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Abstract—Large Convolutional Neural Networks (CNNs) are
often pruned and compressed to reduce the amount of parameters
and memory requirement. However, the resulting irregularity in
the sparse data makes it difficult for FPGA accelerators that con-
tains systolic arrays of Multiply-and-Accumulate (MAC) units,
such as Intel’s FPGA-based Deep Learning Accelerator (DLA),
to achieve their maximum potential. Moreover, FPGAs with
low-bandwidth off-chip memory could not satisfy the memory
bandwidth requirement for sparse matrix computation. In this
paper, we present 1) a sparse matrix packing technique that
condenses sparse inputs and filters before feeding them into the
systolic array of MAC units in the Intel DLA, and 2) a cus-
tomization of the Intel DLA which allows the FPGA to efficiently
utilize a high bandwidth memory (HBM2) integrated in the same
package. For end-to-end inference with randomly pruned ResNet-
50/MobileNet CNN models, our experiments demonstrate 2.7x/3x
performance improvement compared to an FPGA with DDR4,
2.2x/2.1x speedup against a server-class Intel SkyLake CPU, and
comparable performance with 1.7x/2x power efficiency gain as
compared to an NVidia V100 GPU.

Index Terms—Sparse CNN, FPGA, Deep learning accelerator,
High bandwidth memory

I. INTRODUCTION

Machine learning using Convolutional Neural Networks
(CNNs) has emerged as powerful tools for almost every
domain involving analytics of big data. Advances in CNNs, in
the form of Deep Neural Networks (DNNs), have resulted in
highly accurate predictions in image classification and object
detection applications [1], [2]. However, the great success
in CNN comes with the cost of excessive computation and
memory bandwidth requirement. The state-of-the-art CNN
models, e.g. VGGNet [3], GoogLeNet [4], MobileNet [5] and
ResNet [6], comprise of hundreds of layers, each of which
contains numerous filters with hundreds of millions of weights,
costing billions of arithmetic operations for analyzing and
extracting features from input images.

With recent progress in FPGA technology, FPGAs have
been gaining popularity as hardware accelerators to improve
the computation efficiency of CNN models. FPGAs have many
advantages over traditional CPU architectures and other ac-
celerators such as deterministic low latency, energy efficiency,
and reconfigurability. The performance of recent FPGAs is
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reportedly to be comparable to GPU performance recently
with 9.2 TFLOPS for Intel Stratix 10 FPGA [7] and up to 40
TFLOPS for Intel Agilex FPGA [8]. Moveover, efficiency of
data transfering between FPGA and external memory, which is
often the biggest shortcoming of FPGA-based accelerators, has
also been improving with High Bandwidth Memory (HBM2)
integrated with the FPGA die in the same package, such as
Intel Stratix 10 MX FPGA and Xilinx Virtex UltraScale+
with HBM2 are now available. As a result, there have been
much interest in FPGA-based CNN accelerators, both in
academia and industry. Successful examples include PipeCNN
[9], hls4ml [10] from Fermilab, Xilinx’s Deep Neural Network
Development Kit (DNNDK) [11], and Intel’s OpenVINO
toolkit [12].

On the algorithm side, various model pruning and compres-
sion methods have been introduced to reduce the amount of
weights by leveraging the intrinsic redundancy in the weights
of CNN models. These methods can result in very high sparsity
in the convolutional filter tensors without sacrificing much
model inference accuracy [13]–[16]. By doing so, it reduces
the memory requirement and arithmetic operations needed for
inference, as sparse matrices can be compressed and operations
with zeros can be skipped.

However, high sparsity does not necessarily guarantee that
the inference of a sparse CNN would achieve better perfor-
mance than its dense counterpart. Due to the irregularity of
the sparsity, it is often difficult for hardware accelerators to
achieve optimal performance and efficiency, especially ones
with systolic array of computation units which are widely
adopted in many FPGA-based Deep Learning Accelerators
cited above. Systolic array architectures are usually efficient
for DNN applications because the local data shifting naturally
mimics the inherent data movement of a 2D convolution.
Systolic arrays also leverage the abundant data reuse in DNNs
while keeping the processing elements busy to produce high
throughput. However, because zeros in pruned filter matrix can
be distributed in an unstructured manner, making it challenging
to efficiently utilize the regular structure of a systolic array.
When inferencing sparse CNN models, zeros in the filter
matrix still occupy the computation units in the systolic array,
resulting in sub-optimal efficiency.

To solve this problem, in this work, we present an opti-



mization for the systolic array architecture of deep learning
accelerators for sparse CNN models on FPGA platforms.
Further enhancement results from the use of an integrated high
bandwidth memory (HBM2) for efficient off-chip communi-
cation which accelerates memory-bound operations for deep
learning accelerators. The main contributions of this work are:

• We propose a sparse matrix packing method that con-
denses sparse filters to reduce the computation require-
ment for systolic array accelerators. A bitmap represen-
tation is used to indicate positions of zero and non-zero
elements in the sparse filter. The bitmap representation
enables efficient extraction of feature map inputs match-
ing the position of non-zeros in the sparse filter.

• We analyze the bandwidth requirement of our optimiza-
tion for sparse CNNs and present efficient implementa-
tions of the memory accessing module to utilize HBM2
bandwidth in OpenCL.

• Under NDA, we obtained the source code and customized
the Intel Deep Learning Accelerator (DLA) to integrate
the proposed sparse matrix packing method into the DLA
architecture on the FPGA;

• Our custom DLA was ported to a platform using the
Intel Stratix 10 MX FPGA with HBM2. Evaluation
was performed for sparse MobileNet and ResNet-50
CNN models, resulting in 2.06x/3.44x performance gain
in DLA’s systolic array computation module, 2.2x/2.1x
speedup against a server-class Intel SkyLake CPU, and
comparable performance with 1.7x/2x energy efficiency
gain as compared to an NVidia V100 GPU.

The remainder of the paper is organized as follows. Section
II introduces related research in sparse matrix accelerators and
FPGA-based deep learning accelerators. Section III presents
the proposed optimization for systolic array based deep learn-
ing accelerators and the use of HBM2 memory to accelerate
memory-bound operations. Section IV and Section V describes
experimental setup and results, providing comparison of FP-
GAs (with DDR4 and HBM2 memory) against CPU and GPU
for inferencing sparse CNN. The paper is concluded in Section
VI.

II. RELATED WORKS

A. Sparse Matrix Accelerators
One of the main approaches to improve DNN performance

is to exploit the high degree of redundancy in the weights pa-
rameters of DNN models [13]–[17]. Pruning techniques, such
as Deep Compression [13] and Dynamic Network Surgery
[18], can efficiently compress a DNN model to only a fraction
of its original size. These pruning techniques have led to an
increased interest in sparse matrix algorithms, as the dense
weight matrices are pruned to sparse matrices. Due to irregular
patterns that are inherent in sparse data structures, conventional
architectures, such as CPU and GPU, struggle to achieve a
similar level of performance on sparse matrices comparing to
their performance on dense matrices. Thus, there is growing
interest in accelerating sparse matrix through custom hardware
accelerators.

Early implementation of sparse matrix accelerators, such as
the DAP processor [19], focused on mainly on sparse matrix
multiplications for scientific and engineering applications.
OuterSPACE [20] is a co-designed solution that accelerates
sparse matrix multiplication by reconfiguring on-chip memory.
ExTensor [21] uses hierarchical intersection detection to ac-
celerate sparse matrix algebra. However, neither OuterSPACE
and ExTensor was designed for DNN applications. Efficient
Inference Engine [22] is a hardware accelerator specific to
DNNs. But it relies on complex central scheduling units to co-
ordinate the computation units. SparTen [23] accelerates CNNs
by designing asynchronous computation units for exploiting
sparsity in both feature maps and filters.

Instead of redesigning computation units specially just for
sparse matrix, our work supports efficient sparse (in additional
to dense) matrix vector multiplication on a systolic array with
minor modifications to support end-to-end inference of sparse
CNN on FPGA-based deep learning accelerators.

B. FPGA-based Deep Learning Accelerators

Although CPUs and GPUs have been widely used for DNN
inferencing, inference engines accelerated with FPGAs have
recently emerged. Recent improvements in FPGA technologies
greatly increased the performance for DNN applications. Fur-
thermore, FPGAs have other advantages important to many
mission-critical applications such as low latency and energy
efficiency. As a result, the amount of research and development
on deploying and accelerating DNN models on FPGAs in
recent years has grown, demonstrating great interest in both
academia and industry. While some of the works focused on
optimizing datapaths or computation algorithms for FPGA
devices, many also involve developing tools for DNN model
inferencing on FPGA platforms to provide a generalized
framework for developers to build their customized applica-
tions.

1) PipeCNN [9]: One notable tool developed in the re-
search community is PipeCNN, an OpenCL-based FPGA
accelerator designed for large-scale convolutional neural net-
works (CNNs). The main goal of PipeCNN is to provide
an FPGA accelerator architecture of deeply pipelined CNN
kernels to achieve improved throughput in the inference stage.
Unlike previous OpenCL design, memory bandwidth is mini-
mized by pipelining CNN kernels. Efficiency is enhanced by
using task-mapping techniques and data reuse. The PipeCNN
architecture was verified by implementing two CNNs, AlexNet
and VGG, on an Altera Stratix-V A7 FPGA, achieving a
peak performance of 33.9 GOPS with a 34 percent resource
reduction on DSP blocks.

2) hls4ml [10]: Another notable FPGA-based inference
tool is hls4ml from Fermilab, which is a deep neural network
compiler based on HLS (High-level Synthesis language). The
input to hls4ml is a fully connected neural network trained
from conventional training frameworks such as Keras and
PyTorch. The network is translated to Vivado HLS (from
Xilinx) and then compiled for the target FPGA. For the initial
result in using this framework, the researchers focused on
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Fig. 1. Intel Deep Learning Accelerator architecture.

using FPGAs for machine learning in an application of real-
time event reconstruction and filtering in the Large Hadron
Collider at CERN. The accessibility and ease of configurability
in HLS allows for physicists to quickly develop and optimize
machine learning algorithms targeting FPGA hardware.

3) Xilinx DNNDK [11]: With the recent acquisition of
DeePhi, Xilinx provides the Deep Neural Network Develop-
ment Kit (DNNDK) to enable the acceleration of the deep
learning algorithms in FPGAs and SoCs. At the heart of
the DNNDK is the deep learning processor unit (DPU).
The DNNDK deep learning SDK is designed as an inte-
grated framework which aims to simplify and accelerate deep
learning applications development and deployment for Xilinx
DPU platforms.The basic stages of deploying a deep learning
application into a DPU are: compress the DNN model to
reduce the model size without loss of accuracy; compile the
DNN model into DPU instruction code; create an application
using DNNDK (C/C++) APIs; use the hybrid compiler to
compile and deploy the hybrid DPU application on the target
DPU platform.

4) Intel OpenVINO and Intel DLA [12], [24]: Intel Open-
VINO is a comprehensive toolkit designed to support deep
learning, computer vision, and hardware acceleration using
heterogeneous (CPU, GPU, FPGA) platforms. The OpenVINO
software is built to emulate the Open Visual inference and
neural network optimization. It extends the workload across
Intel hardware and maximizes performance. The OpenVINO
toolkit comprises of a Model Optimizer and an Inference
Engine.

The Model Optimizer is a cross-platform, command-line
tool that facilitates the transition between the training and
deployment environment on a target inference engine. The
Model Optimizer takes, as input, a trained deep-learning model
outputted from one of the supported frameworks (e.g., Ten-
sorFlow, Keras). It performs static model analysis and adjusts
the deep learning model for optimal execution on end-point
target devices, CPU, GPU, FPGA, or HETERO (CPU+GPU
or CPU+FPGA). The output of the Model Optimizer is an In-
termediate Representation (IR) suitable as input to the selected
target Inference Engine. The Inference Engine is a C++ library
with a set of C++ classes to infer data (images) to obtain a
result. The C++ library provides an API to read the IR, set the
input and output formats, and execute the model on devices. In
our study, our goal in the Deployment and Inferencing stage

Fig. 2. Overall architecture of proposed optimization of sparse CNN accel-
erator.

is to deploy the trained model on an FPGA to accelerate the
classification process.

The Intel Deep Learning Accelerator developer suite or Intel
DLA is the underlying tool that enables the inferencing of
DNN models on FPGAs with OpenVINO. DLA consists of an
API layer called DLIA plugin that interacts with OpenVINO’s
inference engine and an FPGA bitstream that creates the ac-
celerator architecture shown in Fig. 1. Intel DLA can perform
end-to-end DNN inference and is designed to be adapted for
various models. Our work leverages Intel DLA as our base
design, which is then customized to accelerate sparse CNNs
on Intel FPGA platforms.

III. CUSTOMIZED INTEL DEEP LEARNING ACCELERATOR
FOR SPARSE CNN

In this section, we describe the proposed pre-processing
method of packing sparse matrix to optimize sparse CNN
inference for the systolic array computation module of Intel
Deep Learning Accelerator.

A. Overall Architecture and Sparse Matrix Packing

Fig. 2 shows the top-level diagram of the custom Intel DLA
architecture for accelerating inference of sparse CNN models
on systolic array accelerators. The architecture is divided into
three main module blocks: 1) Memory Accessing Modules, 2)
Sparse Matrix Pre-processing Modules, and 3) Computation
Modules.

The Memory Accessing Modules interact with global off-
chip memory through an Input Reader and a Filter Reader
reading feature map inputs and filters for convolutional op-
erations. It also contains an Output Writer writing the final
inference output back to the memory.

The Computation Modules block consists of a systolic
PE Array which utilizes FPGA’s DSP resources to perform
floating-point Multiply-and-Accumulate operations for convo-
lutional layers. The size of the PE Array can be configured
to fit different FPGAs and CNN models. The output of the
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(a)

(b)

Fig. 3. (a) Representing positions of zero and non-zero numbers with sparse
bitmap. (b) Compress input feature maps based on the filter sparse bitmap.

Fig. 4. Use double buffering for condensed input data.

PE Array goes through a series of secondary computation
modules with ReLU activation, pooling, normalization, and
custom compute primitives for DNN models.

The Sparse Matrix Pre-processing Modules block consists
of a Sparse Matrix Packing module for compressing sparse
filter into a condensed format by eliminating zero elements and
creating a sparse bitmap for the Input Matching kernel to ex-
tract corresponding input data which will be stored into an on-
chip buffer before streaming to the PE Array. Different from
traditional sparse tensor representations, such as Compressed
Sparse Row (CSR) or Coordinate List (COO) [25]–[29] which
represent indices of non-zero values as integer numbers, we
use a sparse bitmap representation as introduced in paper
[30], with binary number ”0”s and ”1”s to represent positions

of zero and non-zero numbers respectively. The benefits of
sparse bitmap representation are 1) it is more memory efficient
than integer indices and 2) binary operations can be easily
implemented on FPGA devices. Fig. 3a demonstrates the
sparse bitmap conversion operations and Fig. 3b demonstrates
the index matching process where the Input Matching kernel
masks the original input chunk with the filter sparse bitmap,
extracting the input data that matches the position of 1’s.

B. Sparse Input Double-buffering
Due to the unpredictability of the sparsity for a given sparse

matrix, using single buffer may result in the buffer being
unfilled or overflowed which can cause under-utilizing the PE
computation module or losing the overflowed data. Thus, we
employ double buffering in the custom DLA by implementing
two identical buffers, where one buffer sends data to the PE
Array only when it is filled while the other holds overflowed
data.

Fig. 4 demonstrates the usage of double buffering. As
described in above section, an sparse input vector is firstly
passed into the Input Matching kernel to extract the data that
matches the position of the filter’s sparse bitmap. The resu
lting condensed input will be stored in ”buff 0” as shown
in the step 1. If ”buff 0” is not filled, the next input chunk
will be processed in the same manner and added to ”buff 0”.
Once it is filled, the data in ”buff 0” will be sent to the PE
Array to perform convolution operations. If ”buff 0” cannot
hold all input data received in the current iteration, the second
buffer ”buff 1”, will be used to hold the overflowed data.
Once the PE has received the data, the next input chunk will
be buffered in ”buff 1” instead and ”buff 0” will be reset to
store overflowed data. After all the input chunks have been
processed, a ”last input” flag will be asserted, which allows
the remaining data in either buffers to be sent to the PE. Note
that in this scenario, the PE Array only performed convolution
operation twice with four input chunks received from the Input
Reader, thus reducing the computation requirement by a half.

C. Bandwidth Analysis and Integration of HBM2 Memory
Although our sparse matrix packing optimization condenses

sparse matrix and reduces the computation requirement, the
custom DLA requires higher memory bandwidth when infer-
encing CNN models with high sparsity because the PE Array
computation modules can be underutilized due to waiting for
the buffer being filled from the memory-bound pre-processing
stage.

We can estimate the minimum bandwidth requirement based
on the sparsity of the filter data and the computation capacity
of the PE Array. Assuming that sparsity of a CNN model is
SPfilter, each PE is capable of computing dot products of
N-bit floating-point vectors with a size of Sdot running at a
clock frequency of fkernel, the minimum memory bandwidth
required BWmin for avoiding stalls in the PE Array is calcu-
lated in Eq. 1.

BWmin = Sdot ×
1

1− SPfilter
×N × fkernel (1)

4



Assuming SPfilter = 70%, N = 16 (FP16 precision), Sdot
= 16, fkernel = 300 MHz, it requires a data bandwidth of
at least 32 GB/s for both Input Reader and Filter Reader to
prevent stalls in the PE Array. For SPfilter = 90%, the required
bandwidth increases to 96 GB/s. Note that a DDR4 memory
can only provide a maximum of 16.9GB/s bandwidth.

As mentioned in the previous section, recent FPGAs, such
as Intel Stratix 10 MX, are equipped with integrated high
bandwidth HBM2 memory. As shown in Fig. 5a, HBM2 uses
3D stacked DRAM dies connected with Through-Silicon Vias.
Each DRAM die consists of two physical channels (CH 0
to 7), each of which can be further divided into two pseudo
channels (PC 0 to 15). The HBM2 is integrated with the Intel
Stratix 10 MX FPGA with Embedded Multi-die Interconnect
Bridge (EMIB) in the same package. All physical channels
and corresponding pseudo channels are connected through
Intel HBM2 interface IP with dedicated memory controllers
for each individual physical channels of the HBM2. By using
the FPGA with HBM2, we can allow both Input Reader and
Filter Reader kernels to read more data per cycle, thus further
optimizing the performance of our custom DLA.

However, utilizing HBM2 memory in OpenCL is different
from using traditional DDR memory where multiple memory
banks are combined to form a single global memory system.
For the HBM2 memory, OpenCL kernels interact with each
HBM2 pseudo channel as individual memory system with
independent address space. Thus, it requires a developer to
explicitly specify which pseudo channel each global memory
pointer should access in the OpenCL kernel code.

Similarly, in the OpenCL host code, it also requires that all
buffer transfers must target the pseudo channels specified by
the OpenCL kernel. Failure to do so can result in the OpenCL
runtime allocating buffer in a wrong memory system and later
having to copy the data to the correct memory system, which
may greatly reduce the overall performance.

If the custom DLA is implemented on the FPGA+HBM2 de-
vice without being explicitly specified to use multiple HBM2
pseudo channels, the Memory Accessing Modules of the DLA
will only be able to read data from the first pseudo channel of
the first HBM2 physical channel (”PC 0” of ”CH 0” Fig. 5a)
by default. Since a single HBM2 pseudo channel has 64-bit
wide data I/O and with 1 GHz of maximum memory clock
frequency [31], it can only provide up to 64 bits × 2 (double
data rate) × 1 GHz = 16 GB/s memory bandwidth which will
not satisfy the minimum memory bandwidth required for the
custom DLA.

To use multiple HBM2 pseudo channels, we need to first
partition the input data and filter data equally in the OpenCL
host program for the number of pseudo channels that we
decide to use for the Input Reader and the Filter Reader kernels
and transfer the data buffers to their corresponding HBM2
pseudo channels.

For the OpenCL kernel to access multiple HBM2 pseudo
channels, one of the approaches is to pass the partitioned input
and filter data using multiple global memory pointers to the
kernel functions of both Input Reader and Filter Reader, and

(a)

(b)

Fig. 5. (a) Intel Stratix 10 MX with HBM2 has 8 physical channels (CH)
and 16 pseudo channels (PC). (b) Duplicate memory accessing modules to
use multiple HBM2 pseudo channels.

assign each pointers to their corresponding pseudo channels.
However, this method may greatly increase the complexity of
the OpenCL kernel as accessing each additional HBM2 pseudo
channel requires an additional memory accessing system to
be instantiated by the OpenCL compiler, which makes it
difficult to optimize the performance of the kernel. Thus, we
proposed an alternative approach, as shown in Fig. 5b, that
duplicates the Input Reader and the Filter Reader kernels to
read partitioned data from different HBM2 pseudo channels for
each replications. This approach not only keeps each kernel
simple, but also allowing the partitioned input and filter data to
be gathered and transferred through more efficient inter-kernel
FIFO channels to the subsequent Sparse Matrix Pre-processing
Modules.

5
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Fig. 6. PE computation latency for FPGA+DDR4 vs. FPGA+HBM2.

Fig. 7. Comparison of model inference throughput for FPGA, CPU and GPU.

TABLE I
SPARSE CNN BENCHMARK MODELS

Model Sparsity Parameters GFLOP Top-1 (Pruned)
MobileNet 59.3% 3.49M 0.62 70.85%

ResNet-50 60.4% 25.53M 6.99 74.56%

TABLE II
RESOURCE UTILIZATION OF SYNTHESIZED DLA

FPGA Platform ALM DSP Freq.
Arria 10 w/ DDR4 279K (63%) 1044 (69%) 260 MHz

S-10 MX w/ HBM2 334K (45%) 1442 (36%) 257 MHz

IV. EXPERIMENTAL SETUP

In this section, we describe the experimental setup for
the FPGA-based inferencing used in this study. The targeted
FPGA experimental platforms are the Intel Programmable
Acceleration Card (PAC) and BittWare 520N-MX acceleration
board. The Intel PAC contains an Arria 10 GX1150 FPGA,
a moderate-sized FPGA with 428K Adaptive Logic Modules

(ALMs), 1518 DSPs and 8 GB DDR4 with a maximum
bandwidth of 16.9 GB/s. The BittWare 520N-MX contains
an Intel Stratix 10 MX2100 FPGA with 702K ALMs, 3960
DSPs and 16 GB integrated HBM2 memory with up to 410
GB/s bandwidth [31].

For fair comparison of the two FPGAs and study the
performance difference with DDR4 and HBM2, we configure
the custom DLA architecture to be identical for both FPGA
boards. The custom DLA is configured to have a 2D systolic
array of 16 × 16 × 64 PEs that perform half-precision
floating point (FP16) Multiply-and-Accumulate to compute
convolution of 16 × 16 pixels in 64 output feature maps. For
the FPGA+HBM2 device, we configure the Input Reader to
read data from four HBM2 pseudo channels (PC 0 to PC 3)
as well as the Filter Reader to read from another four (PC 4
to PC 7). Using Intel Quartus 19.4 with Intel OpenCL SDK
for FPGA, the custom DLA is synthesized, placed/routed and
the bitstream is uploaded to both FPGA boards.

Two CNN benchmark models are used: MobileNet and
ResNet-50. The pruned versions of both models are obtained
from the Intel OpenVINO Model Zoo [32]. Table I shows
detailed specification for both models. The average sparsity of
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the pruned MobileNet and ResNet-50 are 59.3 % and 60.4 %,
respectively [32]. Comparing to their original models tested on
the ImageNet benchmarking dataset, the pruned models show
3.9 % and 2.6 % degradation in Top-1 accuracy, respectively
[5], [6]. For comparing FPGAs against the CPU and GPU,
we use a dual-socket Intel Gold 6130 SkyLake CPU (32
cores with 2 threads per core) and an NVidia Tesla V100
GPU with a 16 GB HBM2 memory providing up to 900
GB/s bandwidth [33]. We use Intel OpenVINO Toolkit for
optimizing inferencing on both FPGA and CPU while using
NVidia’s TensorRT [34] for the GPU. Both CPU and GPU
use FP32 precision during inferencing. For power comparison,
we used BittWare Board Management Controller’s power
monitoring tool for the FPGA boards and used CUDA nvidia-
smi utility for the Tesla V100 GPU.

V. RESULTS AND ANALYSIS

In this section, we compare the performance results for the
CPU, GPU, FPGA+HBM2 and FPGA+DDR4, with or without
optimized DLA.

Table II shows resource utilization of the custom DLA
on both FPGA+DDR4 and FPGA+HBM2. The custom DLA
optimized for FPGA+HBM2 takes more resource due to
the duplicated Input Reader and Filter Reader kernels (four
Input Readers and four Filter Readers) with additional control
logic and Load/Store Units (LSUs) being synthesized by the
OpenCL compiler.

Fig. 6 shows the inference latency for both FPGA devices
to study the bottleneck of the performance and the benefit of
using the HBM2. We breakdown FPGA’s inference latency
into three stages: input reading stage (with sparse matrix pre-
processing), PE computing stage, and output writing stage.
As shown in Fig. 6a and Fig. 6b, memory-bound operations
consume 75%/69% of total latency for the FPGA+DDR4 im-
plementation for MobileNet and ResNet-50 respectively. Even
with ∼2x improvement in PE computation latency using the
custom DLA, the low bandwidth of DDR4 memory limits its
overall inference performance. For the FPGA+HBM2 device,
using the proposed kernel-duplication method for accessing
HBM2 pseudo channels solves the critical bandwidth bot-
tleneck, which significantly reduces the latency consumed
in input reading and output writing stages. With only eight
HBM2 pseudo channels, the custom DLA reduces the la-
tency of memory-bound operations by 4.6x/6.1x, resulting in
2.7x/3x performance gain in overall inference latency than
FPGA+DDR4 for MobileNet and ResNet-50.

Fig. 7 compares the FPGA performance with an Intel
Xeon Gold 6130 SkyLake CPU and an NVidia Tesla V100
GPU. The FPGA with HBM2 memory outperformed CPU by
30.8x/29.8x, 15.2x/13.8x and 2.2x/2.1x for 1 core/1 thread,
1 core/2 threads and all 32 cores/64 threads, respectively,
for MobileNet and ResNet-50. The Tesla V100 GPU outper-
formed the FPGA by 1.2x/1.3x but at a cost of higher power
consumption. The FPGA achieved lower power consumption
due to low resource utilization (45%) and with a clock
frequency at only 257 MHz. Fig. 8 shows our proposed custom

Fig. 8. Comparison of power efficiency for FPGA, CPU and GPU.

DLA using the FPGA+HBM2 device achieved 3.5x/3.3x more
power efficiency than CPU with 32 cores/64 threads and
1.7x/2x more power efficiency than V100 GPU for MobileNet
and ResNet-50, respectively.

VI. CONCLUSION

FPGAs have been showing great potentials in recent years
for accelerating CNN applications. However, accelerating
sparse CNN models can be challenging due to the random
distribution of zeros in the filters of the convolutional layers,
which can result in inefficient utilization of computation
resources in a typical systolic array accelerator. We propose
a solution to this problem by carefully pre-processing both
sparse input and filter tensors before sending them to the
systolic array. By doing so, we can greatly reduce the effect
of irregularity of a sparse CNN. Using the Intel Stratix 10
MX FPGA with HBM2, we are able to achieve up to 3x
improvement compared to an FPGA with DDR4, producing
speedup of 2.2x against 32 cores server-class Intel SkyLake
CPU and comparable performance with 2x power efficiency
against an NVidia Tesla V100 GPU.Note again that the two
CNN benchmark models used, MobileNet and ResNet-50,
have sparsity of 59.3 % and 60.4 %, respectively. CNN models
with higher sparsity (e.g., sparsity greater than 90 % such as
NLP models and Graph NNs) will benefit even more with
our sparse matrix packing optimization. Since more zeros will
be eliminated in the pre-processing stage, the corresponding
waste of computation would be avoided.

Going forward, our sparse matrix packing pre-processing
method can be applied not only to the sparse filters but also
to the feature maps of sparse CNN models to further optimize
sparse convolutions. From a framework and tools point of
view, the lessons learned thus far in using OpenVINO and
the DLA development suite will be invaluable in our effort
to enhance the DLA primitives and architecture to support
emerging DNN models and applications.

Finally, the results from this study, as exemplified by the
results presented in Section V, provide an excellent foundation
for more extensive design space exploration going forward to
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investigate various architectural, model, and tool trade-offs on
performance and other important metrics such as power and
cost.
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