multiplies the single-
device total power consumption by n to produce the total power consumption of all n
devices.

To conclude the image-processing example with a TMR FT strategy, we assume an
ambient temperature of 25◦C and a sample device with a maximum dynamic power
consumption of 10W, a thermal resistance of 4◦C/W, and a static power consumption
that varies linearly from 1W at 0◦C to 3W at 100◦C (an oversimplification of a standard
static-power function). Since the device-FT utilization is 108%, n is 2, and the dynamic
power consumption of a single device is 5.4W. Using our example values, Equation (5)
becomes 5({1+Tdevice/50}+5.4)+25−Tdevice = 0, which results in a device temperature
of 63.3◦C and a static power of 2.27W. Finally, for our two example devices running
the image-processing example application with a TMR FT strategy, the total power
consumption is 15.34W.
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Fig. 4. Flowchart for the dependability-metric calculation.

We note that FPGA device utilization does not necessarily imply fabric utilization,
which is the percentage of resources (e.g., lookup tables, flip-flops, DSP units, etc.) that
the FPGA is actively using for processing. To illustrate this difference, we consider
a device consisting of 125 computational units and two configuration designs: design
A uses 100 computational units (80% fabric utilization) and runs at 100MHz, and
design B uses 50 computational units (40% fabric utilization) and runs at 200MHz. The
device’s maximum CD is 20 billion operations per second (GOPS) at 160MHz, which
can be achieved by running any arbitrary design that uses all 125 computational units.
Using this same device, both design A and B perform 10 GOPS and therefore have a
device utilization of 50%, even though both designs differ considerably in the designs’
fabric utilizations. Furthermore, since design B’s clock rate is double that of design A
and design B’s fabric utilization is half of design A’s, design B’s power consumption
should realistically be similar to design A because the doubled clock should negate
the reduced power consumption from halving the fabric utilization. Ultimately, device
utilization allows our framework to abstract away the details of fabric utilization and
clock frequency because device utilization is the only relevant factor in relating device
performance to power consumption.

In this article, we have elected to discuss this simple power-metric calculation, which
is an acceptably accurate estimate for many situations including our case study mis-
sion, which clearly and concisely demonstrates our framework’s methodology. However,
we have also developed a significantly more complex and advanced calculation [Wulf
et al. 2013] for more accurately calculating the dynamic power consumption of a device
for a given application. Instead of relying on linear interpolation using the device CD,
this advanced calculation leverages linear programming techniques similar to those
used in the CD methodology to find the optimal dynamic power consumption and con-
sider a wide range of processing components (e.g., hard-core/soft-core processors, hard
floating-point units) in addition to traditional FPGA logic. Although we could easily
update our framework’s simple power-metric calculation with this more accurate and
advanced calculation, this would unnecessarily add to the complexity of demonstrating
our framework’s methodology.

4.2. Dependability

Figure 4 depicts the dependability-metric calculation. Environmental radiation data
for heavy ions describes the particle flux (i.e., particles per square meter per second)
for varying linear energy transfer (LET) values (or energy levels for protons). LET
measures the amount of energy deposited by a particle as the particle passes through
each unit length of a material (silicon in this case) in units of MeV·cm2/g. Figure 5
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Fig. 5. Environmental radiation data for the ISS orbit assuming 100 mils of aluminum shielding (produced
by CREME96).

depicts environmental radiation data for the International Space Station (ISS) orbit
assuming 100 mils of aluminum shielding. In this example, a square meter of silicon
will experience three 100MeV·cm2/g particles every second, a 10,000MeV·cm2/g particle
every 24 minutes, and a 100,000MeV·cm2/g particle every 16 millennia.

The device radiation-response data describes the cross-section of the device areas
that are sensitive to single-event upsets (i.e., bit flip) when hit with a particle of a certain
LET or energy level. Although temperature may also affect a device’s cross-section, this
effect is beyond the scope of this journal since there is insufficient data on this effect for
our studied devices. Literature research data typically presents cross-section values in
units of cm2/device or cm2/bit. If radiation data is in terms of per bit rather than per
device, our framework calculates the total sensitivity of the device as the product of the
bit sensitivity and the number of sensitive bits. Our framework estimates the number
of sensitive bits to be equal to the size of the device’s bitstream, meaning that our
framework accounts for FPGA components (e.g., lookup tables, flip-flops, DSP units,
block RAMs, etc.) that the bitstream configures or initializes in the sensitivity estimate.
Although there are other FPGA-fabric resources that are nonconfigurable (e.g., internal
DSP pipeline stage registers), we do not have access to these resources and cannot
assess these resources’ impacts on the FPGA’s dependability without vendor-provided
data.

Our framework determines the device upset rate based on the rate at which various
particles hit the device and the effects of the hits, which are part of the environmental
and device radiation-response data. The device upset rate measures the rate at which
upsets occur in the whole device, including resources in unused device regions. If
upsets occur in these regions, the upsets have no effect on the overall system because
the design ignores any output from the unused resources. Therefore, the effective
device upset rate is the product of the device upset rate and the device utilization
(Section 4.1), which measures the relative amount of device resources used. We note
that even at 100% device utilization, many device resources will remain unused (e.g.,
unused routing, unroutable/congested resources), resulting in only about 10% of the
bits being vulnerable [Xilinx 2012]. Although it is possible to approximate the precise
device upset rate and improve our framework’s analysis through vendor tools or fault
injection [Cieslewski et al. 2010; Nazar and Carro 2012], analysis based purely on
device utilization scaling provides a reasonable worst-case estimate of the device upset
rate and is assumed in our framework.

With the effective device upset rate and the applied FT strategy, our framework
calculates the final MTBF result, which quantifies the average time a device can op-
erate without experiencing a failure. Our framework calculates MTBF differently for
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Fig. 6. Flowchart for the lifetime-metric calculation.

Fig. 7. Device TID ratings for various Virtex devices shows improving TID trend [Fabula et al. 2008].

different FT strategies, which may include variables such as non-FT effective device up-
set rate and input data size. For example, a TMR system’s reliability is the probability
that there is no system upset for some period of time and is calculated as

RTMR = 3(ROrig)2 − 2(ROrig)3. (7)

If a non-TMR system has a reliability of 99.0% after 1 day, then TMR raises the
reliability to 99.97%, protecting against 97% of the upsets as compared to the non-
TMR system. Conversely, if the non-TMR system has a reliability of 80.0%, TMR raises
the reliability to 89.6%, protecting against less than half of the upsets. For other FT
strategies, it may not be possible to realistically calculate the FT strategy’s fault-
mitigating capabilities, requiring either fault-injection testing or literature research
data. After calculating the final upset rate for the system, our framework calculates
the final MTBF result by inverting the upset rate.

4.3. Lifetime

Figure 6 depicts the lifetime-metric calculation. Our framework requires literature
research data for the device’s TID rating and the limiting platform TID. The device’s
TID rating measures the amount of ionizing radiation energy that the device can ab-
sorb before becoming nonfunctional. The primary sources of TID radiation are protons,
electrons, and bremsstrahlung (high-energy photons released by electron/proton inter-
actions). Typical device TID ratings can range from a few krad for highly sensitive
devices to over 1Mrad for hardened devices. Recent trends, as seen in Figure 7, demon-
strate that device TID ratings may continue to improve as device feature sizes decrease,
although this trend cannot be guaranteed as fabrication processes continue to change.

Essential platform components are any physical platform components (not including
the processing device) that must be functional for a mission to remain operational.
The limiting platform TID is the TID rating of the essential component with the low-
est TID rating. If the platform contains a group of redundant, spare/backup essential
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Fig. 8. Annual TID in circular equatorial orbits computed using SHIELDOSE, AE8MAX, and AP8MAX
models with 4mm spherical Al shielding [Daly et al. 1996].

components for increased reliability, our framework considers only the group’s essen-
tial component with the highest TID rating. Typical components with high sensitivity
to TID include bipolar transistors, power MOSFETs (increased oxide thickness results
in creation of more electron-hole pairs [Poizat 2009]), and Flash memories (charge
pumps are sensitive to TID [Kayali]). Displacement damage (DD) may also affect es-
sential platform components, which occurs when nonionizing radiation collides with
and displaces atoms, leading to component defects. Our framework treats DD simi-
larly to TID because both accumulate slowly over the component’s lifetime, eventually
rendering the essential component inoperable. Designers do not usually consider DD
for processing devices because TID overshadows the effects of DD [Kayali ]. However,
other components do show particular sensitivity to DD, including bipolar transistors,
photo-detecting charge-coupled devices (CCDs), solar cells, light-emitting diodes, and
optocouplers [Poivey and Hopkinson 2009].

Our framework requires either literature research data or modeling results to obtain
the environment TID level, which measures the amount of TID a device or component
may experience per unit time due to the combination of environmental radiation and
platform shielding. Figure 8 shows annual TID levels for equatorial near-Earth orbits
of altitudes under 100,000km assuming moderate shielding. Near-Earth TID levels
vary from less than 1krad/year for orbits closer than 1,000km up to 400krad/year for
orbits with an altitude around 17,000km. Note that TID levels for the ISS at 400km
and the Global Positioning System (GPS) orbit at 20,200km are significantly different
(0.28 and 110krads/year, respectively) than Figure 8 suggests due to the ISS’s and
GPS’s nonzero inclinations at 51.6◦ and 55◦, respectively.

The overall TID rating is the minimum of the device TID rating and the limiting
platform TID. Our framework calculates the final operational lifetime result by di-
viding the overall TID rating by the environment TID level. The operational lifetime
measures the length of time the mission is expected to operate (under normal environ-
mental conditions) before permanent failure of one or more essential components due
to excessive radiation exposure. Operational lifetime can vary widely depending on the
device/component and environment. For example, radiation-hardened devices rated for
over 1Mrad can be expected to operate for several years or more with standard shield-
ing in equatorial orbits around 20,000km altitudes. Furthermore, any Virtex device
can be expected to operate for at least several decades before suffering any negative
TID-related effects in a typical low Earth orbit (LEO). Although non-TID effects will
likely disable the system before the expected TID-based operational lifetime expires, it
may still be important to consider the operational lifetime due to solar flares and other
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sources of ionizing radiation, which can dramatically increase space radiation levels
[Brown and Gabbe 1963]. Therefore, the lifetime metric is still useful for LEO-based
missions, because during these events, an excessive operational lifetime could lead to
months of useful operations as opposed to just days.

Currently, our framework’s lifetime metric does not consider destructive single-event
effects (SEEs), such as single-event latchup (SEL), single-event burnout (SEB), or
single-event gate rupture (SEGR). Just a single occurrence of one of these destructive
events can permanently disable an entire device or system, thereby dramatically af-
fecting the expected lifetime of the mission. If radiation data on these effects does exist,
the data typically only reports an onset LET, which is the minimum LET required to
cause destructive SEEs. Although it is possible to use this data to give a rough estimate
of the expected time until a destructive SEE occurs, designers typically opt to use de-
vices that are immune to destructive SEEs rather than risk permanent device damage
because, unlike a TID-based lifetime prediction where catastrophic effects do not occur
until closer to the end of the predicted lifetime, destructive SEEs can disable a device
at any time regardless of the destructive SEE’s frequency. Therefore, rather than inte-
grating destructive SEE effects into the lifetime metric, our framework only considers
designs that are immune to destructive SEE effects based on the device properties and
mission environment.

5. EXAMPLE CASE STUDY

This section introduces a currently deployed HSI mission, which serves as a case study
for testing and examining our framework’s analysis component. Section 5.1 introduces
HSI data collection and materials analysis as well as our case study mission. Section 5.2
details our framework’s power-metric, dependability-metric, and lifetime-metric calcu-
lation for a Virtex-4 with ABFT for the case study mission. Section 5.3 describes how
we set up our case study, and Section 5.4 presents and analyzes the results of our case
study.

5.1. Mission Details

Our case study’s application involves an HSI analysis algorithm, which attempts to
identify certain materials within a scene by comparing known material spectral signa-
tures with observed characteristic spectra. An HSI sensor captures scene data in the
form of a 3-dimensional image cube, where two spatial dimensions designate an image
pixel, and the spectral dimension designates a specific spectral band for the pixels. As
shown in Figure 9, a pixel’s characteristic spectrum is the group of data from each spec-
tral band that corresponds to the given pixel. A priori measurements produce spectral
signatures for any materials of interest, which define the material’s reflectance values
for the spectral bands used by the HSI sensor. By comparing each pixel’s characteris-
tic spectrum to the set of material spectral signatures, HSI analysis can identify any
material of interest and the material’s locations in the scene. This process is analogous
to humans subconsciously analyzing a scene using an object’s color to determine the
object’s material composition (e.g., brown on an apple indicates rotting). The HSI sen-
sor’s greater spectral detail enables HSI analysis to more precisely identify materials
(e.g., distinguishing between different types of green vegetation).

Remote HSI systems typically transmit collected image cubes to a ground station
where high-performance processing systems perform HSI analysis. However, advances
in space-borne electronics and improvements in fault-mitigating technology enable on-
board HSI analysis, which may provide several advantages, such as enabling new HSI
systems [NASA Jet Propulsion Laboratory 2014] to provide real-time critical informa-
tion on natural disasters (e.g., volcanoes, wildfires, and drought). HSI analysis also
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Fig. 9. HSI image cube and the characteristic spectrum of a single image pixel.

reduces image cubes to approximately 1% of the cube’s original size, affording more
efficient data storage and transmission.

Assessing the feasibility of an HSI on-board processing system requires estimation
of the processing required for the HSI analysis on the streaming sensor data. How-
ever, because around 97% of the required processing involves a single matrix-multiply
operation [Jacobs et al. 2008], these estimations are simplified. The matrix-multiply op-
eration requires calculating the autocorrelation sample matrix RL×L = (AN×L)T(AN×L),
where N is the number of pixels and L is the number of spectral bands. Matrix AN×L
represents the sensor’s image cube because spectral data for each pixel corresponds to a
certain row of AN×L. Only half of the values of the output matrix need to be calculated
because the output matrix must be symmetric. The number of multiply-accumulate
(MAC) operations required to calculate RL×L for a single image cube is

MACHSI = 1
2

NL2. (8)

Data preprocessing prior to HSI analysis increases the system’s processing require-
ments. First, the system preprocesses the HSI sensor’s raw data to correct common
image sensor defects. Specifically, each value in the image cube must be offset to ac-
count for readout noise and dark current and then scaled to adjust for flat-field effects.
Since the operations per value are roughly equivalent to a single MAC operation, and
there are N × L values for each image cube, raw data preprocessing requires L times
less computation than HSI analysis. Since L > 100 for most HSI systems, the raw data
preprocessing resource demands are negligible.

Our case study’s HSI sensor is the Hyperion [Pearlman et al. 2003, 2001] on the
Earth Observing-1 (EO-1) satellite, which orbits Earth at approximately 7.5km/s in
LEO at a 680km altitude, capturing single lines of pixels at a time. These lines are
perpendicular to the sensor’s path, and the combination of many adjacent lines forms
an image cube. The Hyperion captures an image every 2.95 seconds and produces an
image cube 256 pixels wide, 660 lines long, and 220 twelve-bit spectral bands deep,
requiring a total of 1.386 billion 32-bit integer MAC operations per second (OPS).
Although temperatures in LEO can vary widely depending on whether a satellite is
inside or outside Earth’s shadow, we assume the EO-1 is equipped with a passive
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Table I. Virtex-4 CREME96 Weibull Parameters
[Engel et al. 2006; Hiemstra et al. 2006]

Heavy Ion Trapped Proton

Onset 0.87 MeV·cm2

mg 20MeV

Width 30 4
Power 1 0.5

Limiting XS 1.73 μm2

bit 0.0156 10−12cm2

bit

thermal control system (e.g., insulation, radiators, thermal fillers) that regulates the
ambient temperature to a standard 25◦C.

5.2. Calculation of Framework Evaluation Metrics

In order to clearly define our framework’s methodologies and contributions, this subsec-
tion details the calculation of the power, dependability, and lifetime evaluation metrics
for our case study mission using a Virtex-4 LX40-FF668-10 device with the ABFT
strategy.

The Virtex-4 LX40-FF668-10 device is a low-mid-range device in the 90nm Virtex-4
family and features 12.3 million configurable bits. The device has a CD of 9.37 billion
32-bit integer MAC OPS with a maximum dynamic power consumption of 4.59W. Based
on the Xilinx power estimator tool, the device has a thermal resistance of 6.6◦C/W in the
airless vacuum of space and has a nonlinear static-power function measuring 0.256W
at 25◦C, 0.323W at 50◦C, and 0.422W at 75◦C.

Given the EO-1 Hyperion mission’s required 1.386 billion 32-bit integer MAC OPS
(Section 5.1), the device utilization for the Virtex-4 LX40-FF668-10 is 14.8%. Pes-
simistically assuming a 10% overhead [Silva et al. 1998] for the ABFT strategy results
in a device-FT utilization of 16.3% and a dynamic power consumption of 0.748W. With
an ambient temperature of 25◦C, the device’s temperature reaches 31.9◦C, resulting in
a static power consumption of 0.271W and a total power consumption of 1.02W.

The EO-1 Hyperion mission’s primary radiation concerns are heavy ions and trapped
protons. Most trapped protons originate from the sun’s solar winds and are trapped by
Earth’s magnetosphere, whereas heavy ions are highly charged particles originating
from outside of the solar system. Increased solar activity reduces both radiation hazards
by causing atmospheric expansion to remove low-orbiting trapped protons and stronger
solar winds to repel heavy ions entering the solar system.

CREME96 calculates the effects of these particles on processing devices by reporting
the expected upset rate for a device in a given orbit. Engel et al. [2006] give a much
more detailed description of a similar example with CREME96. We use the NORAD
two-line element (TLE) [Kelso 2011] for EO-1 to supply the orbit parameters, and
the solar-minimum model to ensure the dependability metric is accurate for the worst
case. From these parameters, CREME96 creates a model of the external space ionizing-
radiation environment, which models the proton and heavy-ion flux of various energies
around the EO-1. Assuming a typical shielding of 100 mils of aluminum, CREME96
creates a transferred radiation model for the radiation environment inside the EO-1.
From the internal radiation model, CREME96 can estimate the device upset rate using
the device radiation-response data. Table I shows the heavy-ion and trapped-proton
Weibull parameters for CREME96 that define the device’s radiation response. The
heavy-ion-induced upset rate is 0.538 upsets per day, and the trapped-proton-induced
upset rate is 1.12 upsets per day, for a total device upset rate of 1.66 upsets per day. A
device utilization of 14.8% results in an effective device upset rate of 0.246 upsets per
day.
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Fig. 10. SPENVIS model of TID contributions from electrons, protons, and bremsstrahlung with varying
levels of aluminum shielding for the EO-1 orbit during solar maximum using the SHIELDOSE-2 model.

Due to the ABFT strategy’s 10% overhead, the upset rate increases to 0.271 upsets
per day. We also assume a pessimistic 90% coverage [Silva et al. 1998] for the ABFT
detection. If the system detects an upset, the system restarts processing of the current
image cube, resulting in no overall adverse effects for the system assuming that there
are no impending, hard, real-time deadlines. With 90% coverage, the effective device
upset rate drops to 0.0271 upsets per day, which is equivalent to an MTBF of 36.9 days.

To determine the environmental TID levels, we use the Space Environment Infor-
mation System (SPENVIS), which was developed by the European Space Agency to
model space environment effects. Although CREME96 also models TID effects, this
model is insufficient for our case study because CREME96 does not model electron
effects, which can account for a significant proportion of the environmental TID. Fig-
ure 10 depicts the calculated environmental TID levels for various levels of aluminum
shielding in the EO-1 orbit during a solar maximum. For a thin hypothetical aluminum
shielding of 2.54mm (equal to 100 mils), SPENVIS calculates worst and best cases of
2.203krad/year and 1.436krad/year during a solar maximum and minimum, respec-
tively. As shown in Figure 7, the Virtex-4 has a TID rating of 300krad. Assuming that
no other essential platform components have a lower TID rating, the EO-1 case study
mission could operate for 136 years without experiencing failure due to TID.

5.3. Experimental Setup

For the EO-1 Hyperion mission, our framework computes the power and dependability
evaluation metrics for six commercial FPGA device families and three FT strategies.
We evaluate three standard Virtex families (Virtex-4, Virtex-5, and Virtex-6), two low-
power Spartan families (Spartan-3 and Spartan-6), and the radiation-hardened Virtex-
5QV device. Our automated data collection tool leverages the Tcl scripting abilities of
the Xilinx ISE Design Suite to automatically implement and analyze many various
operations on hundreds of different FPGA devices, enabling the calculation of CD after
the designer has specified an application and mission. Our tool is currently set up to
interface with Xilinx tools, which is sufficient for demonstrating our framework’s abili-
ties; however, the tool could be modified to interface with tools from other vendors that
support Tcl scripting (e.g., automating Quartus to analyze Altera devices). Although
the additional studied devices greatly increase the design space, our identification of
Pareto-optimal designs scales well with the design space size, producing a greater
design space reduction as a design space increases.

Our framework’s current database exists as an SQLite database, which a Ruby-on-
Rails-based web server accesses through the ActiveRecord library. When a designer
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Table II. Counts of Devices Under Study

Family Subfamilies Device Models Packages Speed Grades
Virtex-4 3 17 29 58
Virtex-5 5 26 41 105
Virtex-6 4 17 37 95

Spartan-3 1 8 29 58
Spartan-6 2 9 30 59

Virtex-5QV 1 1 1 1
Total 15 78 167 376

accesses our framework’s web tool to apply our framework’s analysis to a set of de-
vices, the web server collects all relevant information about these devices from our
framework’s SQLite database and sends this data client-side along with JavaScript
code to the designer’s computer. The designer’s browser executes the JavaScript code,
which processes the database data to calculate the CD of all specified devices, calculate
the evaluation-metric results for all possible designs, and determine the final Pareto-
optimal design set. Currently, designers must operate the CREME96 and SPENVIS
web tools themselves, entering in parameters for the mission’s orbit and any devices
of interest based on data from literature research. Future development of our frame-
work’s web tool will enable designers to store these input parameters in the framework’s
database for data consolidation and may eventually enable automatic result retrieval
from the CREME96 and SPENVIS web tools.

Currently, designers must determine the number and type of operations required by
the application manually (demonstrated in Section 5.1), and supply this information
using our framework’s web tool. Ideally, designers would be able to define this appli-
cation information by only specifying the general parameters of their application (e.g.,
image cube size, data capture rate). However, this convenience to designers can only be
enabled through a full a priori characterization of the most common aerospace kernels,
which is a significant area of research and is beyond the scope of this article.

The FT strategies include no fault tolerance (NFT), ABFT, and TMR, each of which
performs blind scrubbing (with negligible overhead) after each image cube to remove
any remaining errors in the configuration memory, ensuring that upsets during one
image cube iteration do not affect the next image cube. Although checkpoint recovery
and error correction codes are also common FT strategies, these are best suited for hard-
core or soft-core processors and the associated caches, respectively, so these processors
are not appropriate for demonstrating our framework with our current case study
devices. We assume TMR to have a 200% overhead and include a negligibly small
[Xilinx 2006], radiation-hardened, off-chip voter. We also assume that common-mode
failures caused by single-event functional interrupts are not a problem for TMR because
these failures are predicted to be extremely rare, with expected rates of only one event
every 36 to 500 years for a commercial Virtex-4 device in various LEO orbits [Quinn
2008]. The design constraints for the EO-1 Hyperion mission are a power consumption
less than 3W and an MTBF greater than 10 days.

Table II depicts our case study’s device set. Each FPGA family contains several
subfamilies, which are groups of devices optimized for basic logic, signal processing,
connectivity, embedded processing, or some combination of these. There are several
device models with varying fabric sizes grouped within these subfamilies, with the
largest models being roughly an order of magnitude more powerful than the smallest
models. For each model, there are often several packages that offer differing package
sizes and I/O capabilities without altering the model’s internal functionality. Finally,
each package typically offers either two or three speed grades, with the faster speed
grades sometimes reaching speeds as high as 40% faster than the lowest speed grades.
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Table III. Device TID Ratings and Estimated Lifetimes

Family Feature Size (nm) TID Rating (krad) Lifetime (years)
Virtex-4 90 300 136
Virtex-5 65 341 155
Virtex-6 40 381 173

Spartan-3 90 300 136
Spartan-6 45 373 169

Virtex-5QV 65 1,000 454

For clarity, in the remainder of this section, a device refers to a unique model, package,
and speed grade combination. Therefore, from the original set of six Xilinx FPGA
families, there are a total of 376 devices included in our device set, resulting in a
design space of 1,128 designs (there are three designs for each device because we
consider three FT strategies).

Literature research provides heavy-ion radiation-response data for the Virtex-4
[Engel et al. 2006], Virtex-5 [Quinn et al. 2007], Spartan-3 [Manuzzato et al. 2008],
and Virtex-5QV [Xilinx 2012]. Hiemstra et al. also provided proton radiation-response
data for all five of our commercial devices [Hiemstra et al. 2004, 2006, 2010; Hiem-
stra and Kirischian 2012, 2013]. The sources for protons and heavy ions give the
radiation-response data for only a single device within each device family because
all of the devices within a family share the same bit-level structure. Thus, we reuse
radiation-response data for all devices within a family after adjusting for the number
of configuration bits per device. Additionally, because we are unable to find sufficient
heavy-ion radiation data publicly available for the Virtex-6 and Spartan-6 families, we
use a method discussed by Petersen [1998] to accurately estimate heavy-ion limiting
cross-sections based on the proton limiting cross-sections of the same device. The lim-
iting cross-section is the most important of the four Weibull parameters. When only
the limiting cross-section data is known, we can still obtain sufficiently accurate upset
rate estimates by copying the missing three Weibull parameters from a known similar
device family.

Since we do not have access to Virtex-5QV tools for generating designs, we estimate
the Virtex-5QV’s CD by analyzing the Virtex-5 FX130T, which is logically identical
to the Virtex-5QV. Xilinx documents specify a block memory maximum frequency of
360MHz for the Virtex-5QV and 550MHz for the Virtex-5. Since the Virtex-5 FX130T’s
CD is bandwidth limited (the device can fit more MAC operators than the on-chip block
memory can supply with inputs), we assume that the Virtex-5QV’s CD is 65.45% of the
FX130T’s CD.

To ensure mission success, it is important that the considered devices are immune to
destructive SEEs. SEB and SEGR are primarily the concern of power MOSFETs and
BJTs [Sturesson 2003; Ladbury 2007; Schwank et al. 2008], rarely affecting commer-
cial CMOS devices, such as Xilinx FPGAs. SEL is the most common destructive SEE
for CMOS devices, so SEL immunity is an important concern for our EO-1 Hyperion
mission. Fortunately, the literature shows that all of these commercial families are
essentially SEL immune for the levels of radiation in the relatively calm LEO environ-
ment of the EO-1 Hyperion mission [Hiemstra et al. 2004, 2006, 2010; Hiemstra and
Kirischian 2012, 2013].

The lifetime evaluation metric requires knowledge of the TID ratings of the devices
and the expected environmental TID levels (Section 4.3). Table III depicts the TID
ratings for the six Xilinx FPGA families in our case study, which were obtained directly
from the data shown in Figure 7 or estimated based on the data’s linear trendline, which
shows a highly linear correlation between feature size and TID rating. This estimation
is only appropriate for highlighting the potential suitability of a device for a mission
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Table IV. Pareto-Optimal Designs

Fam. Mod. Pack. SG FT Power (W) MTBF (days) Life (years)
Vir-4 SX55 FF1148 12 ABFT 0.858 109 136
Vir-4 SX55 FF1148 12 TMR 1.35 1,400,000 136
Vir-5 SX35T FF665 3 ABFT 0.595 49.2 155
Vir-5 SX35T FF665 3 TMR 0.912 285,000 155
Sp-6 LX16 CSG324 3 ABFT 0.417 38.7 169
Vir-6 LX75T FF784 2 ABFT 0.696 74.2 173
Vir-6 LX75T FF784 3 TMR 0.940 650,000 173
Vir-6 LX130T FF1156 2 TMR 1.35 666,000 173
Vir-6 LX130T FF784 3 TMR 1.38 746,000 173
Vir-6 LX130T FF484 3 TMR 1.78 749,000 173
Vir-6 LX195T FF784 3 TMR 2.19 793,000 173
Vir-6 LX240T FF1759 3 TMR 2.43 858,000 173
Vir-6 LX240T FF1156 3 TMR 2.47 867,000 173
5QV FX130 CF1752 1 NFT 2.41 3,930 454
5QV FX130 CF1752 1 ABFT 2.44 35,700 454

during the early design phase, which is when our framework is most useful. Since these
estimations may be inaccurate, any device recommended by our framework must still
be tested for TID through radiation injection before the device can be accepted for the
final design. Unlike the other families, the Virtex-5QV device is radiation hardened by
design and therefore does not follow the same trendline as the other devices. Instead,
the Virtex-5QV’s product specification states that the Virtex-5QV has a minimum TID
rating of 1Mrad. Table III shows the predicted lifetimes (using SPENVIS and the EO-1
mission orbit) for all device families based on the worst-case (solar maximum) value,
which are the lifetimes used for our case study.

5.4. Results and Analysis

Figures 11, 12, and 13 depict the power and dependability evaluation metric results
for our case study. In order of ascending family TID rating, Figures 11(a) to 11(f) depict
the results for all designs for each family (Virtex-4, Spartan-3, Virtex-5, Spartan-
6, Virtex-6, and Virtex-5QV, respectively) and highlight each family’s Pareto-optimal
front. Figure 12 collectively depicts the families’ designs for cross-family comparison
and shows the family-specific Pareto-optimal fronts. Figure 13 depicts our framework’s
final Pareto-optimal design set after considering lifetime and filtering unsuccessful de-
signs that fail the EO-1 Hyperion mission’s power consumption and MTBF constraints
(Section 5.3). The results do not show designs requiring more than one device to meet
the computational requirements.

Table IV lists the designs included in our framework’s final Pareto-optimal design
set. The specific device used in a design is described by the device’s family, model, pack-
age, and speed grade listed under the Fam., Mod., Pack., and SG columns, respectively.
The FT column shows a design’s FT strategy. The final three columns (Power, MTBF,
and Life) show the results of our framework’s evaluation metrics for power, depend-
ability, and lifetime, respectively, for each design. We group the designs according to
the design’s device’s family and order by ascending lifetime. Within each device family,
we order the designs in ascending order by power and dependability.

In some cases, clusters of two or more Pareto-optimal designs are nearly identical in
power but not in dependability. Within these clusters, designs with less dependability
should not be considered because these designs have an insignificant power gain.
To address this issue, our framework rounds each evaluation metric result to three
significant digits. Therefore, although several designs within these clusters may be

ACM Transactions on Reconfigurable Technology and Systems, Vol. 10, No. 1, Article 1, Publication date: September 2016.



Framework to Optimize FPGA SoCs for Aerospace 1:23

Fig. 11. Power and dependability results for all designs including family-specific Pareto fronts.

technically Pareto optimal before rounding, our framework considers only the most
dependable design as Pareto optimal because these designs are essentially equal in
power but superior in dependability.

In general, there is significant variation between the families and the designs in
each family. Within each family, there are three typically horizontally stretched groups
that represent the three FT strategies used in our case study. From bottom to top,
these FT strategies are the low-power NFT, the middle-ground ABFT, and the highly
dependable TMR strategies. The horizontal stretching of these groups is typically the
result of variations in static power between the differently sized devices, which affects
the power consumption but not the dependability. Within each of the horizontal groups,
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Fig. 12. All designs with six family-specific Pareto fronts.

Fig. 13. Power and dependability results for all designs in the final Pareto-optimal design set including
family-specific Pareto fronts.

there are typically smaller vertical groupings consisting of designs that differ only in
the design’s device package and speed grade, with increasing dependability correlating
with increasing speed grades. For example, doubling the device’s operating speed does
not necessarily increase the device’s dynamic power because the faster device would
require half as much device utilization to achieve the same computational capacity.
Conversely, reducing the device utilization would improve dependability (Section 4.2).
Finally, varying the design’s device package shows a slight yet consistent correlation,
with larger packages having a lower thermal resistance and therefore slightly lower
static power consumption.

Table IV shows that all designs on the Virtex-4 and Virtex-5 Pareto-optimal fronts
use the SX device subfamily. A closer analysis reveals that the SX subfamily is better
suited for the HSI application than other subfamilies. For example, we consider the
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differences between the Virtex-5 SX50T-FF1136-3 and the Virtex-5 LX50TFF1136-3.
Both devices are equivalent in package and speed grade but differ in the number of
device resources, with the SX device having 13% more logic and 438% more DSP units
than the SX device’s LX counterpart. The HSI application’s multiplication operations
are significantly more power efficient when implemented using an FPGA’s DSP units
rather than only using an FPGA’s general logic resources. This results in the SX device
achieving a 200% larger CD than the LX device for nearly the same power consumption.
Therefore, even though the SX device has 0.18W more static power, the SX device
can still perform the required computations with a lower overall power consumption
because the SX device’s dynamic power consumption scales efficiently.

Conversely, the SX subfamily is not dominating the Virtex-6’s Pareto-optimal front
for two reasons. First, the Virtex-6 SX subfamily is only available in two large models,
the smallest being the SX315T with a static power of 2.08W at 25◦C. The smallest
Virtex-6 model (the LX75T) has a static power of 0.54W and performs the mission’s
required computation while staying well under 2W of total power consumption. Second,
the Virtex-6 devices have a higher DSP-to-logic ratio, as demonstrated by the Virtex-6
LX75T model having an equal number of DSPs as the Virtex-5 SX50T. Since neither
the Virtex-6 LX’s nor the Virtex-6 SX’s DSP resources saturate when running the HSI
application, neither subfamily has a clear advantage over the other.

The Spartan families do not have large horizontally stretched groups for two rea-
sons. First, the Spartan devices offer a smaller, more power-efficient alternative to
their Virtex counterparts. Therefore, many of the smaller Spartan designs are too
small to handle the mission’s required computations, resulting in a reduced design
set consisting of only larger devices. Second, there is no significant variation between
the subfamilies within each family. The Spartan-3 family does not have different sub-
families and the Spartan-6 has the LX and LXT subfamilies, which differ only in I/O
bandwidth and not in computational resources. Therefore, limited differences in device
size and specialization potential result in the small variation between different Spar-
tan devices shown in Figures 11(b) and 11(d). This effect also applies to the Virtex-5QV
device, which has only one model, package, and speed grade, and thus results in design
variation only between the three different FT strategies.

Figure 12 shows how different device families can affect a design’s power and perfor-
mance. The older Spartan-3 family performs poorly in both power and dependability,
while the Virtex-4 family provides slightly better dependability and significantly bet-
ter power consumption than the Spartan-3 family. Although the Virtex-4 devices have
higher static power consumption than similarly sized Spartan-3 devices, the Virtex-4
family’s DSP units are more power efficient than the Spartan-3 multiplier units, which
is important to consider when designing for the HSI application. The Spartan-6, Virtex-
5, and Virtex-6 families are superior in low-power consumption, and the Virtex-5 and
Virtex-6 families also perform similarly in dependability to the Virtex-4 for designs
using TMR. As shown in Table IV, the Virtex-5QV is the most dependable device with
1,000× greater MTBF for designs with similar FT strategies, but has the highest power
consumption of all the devices (also the highest cost at $50,000 compared to a standard
FPGA price of around $1,000).

Figure 13 shows the final Pareto-optimal design set. Our framework reduces the de-
sign space of 1,128 possible designs by 98.7%, determining these 15 designs, consisting
of five device families and three FT strategies, as the set of successful Pareto-optimal
designs that meet the mission’s constraints. The Spartan-3’s Pareto-optimal front as
well as much of the Pareto-optimal fronts of the Virtex-4, Virtex-5, and Spartan-6 are
Pareto inferior to the Virtex-6’s Pareto-optimal front. Our framework also rejects all
of the Spartan-6 and Virtex-6 NFT designs because none of these designs meet the
dependability constraint of an MTBF greater than 10 days. Similarly, the Virtex-5QV’s
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TMR design and the most power-hungry Pareto-optimal Virtex-6 TMR design consume
more than 3W; thus, our framework rejects these designs as well. Of the Pareto-optimal
design set, TMRs on the Virtex-4, Virtex-5, and Virtex-6 show the best dependability;
ABFTs on the Virtex-4, Virtex-5, Virtex-6, and Spartan-6 show the best power consump-
tion; Virtex-5QV has superior lifetime; and TMR on the Virtex-6 provides a balanced
design for all three metrics.

Our system to compute these results uses a single core of an Intel Core i7-2600
CPU running at 3.4GHz with 8GB of RAM to run our framework’s JavaScript code
running on version 42 of the Mozilla Firefox browser. We evaluate the performance of
our framework using 10 trial runs on our system, and we measure the duration of the
analysis of each run by querying the system time through the JavaScript Date object
before and after the relevant JavaScript code. Our system takes an average of 1.01
seconds to calculate the CD for every device and the evaluation-metric results for each
design in our results. After computing all the evaluation-metric results, our system
takes an average of 4ms to find the final Pareto-optimal design set. Although general
SoC-design optimization approaches may typically require more processing time, our
framework leverages the CD methodology to prune the majority of the design-variant
options available in the SoC design and focus on a single optimal design variant for
each device. Therefore, although the task of finding the final Pareto-optimal design set
is on the order of O(n2), we have reduced the total computation time by first computing
CD and the evaluation-metric results for all designs, which instead scale linearly with
the number of designs. We predict that even for device sets that are several orders of
magnitude larger, calculating the evaluation metrics for all designs will dominate total
computation time, meaning our framework’s methodology will scale well into the future
with the addition of new devices to our framework with increasing device complexity.

6. CONCLUSIONS

In this article, we have introduced a novel framework that leverages past research and
successes in device, application, and fault-tolerant (FT) strategy analysis to aid in the
design of on-board FPGA-based SoCs for aerospace computing. Our framework consid-
ers a designer-defined mission and application, and analyzes a database of literature
research and experimental data to provide designers with a final set of Pareto-optimal
system designs (device/FT strategy combinations). Our framework’s evaluation met-
rics enable designers to select the best design from this final set depending on desired
metric tradeoffs and mission requirements.

To demonstrate our framework’s potential given a large design space, we analyzed
a design space of 1,128 designs (63× larger than our previous work) and provided a
more in-depth analysis of the designs using the new lifetime evaluation metric. Our
framework reduced the design space by 98.7%, identifying 15 final Pareto-optimal
designs, including designs specializing in low power, high dependability, high lifetime,
or a compromise between all three of these attributes.

Our future work includes further framework expansions and enhancements. Realiz-
able Utilization (RU) enables device comparison of the attainable performance a typical
designer is able to realize from a device given a certain application as compared to the
device’s peak performance capability. RU enhances our framework by more effectively
measuring the impact of an application on the device, thereby improving the evaluation
of a device’s CD. Additionally, we will include fault-injection analysis in the calculation
of the dependability metric, which will provide greater insight into the true vulnera-
bility of certain applications and the behavior of various FT strategies. Research into
device size and cost may also lead to two additional metrics to enhance our frame-
work’s evaluation of designs and increase the range of the Pareto-optimal design set.
For example, no Spartan-3 designs were Pareto optimal in our analysis because the
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device family underperformed in all three metrics, but some Spartan-3 designs may
be Pareto optimal if we also include a device-cost metric in our analysis, because older
Spartan-3 devices are typically less expensive than the newer generations of FPGAs.
Finally, device utilization can indicate the potential for a system to advance and ma-
ture during the course of a mission and even beyond the mission’s original purpose.
Although device utilization is an intermediate metric that enables the calculations of
the power and dependability evaluation metrics, including device utilization in the set
of evaluation metrics would be straightforward and would be worth investigating.
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